Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2
Abstract
:1. Introduction
2. Metal Nanocomposites for Dual-in-Line NEGH Sensing
2.1. Gold and Silver Metal Nanocomposites
2.2. Copper Metal Nanocomposites
2.3. Nickel Metal Nanocomposites
2.4. Cobalt Metal Nanocomposites
2.5. Other Metal Nanocomposites
3. Metal Oxide Nanocomposite for Dual-In-Line NEGHS
3.1. Copper Oxide (CuO) Nanocomposite
3.2. Cuprous Oxide (Cu2O) Nanocomposite
3.3. Cobalt Oxide (Co3O4) and Nickel Oxide (NiO) Nanocomposite
4. Metal-Metal Nanocomposites for NEGH Sensing
4.1. Platinum Bimetallic Nanocomposite
4.2. Palladium Bimetallic Nanocomposite
4.3. Copper Bimetallic Nanocomposite
4.4. Other Bimetallic Nanocomposite
5. Metal/Metal Oxide-Metal Oxide Nanocomposites for NEGHS
6. Future Perspectives
7. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Pandey, P.; Tripathi, R.P.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied Sci. 2011, 3, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.A.; Shin, J.H. Recent developments in nanostructure based electrochemical glucose sensors. Talanta 2016, 149, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, R. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials, opportunities and challenges. RSC Adv. 2016, 6, 84893–84905. [Google Scholar] [CrossRef]
- Aziz, A.; Asif, M.; Ashraf, G.; Azeem, M.; Majeed, I.; Ajmal, M.; Wang, J.; Liu, H. Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides A review. Microchim. Acta 2019, 186, 671. [Google Scholar] [CrossRef]
- Tian, K.; Prestgard, M.; Tiwari, A. A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef]
- Bilal, S.; Ullah, W.; Ali Shah, A.U.H. Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 2018, 284, 382–391. [Google Scholar] [CrossRef]
- Justice Babu, K.; Sheet, S.; Lee, Y.S.; Gnana Kumar, G. Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. 2018, 6, 1909–1918. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Muthuchamy, N.; Komathi, S.; Lee, K.P. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens. Bioelectron 2016, 84, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Keen, O.S.; Baik, S.; Linden, K.G.; Aga, D.S.; Love, N.G. Enhanced Biodegradation of Carbamazepine after UV/H2O2 Advanced Oxidation. Environ. Sci. Technol. 2012, 46, 6222–6227. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Liu, Z.; Guo, M. A Novel Profluorescent Probe for Detecting Oxidative Stress Induced by Metal and H2O2 in Living Cells. Chem. Commun. 2010, 46, 4472–4474. [Google Scholar] [CrossRef]
- Pramanik, D.; Dey, S.G. Active Site Environment of Hemebound Amyloid Peptide Associated with Alzheimer’s Disease. J. Am. Chem. Soc. 2011, 133, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative Diseases and Oxidative Stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Serrano, M.; Blasco, M.A. The Common Biology of Cancer and Ageing. Nature 2007, 448, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, G.; Cai, Z.; Munetaka Oyama, X. Chen Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 2014, 181, 689–705. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32. [Google Scholar] [CrossRef]
- Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals. J. Am. Chem. Soc. 2012, 134, 1305–1315. [Google Scholar] [CrossRef]
- Yang, P.; Tong, X.; Wang, G.; Gao, Z.; Guo, X.; Qin, Y. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing. ACS Appl. Mater. Interfaces 2015, 7, 4772–4777. [Google Scholar] [CrossRef]
- Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758. [Google Scholar] [CrossRef]
- Mohammed, N.; Baidya, A.; Murugesan, V.; Kumar, A.A.; Ganayee, M.A.; Mohanty, J.S.; Tam, K.C.; Pradeep, T. Diffusion Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster Cellulose Nanocrystal Composites. ACS Sustain. Chem. Eng. 2016, 4, 6167–6176. [Google Scholar] [CrossRef]
