Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Materials and Reagents
2.3. Preparation of Gold Plate Electrodes
2.4. Sensor Construction
2.5. Potential Measurements
2.6. Complex Formation Constants Measurements
3. Results and Discussions
3.1. Performace Characterisics of the Proposed Sensors
3.2. Formation ConstantβML
3.3. Water Layer Test
3.4. Chronopotentiometric Test
3.5. Electrochemical Impedance Spectroscopy (EIS) Measurements
3.6. Analytical Application
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Escudero, L.B.; Wuilloud, R.G.; Olsina, R.A. Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid–liquid microextraction and inductively coupled plasma mass spectrometry. J. Hazard. Mater. 2013, 244, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Chamsaz, M.; Arbab-Zavar, M.H.; Darroudi, A.; Salehi, T. Preconcentration of thallium (I) by single drop microextraction with electrothermal atomic absorption spectroscopy detection using dicyclohexano-18-crown-6 as extractant system. J. Hazard. Mater. 2009, 167, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Zitko, V. Toxicity and pollution potential of thallium. Sci. Total Environ. 1975, 4, 185–192. [Google Scholar] [CrossRef]
- Nriagu, J. Thallium in the Environment, Advances in Environmental Sciences and Technology; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Moeschlin, S. Thallium poisoning. Clin. Toxicol. 1980, 17, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewski, Z.; Zembrzuski, W.; Piela, A. Direct determination of ultra traces of thallium in water by flow-injection-differential-pulse anodic stripping voltammetry. Anal. Chim. Acta 1996, 318, 159–165. [Google Scholar] [CrossRef]
- Ciszewski, A.; Wasiak, W.; Ciszewska, W. Hair analysis. Part 2. Differential pulse anodic stripping voltammetric determination of thallium in human hair samples of persons in permanent contact with lead in their workplace. Anal. Chim. Acta 1997, 343, 225–229. [Google Scholar] [CrossRef]
- Lu, T.-H.; Yang, H.-Y.; Sun, I.W. Square-wave anodic stripping voltammetric determination of thallium (I) at a Nafion/mercury film modified electrode. Talanta 1999, 49, 59–68. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995.
- Skogerboe, R.; Dick, D.; Pavlica, D.; Lichte, F. Injection of samples into flames and plasmas by production of volatile chlorides. Anal. Chem. 1975, 47, 568–570. [Google Scholar] [CrossRef]
- Floyd, M.A.; Fassel, V.; Winge, R.; Katzenberger, J.; D’silva, A. Inductively coupled plasma-atomic emission spectroscopy: A computer controlled, scanning monochromator system for the rapid sequential determination of the elements. Anal. Chem. 1980, 52, 431–438. [Google Scholar] [CrossRef]
- Schramel, P.; Wendler, I.; Angerer, J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry. Int. Arch. Occup. Environ. Health 1997, 69, 219–223. [Google Scholar] [CrossRef]
- Fazelirad, H.; Taher, M.A. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS. Talanta 2013, 103, 375–383. [Google Scholar] [CrossRef]
- Marczenko, Z.; Kałowska, H.; Mojski, M. Extraction-spectrophotometric determination of thallium in high-purity indium. Talanta 1974, 21, 93–97. [Google Scholar] [CrossRef]
- Ma, T.S.; Hassan, S.S.M. Organic Analysis Using Ion Selective Electrodes, Vol. I and II; Academic Press: London, UK, 1982. [Google Scholar]
- Hassan, S.S.M.; Marzouk, S.A.M.; Mohamed, A.H.K.; Badawy, N.M. Novel dicyanoargentate polymeric membrane sensors for selective determination of cyanide ions. Electroanalysis 2004, 16, 298–303. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Polymer Membrane Ion-Selective Electrodes–What are the Limits? Electroanalysis 1999, 11, 915–933. [Google Scholar] [CrossRef]