- Akhtar, N.; El-Safty, S.A.; Abdelsalam, M.E.; Shenashen, M.A.; Kawarada, H. Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosens. Bioelectron. 2016, 77, 656–665. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 2010, 102, 29–45. [Google Scholar] [CrossRef]
- Ekin, S.; Zeynep, A. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016–2020). Biosens. Bioelectron. 2020, 112165. [Google Scholar] [CrossRef]
- Scognamiglio, V. Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosens. Bioelectron. 2013, 47, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef]
- Aydogdu, G.; Zeybek, D.K.; Pekyardimci, S.; Kilic, E. A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum. Artif. Cells Nanomed. Biotechnol. 2013, 41, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Cash, K.J.; Clark, H.A. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol. Med. 2010, 16, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Li, K.; Feng, L.; Lu, J.; Zhang, L. Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim. Acta 2017, 239, 36–44. [Google Scholar] [CrossRef]
- Jiang, D.; Chu, Z.; Peng, J.; Luo, J.; Mao, Y.; Yang, P.; Jin, W. One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochim. Acta 2018, 270, 147–155. [Google Scholar] [CrossRef]
- Mao, Y.; Mei, Z.; Liang, L.; Zhou, B.; Tian, Y. Robust and magnetically recoverable dual-sensor particles: Real-time monitoring of glucose and dissolved oxygen. Sens. Actuators B Chem. 2018, 262, 371–379. [Google Scholar] [CrossRef]
- Li, Y.; Niu, X.; Tang, J.; Lan, M.; Zhao, H. A comparative study of nonenzymatic electrochemical glucose sensors based on Pt-Pd nanotube and nanowire arrays. Electrochim. Acta 2014, 130, 1–8. [Google Scholar] [CrossRef]
- Zang, G.; Hao, W.; Li, X.; Huang, S.; Gan, J.; Luo, Z.; Zhang, Y. Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta 2018, 277, 176–184. [Google Scholar] [CrossRef]
- Xu, H.; Xia, C.; Wang, S.; Han, F.; Akbarib, M.K.; Hai, Z.; Zhuiykov, S. Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sens. Actuators B Chem. 2018, 267, 93–103. [Google Scholar] [CrossRef]
- Jia, L.; Wei, X.; Lv, L.; Zhang, X.; Duan, X.; Xua, Y.; Liu, K.; Wang, J. Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing. Electrochim. Acta 2018, 280, 315–322. [Google Scholar] [CrossRef]
- Lv, J.; Wei, X.; Lv, L.; Zhang, X.; Duan, X.; Xu, Y.; Liu, K.; Wang, J. Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor. Sens. Actuators B Chem. 2017, 248, 630–638. [Google Scholar] [CrossRef]
- He, M.; Xuedong, W.; Tai, Z.; Ling, H.; Qun, W.; Daoping, R.; Tongliang, H.; Falin, T.; Huimin, W.; Jimin, G. A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide. Mikrochim. Acta 2019, 186, 235. [Google Scholar] [CrossRef]
- Yin, D.; Bo, X.; Liu, J.; Guo, L. A novel enzyme free glucose and H2O2 sensor based on 3D graphenme aerogels with Ni3N nanoparticles. Anal. Chim. Acta 2018, 1038, 11–20. [Google Scholar] [CrossRef]
- Balamurugan, J.; Thanh, T.D.; Karthikeyan, G.; Lee, N.H.K.J.H. A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosens. Bioelectron. 2017, 89, 970–977. [Google Scholar] [CrossRef]
- Lu, W.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y.; Li, Z.; Li, Z. Direct growth of pod like Cu2O nanowires arrays on copper foam: Highly sensitive and efficient non enzymatic glucose and H2O2 biosensor. Sens. Actuators B 2016, 231, 860–866. [Google Scholar] [CrossRef]
- Deepalakshmi, T.; Tran, D.T.; Kim, N.H.; Chong, K.T.; Lee, J.H. Nitrogen-Doped Graphene-Encapsulated Nickel Cobalt Nitride as a Highly Sensitive and Selective Electrode for Glucose and Hydrogen Peroxide Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 35847–35858. [Google Scholar] [CrossRef]
- Wu, X.; Li, F.; Zhao, C.; Qian, X. One-step construction of hierarchical Ni(OH)2/RGO/Cu2O on Cu foil for ultra-sensitive non-enzymatic glucose and hydrogen peroxide detection. Sens. Actuators B Chem. 2018, 274, 163–171. [Google Scholar] [CrossRef]
- Zhang, E.; Xie, Y.; Ci, S.; Jia, J.; Wen, Z. Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 2016, 81, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Z.; Yang, J.; Liu, G.; Li, J.; Guo, L.; Chen, S.; Guo, Q. NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens. Actuators B Chem. 2018, 258, 920–928. [Google Scholar] [CrossRef]
- Yoon, H.; Xuan, X.; Jeong, S.; Park, J.Y. Wearable, robust, non-enzymatic continuous glucose monitoring system and its in vivo investigation. Biosens. Bioelectron. 2018, 117, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Gancedo, L.G.; Flewitt, A.J.; Xie, H.; Moussy, F.; Milne, W.I. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors 2012, 12, 5996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toghill, K.E.; Compton, R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246. [Google Scholar]
- Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring—A review. J. Pharm. Biomed. Anal. 1999, 19, 47. [Google Scholar] [CrossRef]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 1, 46–57. [Google Scholar] [CrossRef]
- Kundu, M.K.; Sadhukhan, M.; Barman, S. Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J. Mater. Chem. B 2015, 3, 1289. [Google Scholar] [CrossRef]
- Babu, R.S.; Prabhu, P.; Narayanan, S.S. Enzyme-free selective determination of H2O2 and glucose using functionalized CuNP-modified graphite electrode in room temperature ionic liquid medium. RSC Adv. 2014, 4, 47497–47504. [Google Scholar] [CrossRef]
- Mani, V.; Devasenathipathy, R.; Shen-Ming, C.; Sea-Fue, W.; Parvathy, D.; Yian, T. Electrodeposition of copper nanoparticles using pectin scaffold at graphene nanosheets for electrochemical sensing of glucose and hydrogen peroxide. Electrochim. Acta 2015, 176, 804–810. [Google Scholar] [CrossRef]
- Wangdong, L.; Sun, Y.; Dai, H.; Ni, P.; Jiang, S.; Wang, Y.; Liab, Z.; Li, Z. Fabrication of cuprous sulfide nanorods supported on copper foam for nonenzymatic amperometric determination of glucose and hydrogen peroxide. RSC Adv. 2016, 6, 90732. [Google Scholar] [CrossRef]
- Babu, R.S.; Prabhu, P.; Narayanan, S.S. Green synthesized nickel nanoparticles modified electrode in ionic liquid medium and its application towards determination of biomolecules. Talanta 2013, 110, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, Y.; Jin, J.; Wu, H.; Wang, S.F.; Xia, Q. A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose. Sens. Actuators B Chem. 2016, 232, 633–641. [Google Scholar] [CrossRef]
- Wu, W.; Wu, L.; Wu, H.; Wang, S.; Ding, Y.; Feng, C. Sulphides of the cobalt doped Ni7S6 type for glucose, hydrogen peroxide and nitrite sensing platform. Sens. Actuators B Chem. 2017, 250, 224–232. [Google Scholar] [CrossRef]
- Wu, W.; Yu, B.; Wu, H.; Wang, S.; Xia, Q.; Ding, Y. Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose. Mater. Sci. Eng. C 2017, 70, 430–437. [Google Scholar] [CrossRef]
- Xie, F.; Cao, X.; Qu, F.; Asiri, M.A.; Sun, X. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sens. Actuators B 2018, 225, 1254–1261. [Google Scholar] [CrossRef]
- Reddy, M.K.R.V. The electrochemical investigation of carboxamide-PEG2-biotin-CoPc using composite MWCNTs on modified GCE: The sensitive detections for glucose and hydrogen peroxide. New J. Chem. 2020, 44, 3330–3340. [Google Scholar] [CrossRef]
- Ali, A.; Ensafi, M.; Jafari-Asl, N.; Dorostkar, M.; Ghiaci, M.; Martínez-Huerta, V.; Fierro, J.L.G. The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: Application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J. Mater. Chem. B 2014, 2, 706–717. [Google Scholar]