- Ding, J.; Li, B.; Chen, L.; Qin, W. A Three-Dimensional Origami Paper-Based Device for Potentiometric Biosensing. Angew. Chem. Int. Ed. 2016, 55, 13033–13037. [Google Scholar] [CrossRef]
- MaríaCuartero, M.; Crespo, G.A. All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar]
- Cattrall, R.; Freiser, H. Coated wire ion-selective electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- Düzgün, A.; Zelada-Guillén, G.A.; Crespo, G.A.; Macho, S.; Riu, J.; Rius, F.X. Nanostructured materials in potentiometry. Anal. Bioanal. Chem. 2011, 399, 171–181. [Google Scholar] [CrossRef]
- Amr, A.E.; Mohamed, A.; Al-Omar, M.A.; Kamel, A.H.; Elsayed, E.A. Single-Piece Solid Contact Cu2+-Selective Electrodes Based on a Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Molecules 2019, 24, 920. [Google Scholar] [CrossRef]
- Lindner, E.; Gyurcsányi, R.E. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Peer Reviewed: The New Wave of Ion-Selective Electrodes; ACS Publications: Washington, DC, USA, 2002; Volume 420-A. [Google Scholar]
- Yin, T.; Qin, W. Applications of nanomaterials in potentiometric sensors. Trends Anal. Chem. 2013, 51, 79–86. [Google Scholar] [CrossRef]
- Hu, J.; Zou, X.U.; Stein, A.; Buhlmann, P. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal. Chem. 2014, 86, 7111–7118. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.H.; Galal, H.R.; Awaad, N.S. Cost-effective and handmade paper-based potentiometric sensingplatform for piperidine determination. Anal. Methods 2018, 10, 5406–5415. [Google Scholar] [CrossRef]
- Antonisse, M.M.; Reinhoudt, D.N. Potentiometric anion selective sensors. Electroanalysis 1999, 11, 1035–1048. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; GalalEldin, A.; Amr, A.E.; Al-Omar, M.A.; Kamel, A.H. Single-Walled Carbon Nanotubes (SWCNTs) as Solid-Contact in All-Solid-State Perchlorate ISEs: Applications to Fireworks and Propellants Analysis. Sensors 2019, 19, 2697. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Yin, T.; Qin, W. A simple approach for fabricating solid-contact ion-selective electrodes using nanomaterials as transducers. Anal. Chim. Acta 2015, 853, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rius-Ruiz, F.X.; Crespo, G.A.; Bejarano-Nosas, D.; Blondeau, P.; Riu, J.; Rius, F.X. Potentiometric strip cell based on carbon nanotubes as transducer layer: Toward low-cost decentralized measurements. Anal. Chem. 2011, 83, 8810–8815. [Google Scholar] [CrossRef]
- Ye, J.; Li, F.; Gan, S.; Jiang, Y.; An, Q.; Zhang, Q.; Niu, L. Using sp2-C dominant porous carbon sub-micrometer spheres as solid transducers in ion-selective electrodes. Electrochem. Commun. 2015, 50, 60–63. [Google Scholar] [CrossRef]
- Li, J.; Yin, T.; Qin, W. An all-solid-state polymeric membrane Pb2+-selective electrode with bimodal pore C60 as solid contact. Anal. Chim. Acta 2015, 876, 49–54. [Google Scholar] [CrossRef]
- Fouskaki, M.; Chaniotakis, N. Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 2008, 133, 1072–1075. [Google Scholar] [CrossRef]
- Lai, C.Z.; Fierke, M.A.; Stein, A.; Buhlmann, P. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal. Chem. 2007, 79, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, T.; Qin, W. An effective solid contact for an all-solid-state polymeric membrane Cd2+-selective electrode: Three-dimensional porousgraphene-mesoporous platinum nanoparticle composite. Sens. Actuators B 2017, 239, 438–446. [Google Scholar] [CrossRef]