- Boa, X.; Chrysostome, J.; Bai, N.J.; Guo, L. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 2010, 82, 85–91. [Google Scholar] [CrossRef]
- Barman, K.; Jasimuddin, S. Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(IV) complex modified gold electrode. RSC Adv. 2016, 6, 20800. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, A.B.; Saha, N.; Bhadu, G.R.; Adhikary, B. Newly Designed Amperometric Biosensor for Hydrogen Peroxide and Glucose Based on Vanadium Sulfide Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 1339–1347. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, M.A.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheets: A low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921–8924. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Sun, Z.; Zeng, Z.; Liu, F.; Qin, J. Hydrothermal fabrication of hierarchical CuO nanoflowers for dual-function amperometric sensing of hydrogen peroxide and glucose. New J. Chem. 2019, 43, 18629–18636. [Google Scholar] [CrossRef]
- Prathap, M.U.A.; Kaur, B.; Srivastava, R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J. Colloid Interface Sci. 2012, 370, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, Y.; Zhang, Z.; Miao, Z.; Zhang, X.; Sua, Z. Fabrication of hollow CuO/PANI hybrid nanofibers for non-enzymatic electrochemical detection of H2O2 and glucose. Sens. Actuators B Chem. 2019, 286, 370–376. [Google Scholar] [CrossRef]
- Chakraborty, P.; Dhar, S.; Debnath, K.; Mondal, S.P. Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J. Electroanal. Chem. 2019, 833, 213–220. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Ni, Y.; Li, J.; Liao, K.; Zhao, G. Porous cuprous oxide microcubes for non-enzymatic ampherometric hydrogen peroxide and glucose sensing. Electrochem. Commun. 2019, 11, 812–815. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Y.; Qin, G.W.; Ren, Y.; Pei, W.; Zuo, L. Enzyme free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode. Talanta 2019, 85, 1260–1264. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, J.; Chang, J.; Wu, D.; He, J.; Wang, K.; Xu, F.; Jiang, K. Mesocrystalline Cu2O hollow nanocubes: Synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm 2012, 14, 6639–6646. [Google Scholar] [CrossRef]
- Liu, M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes, Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhong, Y.M.; Zhang, Y.Y.; Weng, W.; Li, S.X. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens. Actuators B Chem. 2015, 206, 735–743. [Google Scholar] [CrossRef]
- Ding, J.; Sun, W.; Wei, G.; Su, Z. Cuprous oxide microspheres on graphene nanosheets: An enhanced material for non-enzymatic electrochemical detection of H2O2 and glucose. RSC Adv. 2015, 5, 35338–35345. [Google Scholar] [CrossRef]
- Hou, C.; Xu, Q.; Yin, L.; Hu, X. Metal–organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 2012, 137, 5803. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, C.; Palanisamy, S.; Chen, S.; Veeramani, V.; Periakaruppan, P. A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sens. Actuators B Chem. 2014, 196, 450–456. [Google Scholar] [CrossRef]
- Jana, S.; Mondal, G.; Mitra, B.C.; Bera, P.; Chakraborty, B.; Mondal, A.; Ghosh, A. Facile synthesis of nickel oxide thin films from PVP encapsulated nickel sulfide thin films: An efficient material for electrochemical sensing of glucose, hydrogen peroxide and photodegradation of dye. New J. Chem. 2017, 41, 14985–14994. [Google Scholar] [CrossRef]
- Gao, W.; Tjiu, W.W.; Wei, J.; Liu, T. Highly sensitive nonenzymatic glucose and H2O2 sensor based on Ni(OH)2/electroreduced graphene oxide−Multiwalled carbon nanotube film modified glass carbon electrode. Talanta 2014, 120, 484–490. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Sun, F.; Xu, C. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sens. Actuators B Chem. 2014, 191, 612–618. [Google Scholar] [CrossRef]