- Paczosa-Bator, B.; Cabaj, L.; Piech, R.; Skupien, K. Potentiometric sensors with carbon black supporting platinum nanoparticles. Anal. Chem. 2013, 85, 10255–10261. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Pan, D.; Qin, W. All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact. Anal. Chem. 2014, 86, 11038–11044. [Google Scholar] [CrossRef] [PubMed]
- Woznica, E.; Wojcik, M.M.; Mieczkowski, J.; Maksymiuk, K.; Michalska, A. Dithizone Modified Gold Nanoparticles Films as Solid Contact for Cu2+-Ion-Selective Electrodes. Electroanalysis 2013, 25, 141–146. [Google Scholar] [CrossRef]
- Zhou, M.; Gan, S.; Cai, B.; Li, F.; Ma, W.; Han, D. Effective solid contact for ion-selective electrodes: Tetrakis(4-chlorophenyl)borate (TB−) anions doped nanocluster films. Anal. Chem. 2012, 84, 3480–3483. [Google Scholar] [CrossRef]
- Guzinski, M.; Jarvis, J.M.; Pendley, B.D.; Lindner, E. Equilibration time of solid contact ion-selective electrodes. Anal. Chem. 2015, 87, 6654–6659. [Google Scholar] [CrossRef]
- Zou, X.U.; Cheong, J.H.; Taitt, B.J.; Buhlmann, P. Solid contact ion-selective electrodes with a well-controlled Co(II)/Co(III) redox buffer layer. Anal. Chem. 2013, 85, 9350–9355. [Google Scholar] [CrossRef]
- Ebbesen, T.W. Production and purification of carbon nanotubes. In Carbon Nanotubes: Preparation and Properties; CRC Press: Boca Raton, FL, USA, 1997; pp. 139–162. [Google Scholar]
- Li, J. Carbon nanotube applications: Chemical and physical sensors. In Carbon Nanotubes; CRC Press: Boca Raton, FL, USA, 2004; pp. 286–315. [Google Scholar]
- Guibault, G.G.; Durst, R.A.; Frant, M.S.; Freiser, H.; Hansen, E.H.; Light, T.S.; Pungor, E.; Rechnitz, G.; Rice, N.M.; Rohm, T.J.; et al. Recommendations for Nomenclature of Ion-Selective Electrodes. Pure Appl. Chem. 1976, 48, 127–132. [Google Scholar]
- Mi, Y.; Bakker, E. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes. Anal. Chem. 1999, 71, 5279–5287. [Google Scholar] [CrossRef]
- Qin, Y.; Mi, Y.; Bakker, E. Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly (vinyl chloride) sensing membranes plasticized with bis (2-ethylhexyl) sebacate and o-nitrophenyloctylether. Anal. chim. Acta 2000, 421, 207–220. [Google Scholar] [CrossRef]
- Eyal, E.; Rechnitz, G. Mechanistic studies on the valinomycin-based potassium electrode. Anal. Chem. 1971, 43, 1090–1093. [Google Scholar] [CrossRef]
- Kimura, K.; Maeda, T.; Tamura, H.; Shono, T. Potassium-selective PVC membrane electrodes based on bis-and poly (crown ethers). J. Electroanal. Chem. Interfaces Electrochem. 1979, 95, 91–101. [Google Scholar] [CrossRef]
- Maeda, T.; Kimura, K.; Shono, T. Solvent extraction of silver and thallium picrates with poly-and bis-(crown ether) s. Fresenius’ Zeitschriftfüranalytische Chemie 1979, 298, 363–366. [Google Scholar] [CrossRef]
- Liotta, C.L. Application of Macrocyclic Polydentate Ligands to Synthetic Transformations. In Synthetic Multidentate Macrocyclic Compounds; Elsevier: Amsterdam, The Netherlands, 1978; pp. 111–205. [Google Scholar]
- Bakker, E. Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Anal. Chem. 1997, 69, 1061–1069. [Google Scholar] [CrossRef]
- Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar] [CrossRef]
- Fibbioli, M.; Morf, W.E.; Badertscher, M.; de Rooij, N.F.; Pretsch, E. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 2000, 12, 1286–1292. [Google Scholar] [CrossRef]
- Bobacka, J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Gao, S.; Xu, Y.; Cheng, X.; Zhao, H.; Huo, L. Facile synthesis of yolk–shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J. Mater. Chem. A 2013, 1, 6858–6864. [Google Scholar] [CrossRef]