- Xu, C.; Sun, F.; Wang, H.G.J. Nanoporous Platinum-Cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal. Chim. Acta 2013, 780, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Wu, W.; Yu, B.; Wu, H.; Wang, S.; Xia, Q. Non enzymatic electrochemical sensor based on Fe@Pt core shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sens. Actuators B 2016, 223, 68–75. [Google Scholar] [CrossRef]
- Mei, H.; Wu, H.; Wu, W.; Wang, S.; Xia, Q. Ultrasensitive electrochemical assay of hydrogen peroxide and glucose based on PtNi alloy decorated MWCNTs. RSC Adv. 2015, 5, 102877. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Z.; Wang, J.; Xu, C. The nanoporous PdCr alloy as a nonenzymatic electrochemical sensor for hydrogen peroxide and glucose. J. Mater. Chem. B 2014, 2, 5195–5201. [Google Scholar] [CrossRef]
- Wang, J.P.; Wang, Z.H.; Zhao, D.Y.; Xu, C.X. Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 2014, 832, 34–43. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, C. A nanoporous palladium-nickel alloy with high sensing performance towards hydrogen peroxide and glucose. J. Colloid Interface Sci. 2015, 447, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Y.; Lu, Z.; Dub, H.; Ye, J. One pot synthesis of palladium-cobalt nanoparticles over carbon nanotubes as a sensitive non-enzymatic sensor for glucose and hydrogen peroxide detection. Sens. Actuators B Chem. 2017, 252, 1016–1025. [Google Scholar] [CrossRef]
- Hui-Bog, N.; Lee, K.; Chandra, P.; Won, M.; Shim, Y. Application of a Cu–Co alloy dendrite on glucose and hydrogen peroxide sensors. Electrochim. Acta 2012, 61, 36–43. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, R.; Wang, L.; Yu, L.; Wang, J.; Geng, B.; Wang, G. Controllable synthesis of silver nanodendrites on copper rod and its application to hydrogen peroxide and glucose detection. CrystEngComm 2013, 15, 1173–1178. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, P.; Chen, J.; Chen, D.; Quan, Y.; Gu, N.; Zhang, G.; Cui, R. Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim. Acta 2016, 183, 1359–1365. [Google Scholar] [CrossRef]
- Ngamaroonchote, A.; Sanguansap, Y.; Wutikhun, T.; Karn-orachai, K. Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Microchim. Acta 2020, 187, 559. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Zhou, Q.; Xu, C.; Hou, J. Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Microchim. Acta 2019, 186, 631. [Google Scholar] [CrossRef]
- Naqvi, S.T.R.; Shirinfar, B.; Hussain, D.; Majeed, S.; Ashiq, M.N.; Aslam, Y.; Ahmed, N. Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by Bimetallic (Fe, Ni)−CNTs Composite Modified Electrode. Electroanalysis 2019, 31, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Cao, X.; Wang, Z.; Hao, S.; Hou, X.; Qu, F.; Du, G.; Abdullah, A.M.; Zheng, C.; Sun, X. Fe3N-Co2N Nanowires Array: A Non-Noble-Metal Bifunctional Catalyst Electrode for High-Performance Glucose Oxidation and H2O2 Reduction toward Non-Enzymatic Sensing Applications. Chem. Eur. J. 2017, 23, 5214–5218. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tang, K.; Yang, M.; Shi, W.; Zhao, W. Metal–organic framework-derived yolk–shell hollow Ni/NiO@C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors. J. Mater. Sci. 2020. [Google Scholar] [CrossRef]
- Liotta, L.F.; Puleo, F.; la Parola, V.; Leonardi, S.G.; Donato, N.; Aloisio, D.; Ner, G. La0.6Sr0.4FeO3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis 2015, 27, 684–692. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, S.; Ding, Y.; Jin, J. A novel electrochemical sensor based on LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose. Anal. Chim. Acta 2012, 112–117. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, S.; Ding, Y.; Zhang, F.; Jin, J. Determination of hydrogen peroxide and glucose using a novel sensor platform based on Co0.4Fe0.6LaO3 nanoparticles. Microchim. Acta 2013, 180, 1043–1049. [Google Scholar] [CrossRef]
- He, J.; Sunarso, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Zhou, W.; Shao, Z. High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sens. Actuators B Chem. 2017, 244, 482–491. [Google Scholar] [CrossRef]
- Wang, B.; Gu, S.; Ding, Y.; Chu, Y.; Zhang, Z.; Ba, X.; Zhang, Q.; Li, X. A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing. Analyst 2012, 138, 362. [Google Scholar] [CrossRef]
- Xia, H.; Li, J.; Ma, L.; Liu, Q.F.; Wang, J. Electrospun porous CuFe2O4 nanotubes on nickel foam for nonenzymatic voltammetric determination of glucose and hydrogen peroxide. J. Alloy. Compd. 2018, 739, 764–770. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Zandi-Atashbar, N.; Rezaei, B.; Ghiaci, M.; Taghizadeh, M. Silver nanoparticles decorated carboxylate functionalized SiO2, New nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochim. Acta 2016, 214, 208–216. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, X.; Li, P.; Zhao, C.; Qian, X. Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim. Acta 2017, 184, 2341–2348. [Google Scholar] [CrossRef]
- Pei, Y.; Hu, M.; Tang, X.; Huang, W.; Li, Z.; Chen, S.; Xia, Y. Ultrafast one pot anodic preparation of Co3O4/nanoporous gold composite electrode as an efficient non enzymatic amperometric sensor for glucose and hydrogen peroxide. Anal. Chim. Acta 2019, 1059, 49–58. [Google Scholar] [CrossRef]
- Long, L.; Liu, X.; Chen, L.; Li, D.; Jia, J. A hollow CuOx/NiOy nanocomposite for amperometric and non-enzymatic sensing of glucose and hydrogen peroxide. Mikrochim. Acta 2019, 186, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, J.; Chang, Q.; Fan, X.; Zhang, G.; Zhang, F. Fabrication of a novel ZnO-CoO/rGO nanocomposite for non-enzymatic detection of glucose and hydrogen peroxide. Ceram. Int. 2018, 44, 5250–5256. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, L.; Zhang, J.; Dai, W.; Mo, G.; Jianshan, Y. Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C 2019, 102, 708–717. [Google Scholar] [CrossRef]
Electrode Material | Analyte | Sensitivity (uA·mM−1·cm−2) | Linear Range (μM—mM) | Detection Limit (μM) | Working Potential (V) | Stability (30 Days) | Repeatability (RSD) | Reproducibility (RSD) | Real-Time Application | Ref |
---|---|---|---|---|---|---|---|---|---|---|
AuNBP/MWCNTs /GCE | Glucose | 101.2 | 10 to 36.7 | 3.0 | 0.15 | 98.0% | - | 2.3 | Human serum | [35] |
H2O2 | 170.6 | 5.0 to 47.3 | 1.5 | −0.50 | 94.7% | - | 3.5 | Antibacterial lotion | ||
Ag–CNx/GCE | Glucose | 97 | 0.001 to 0.1 | 0.6 | 0.7 | - | - | - | [48] | |
H2O2 | 1.7 × 104 | 0.005 to 0.35 | 0.0045 | −0.7 | - | - | - | |||
PCF Cu NP/GCE | Glucose | - | 6.6 to 1.3 | 2.2 | 0.35 | 96% (60 days) | 3.5 | human urine | [49] | |
H2O2 | - | 8.3 to 1.5 | 2.7 | 0 | - | 3.8 | antiseptic solution | |||
Graphene/pectin-Cu NPs/GCE | Glucose | 0.0457 | 10 to 0.0055 | 2.1 | 0.40 | 6.83% | 2.35 | 2.82 | Human serum | [50] |
H2O2 | 0.391 | 1 to 1 | 0.35 | −0.20 | 5.3% | 2.52 | 2.92 | Contact lens solution | ||
Cu2S NRs@Cu foam | Glucose | 11 750.8 | 0.2 to 0.63 | 0.07 | 0.45 | 94.8 (14 days) | 3.26 | 2.12 | Human serum | [51] |
H2O2 | 745 | 0.25 to 5 | 0.12 | −0.2 | 95.6 (14 days) | 0.49 | 2.03 | - | ||
PCF Ni NP/GCE | Glucose | 42.3 (uA/mM) | 1.6 to 1.4 | 0.53 | 0.50 | - | 1.7 | - | - | [52] |
H2O2 | 43 (uA/mM) | 3.3 to 1.7 | 1.10 | 0.50 | - | 1.8 | - | - | ||
3D flower-like Ni7S6/GCE | Glucose | 271.80 | 5 to 3.70 | 0.15 | 0.45 | 97.1 | - | 1.33 | Human serum | [53] |
H2O2 | 37.77 | 5 to 20.50 | 0.15 | −0.35 | 95.8 | - | 0.92 | Antibacterial lotion | ||