- Chester, R.; Sohail, M.; Ogden, M.I.; Mocerino, M.; Pretsch, E.; De Marco, R. A calixarene-based ion-selective electrode for thallium(I) detection. Anal. Chim. Acta 2014, 851, 78–86. [Google Scholar]
- Kassim1, A.; Rezayi1, M.; Ahmadzadeh1, S.; Rounaghi2, G.; Mohajeri, M.; Yusof1, N.A.; Tee, T.W.; Heng, L.Y.; Abdullah, A. A Novel Ion—Selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity. Mater. Sci. Eng. 2011, 17, 012010. [Google Scholar] [CrossRef]
- Kharitonov, S.V.; Zarembo, Y.V.; Zarembo, V.I. Novel Thallium(III) Solid-Contact Ion-Selective Electrode with Electropolymerized Transducer. Electroanalysis 2006, 18, 1354–1362. [Google Scholar] [CrossRef]
Parameter * | Ionophore | |
---|---|---|
DB18C6 | DB18C6 + Anionic Additive | |
Slope, (mV/decade) | 32.7 ± 2.5 | 57.3 ± 1.6 |
Correlation coefficient, (r) | 0.9864 | 0.9998 |
Intercept, (mV) | 179.5 | 366.2 |
Linear range, (M) | 7.9 × 10−6–7.0 × 10−4 | 4.5 × 10−6–7.0 × 10−4 |
Detection limit, (M) | 4.0 × 10−6 | 3.2 × 10−7 |
Working range, (pH) | 3.0–9.5 | 3–9.5 |
Response time for 10−3 M, (s) | <10 | <10 |
Accuracy (%) | 98.7 | 99.2 |
Repeatability (CVw, %) | 0.9 | 0.7 |
Between-day-Variability (CVb, %) | 1.1 | 1.2 |
Ion | Atomic Radius (Å) | Ionophore LT (mmol/Kg) | Additive (mmol/Kg) | Membrane Potential ∆E (mV) | Formation Const.Log βIL |
---|---|---|---|---|---|
Tl+ | 2.2 | 80 | 56 | 258.30 ± 3 | 5.99 ± 0.6 |
K+ | 2.8 | 80 | 56 | 252.39 ± 5 | 5.89 ± 0.8 |
Pb2+ | 2.02 | 80 | 56 | 255.48 ± 1 | 5.81 ± 0.7 |
NH4+ | 1.40 | 80 | 56 | 193.00 ± 3 | 4.88 ± 0.3 |
Na+ | 2.27 | 80 | 56 | 174.06 ± 1 | 4.56 ± 0.4 |
Sensing Material | Transducer | Electrode Material | Stability (Drift) | Slope, mV/Decade | Detection Limit, M | Working pH Range | Selectivity Coefficient (log KPotTl,B) | Ref. |
---|---|---|---|---|---|---|---|---|
Calixarene derivatives | (3-octylthiophene) | Au | <0.4 mV/h | 58.4 | 3.02 × 10−8 | 4–9 | Zn2+(−6.12), Ca2+(−6.01), Ba2+(−5.84), Cu2+(−5.81), Cd2+(−5.57), Al3+(−5.62), Pb2+(−4.52),Li+(−3.97), Na+(−3.74),H+(−3.66), K+(−2.77), NH4+(−2.71), Cs+(−2.17) and Ag+(−1.16) | [58] |
4′-nitrobenzo-18-crown-6 | - | Graphite | - | 57.2 | 1.0 × 10−8 | 5–14 | K+(−0.98), Na+(−3.56), Ca2+(−1.77) and Mg2+(−3.85). | [59] |
N,N′-Dioctylethylenediamine-N,N′-disuccinic acid | Polyaniline | Pt | - | 56 ± 2 | 8.2 × 10−8 | 4.7–9.0 | - | [60] |
dibenzo-18-crown-6 | Multi-walled carbon nanotubes | Au | 16 ± 0.02 µV/s | 57.3 ± 1.6 | 3.2 × 10−7 | 3.0–9.5 | Zn2+(−6.50), Ca2+(−6.35), Ba2+(−6.59), Cu2+(−6.31), Cd2+(−6.7), Pb2+(−2.81), Li+(−3.97), Na+(−6.48), Ni2+(−6.48), K+(−2.12), NH4+(−3.48), Mg2+(−6.62), Fe2+(-6.62), Sr2+(−6.35) and Ag+(−6.56) | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.S.M.; Abdelbasir, S.M.; Fathy, M.A.; Amr, A.E.-G.E.; Al-Omar, M.A.; Kamel, A.H. Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. Nanomaterials 2019, 9, 1160. https://doi.org/10.3390/nano9081160
Hassan SSM, Abdelbasir SM, Fathy MA, Amr AE-GE, Al-Omar MA, Kamel AH. Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. Nanomaterials. 2019; 9(8):1160. https://doi.org/10.3390/nano9081160
Chicago/Turabian StyleHassan, Saad S. M., Sabah. M. Abdelbasir, M. Abdelwahab Fathy, Abd El-Galil E. Amr, Mohamed A. Al-Omar, and Ayman H. Kamel. 2019. "Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection" Nanomaterials 9, no. 8: 1160. https://doi.org/10.3390/nano9081160
APA StyleHassan, S. S. M., Abdelbasir, S. M., Fathy, M. A., Amr, A. E. -G. E., Al-Omar, M. A., & Kamel, A. H. (2019). Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. Nanomaterials, 9(8), 1160. https://doi.org/10.3390/nano9081160