Ni5.5Co1.5S6/GCE | Glucose | 494.58 | 5 to 0.50 | 0.15 | 0.425 | 89.9 | - | 1.2 | Human serum | [54] |
H2O2 | 94.79 | 5 to 15.09 | 0.15 | −0.35 | 95.2 | - | 2.1 | Antibacterial lotion | ||
Ni3N/GA/GCE | Glucose | 905.6 | 0.1 to 7.64 | 0.04 | 0.55 | 93 | - | 4.6 | Human serum | [36] |
H2O2 | 101.9 | 5 to 75.13 | 1.80 | −0.4 | 95.2 (15 days) | - | 3.3 | Human serum | ||
CoS/GCE | Glucose | 28.44 | 1200 to 10.20 | 1.5 | 0.20 | - | - | - | Antibacterial lotion | [55] |
H2O2 | 17.4 | 5 to 14.82 | 1.5 | −0.40 | - | - | - | Human serum | ||
3D N-Co-CNT@NG/GCE | Glucose | 9.05 | 2.5 to 10.83 | 0.1 | 0.32 | 94.68 | 3.3 | 3.8 | Human serum | [37] |
H2O2 | 28.66 | 2.0 to 7.449 | 2.0 | −0.04 | 96.49 (operational stability) | - | 4.2 | Human serum | ||
Co3N NW/titanium mess | Glucose | 3325.6 | 0.1 to 2.5 | 0.05 | 0.60 | 91.5 | - | 4.3 | Human serum | [56] |
H2O2 | 139.9 | 1 to 12 | 0.48 | −0.20 | 92.1 | - | 5.2 | - | ||
Co/TPEG2/BAPc/MWCNTs/GCE | Glucose | 1.970 | 5 to 0.05 (M/L) | 12.5 (M/L) | 0.50 | - | 1.9 | 2.1 | Human serum | [57] |
H2O2 | 0.162 | 5 to 0.05 (M/L) | 10 (M/L) | −0.50 | - | - | - | Contact lens solutions | ||
Cu@N-Chit–CNTs | Glucose | - | 0.5 to 1 | 0.05 | 0.50 | 93 | - | - | Human serum | [58] |
H2O2 | - | 0.1 to 1 | 0.025 | −0.25 | 92 | - | - | Processed milk | ||
Pt/OMCs/Nafion/GC | Glucose | 16.69 | 500 to 4.5 | 130 | −0.08 | 93.2 (14 days) | - | 7.4 | - | [59] |
H2O2 | 173.4 | 2 to 4.212 | 1.2 | −0.10 | 94.6 (14 days) | - | 5.2 | - | ||
VO(acac)2–PATP–Au/GCE | Glucose | 120.24 | 1 to 0.5 | 0.1 | 0.65 | 100 (20 days) | - | 0.2 | Human blood | [60] |
H2O2 | 326.66 | 0.02 to 0.9 | 0.03 | −0.11 | 100 (20 days) | - | 0.3 | Milk | ||
VS2/GCE | Glucose | 41.96 | 0.5 to 3.0 | 0.211 | - | 92% (20 days) | - | 2.7 | human serum | [61] |
H2O2 | 37.96 | 0.5 to 2.5 | 0.224 | −0.75 | - | - | - | Hair dye and Human urine | ||
g-C3N4/GCE | Glucose | - | 1000 to 12 | 11 | −0.81 | 81% (40 days) | - | - | - | [62] |
H2O2 | - | 100 to 90 | 2.0 | −0.30 | - | - | - | - |
Electrode Material | Analytes | Sensitivity (uA·mM−1·cm−2) | Linear Range (μM–mM) | Detection Limit (μM) | Working Potential (V) | Stability (30 Days) | Repeatability (RSD %) | Reproducibility (RSD %) | Real-Time Application | Ref |
---|---|---|---|---|---|---|---|---|---|---|
CuO nanoflowers/GCE | Glucose | 1086.34 | 1 to 2.79 | 0.12 | 0.5 | 85.40 | 1.37 | 4.28 | Urine | [63] |
H2O2 | 956.69 | 5 to 14.07 | 0.85 | −0.4 | 89.77 | 2.69 | 5.38 | Milk | ||
CuO-Tyr Modified electrode | Glucose | 9.02 | 900 to 16 | 20 | 0.60 | 97 | - | 2.5 | - | [64] |
H2O2 | 2.72 | 100 to 36 | 2 | −0.25 | - | - | - | - | ||
CuO/PANI/GCE | Glucose | - | 1 to 9.899 | 0.45 | 0.3 | - | - | - | - | [65] |
H2O2 | - | 5 to 9.255 | 0.11 | −0.2 | - | - | - | - | ||
CuO nanorods/FTO | Glucose | 1319 | 5 to 0.825 | - | 0.55 | 80 | - | - | - | [66] |
H2O2 | 84.89 | 250 to 18.75 | - | −0.5 | 70 | - | - | - | ||
Porous CuO/GCE | Glucose | −70.8 | 1.5 to 0.5 | 0.8 | 0.60 | 88.6 (21 days) | - | - | - | [67] |
H2O2 | 50.6 | 5 to 1.5 | 1.5 | −0.20 | 87 (21 days) | - | - | - | ||
Cu2O/GCE | Glucose | - | 50 to 1.1 | 47.2 | 0.50 | - | - | - | - | [68] |
H2O2 | 3.693 | - | 0.039 | −0.20 | - | - | - | - | ||
MCHNs/GCE | Glucose | 52.5 | 1 to 1.7 | 0.87 | 0.6 | - | - | - | - | [69] |
H2O2 | 156.6 | 2 to 0.15 | 1.03 | −0.3 | - | - | - | - | ||
Cu2O/GNs | Glucose | 0.285 | 300 to 3.3 | 3.3 | 0.60 | - | - | - | - | [70] |
H2O2 | - | 300 to 7.8 | 20.8 | −0.40 | - | - | - | - | ||
CQDs/octahedral Cu2O/GCE | Glucose | 0.298 | 20 to 4.3 | 8.4 | 0.60 | High stability | - | - | Human serum | [71] |
H2O2 | 0.13 | 5 to 5.3 | 2.8 | −0.2 | High stability | - | - | - | ||
Cu2OMS–RGO/GCE | Glucose | - | 1 to 0.419 | 0.73 | 0.6 | 87.6 | - | - | - | [72] |
H2O2 | - | 50 to 2.775 | 10.8 | −0.24 | 89 | - | - | - | ||
Cu2O PLNWs/Cu foam | Glucose | 6680.7 | 1 to 1.8 | 0.67 | 0.5 | 98.9 (7 days) | 4.61 | 2.57 | - | [38] |
H2O2 | 1477.3 | 5 to 1.77 | 0.13 | −0.3 | 98.4 (7 days) | 0.59 | 1.28 | - | ||
Co3O4 NPs/GCE | Glucose | 520.7 | 5 to 0.8 | 0.13 | 0.59 | - | - | - | Human serum | [73] |
H2O2 | 107.4 | - | 0.81 | +0.42 | - | - | - | Disinfectant | ||
GF/Co3O4-NPs | Glucose | 13.52 | 500 to 16.5 | 50.0 | −0.55 | 89 (9 days) | 3.9 | 3.7 | - | [74] |
H2O2 | 1.14 | 0.2 to 0.211 | 0.06 | −0.48 | 97.3 (9 h) | 3.2 | 2.2 | - | ||
ITO/NiO | Glucose | 1013.76 | 2 to 0.29 | 4.6 | 0.5 | 80 (15 days) | - | 3 | Human serum | [75] |
H2O2 | 82.73 | 10 to 0.87 | 5.2 | −0.46 | 90 (15 days) | - | 3.5 | - | ||
Ni(OH)2/ERGO-MWCNTs/GCE | Glucose | 2042 | 1 to 1.5 | 2.7 | 0.54 | 5.9 | 2.8 | Urine | [76] | |
H2O2 | 711 | 20 to 9.05 | 4.0 | 0.2 | 6.1 | 2.8 | Milk |
Electrode Material | Analyte | Sensitivity (uA·mM−1·cm−2) | Linear Range (μM–mM) | Detection Limit (μM) | Working Potential (V) | Stability (30 Days) | Repeatability (RSD %) | Reproducibility (RSD %) | Real-Time Application | Ref |
---|---|---|---|---|---|---|---|---|---|---|
PtAu NPs/GCE | Glucose | - | 200 to 5.4 | 0.5 | 0.6 | High (14 days) | 2.43 | 2.97 | - | [77] |
H2O2 | - | 50 to 2.75 | 0.1 | +0.7 | 95.9 (13 days) | 2.61 | 3.02 | - | ||
PtCo NPs/GCE | Glucose | 0.499 | 50 to 3 | 0.1 | 0.6 | - | - | - | - | [78] |
H2O2 | - | 50 to 0.8 | 1.0 | +0.70 | 93 (14 days) | 2.1 | 3.4 | - | ||
Fe@Pt core shell/GCE | Glucose | 11.75 | 1000 to 16 | 300 | −0.15 | Human serum | [79] | |||
H2O2 | 218.97 | 2.5 to 41.605 | 0.75 | −0.40 | 92 | 1.2 | Antibacterial lotion and lake water | |||
PtNi/MWCNTs/GCE | Glucose | 85,910.0 | 0.1 to 9.0 | 0.03 | 0.1 | 96.9 | - | 0.88 | Human serum | [80] |
H2O2 | 2123.10 | 0.2 to 24.6 | 0.06 | −0.45 | 97.9 | - | 2.2 | Lake water | ||
PdCr NPs/GCE | Glucose | 0.75 | 1000 to 38 | 1.8 | 0.35 | High stability | - | - | - | [81] |
H2O2 | 72 | 100 to 1.9 | 3.1 | 1.2 | 93.1 (14 days) | 1.7 | 3.2 | - | ||
PdFe NPs/GCE | Glucose | 2.7 | 1000 to 32 | 1.6 | 0.35 | High stability | - | - | - | [82] |
H2O2 | 38.72 | 500 to 6.0 | 2.1 | +0.9 | 95.9 (13 days) | 2.3 | 3.1 | - | ||
NP-PdNi/GCE | Glucose | 0.75 | 1000 to 25.00 | 1.90 | 0.35 | High stability | - | - | - | [83] |
H2O2 | 208.60 | 50 to 1.00 | 2.10 | +1.0 | 91.5 (operational stability 2000 s | - | 3.2 | - | ||
Au-Pd/MoS2/GCE | Glucose | - | 500 to 20 | 400 | −0.1 | High (15 days) | 4.4 | 8.2 | - | [84] |
H2O2 | 184.9 | 0.8 to 10 | 0.16 | −0.1 | 98 (15 days) | 9.0 | 7.5 | - | ||
Pd-CoCNTs/GCE | Glucose | 3.77 | 10 to 2.4 | 1 | 0.5 | 88.8 (4 days) | - | 7.3 | Human serum | [85] |
H2O2 | - | 2100 to 10.1 | 0.3 | −0.15 | - | - | - | - | ||
Cu-Co alloy/GCE | Glucose | - | 0.5 to 14 | 0.1 | 0.65 | 95 (3 Months) | - | - | Human serum | [86] |
H2O2 | - | 1.0 to 11 | 0.75 | −0.40 | 95 (3 Months) | - | - | - | ||
Ag NDS/CRE/GCE | Glucose | 728.2 | 0.2 to 7.4 | 0.1 | 0.6 | High | 3.59 | 4.22 | - | [87] |
H2O2 | 273.3 | 0.2 to 19.2 | 0.1 | −0.3 | - | - | - | - | ||
Nafion/NPC-CB/GCE | Glucose | 33.75 | 6 to 3.369 | 2.6 | 0.6 | High (12 days) | 12.86 | - | Beverage | [88] |
H2O2 | 3.914 | 3 to 2.238 | 1.2 | 0.75 | - | - | - | Contact lens solution | ||
AuCu alloy NPs | Glucose | 339.35 | 250 to 10 | 16.62 | 0.5 | [89] | ||||
H2O2 | 133.74 | 50 to 10 | 10.93 | −0.40 | ||||||
np-PtCu | Glucose | - | 10 to 2.0 | 0.1 | 0.4 | [90] | ||||
H2O2 | - | 10 to 1.7 | 0.1 | 0.7 | ||||||
Fe, Ni/CNTs/GCE | Glucose | - | - | 1.23 | - | High | - | Good | - | [91] |
H2O2 | - | - | 16.89 | - | - | - | Good | - | ||
Fe3N-Co2N/CC | Glucose | 4333.7 | 0.1 to 1 | 0.077 | 0.55 | 88.7 | - | 4.8 | Human serum | [92] |
H2O2 | 2273.8 | 0.15 to 8 | 0.059 | −0.20 | 90.2 | - | 3.9 | - | ||
NixCo3−xN/NG/GCE | Glucose | 1803 | 2.008 to 7.15 | 0.05 | 0.45 | 92.31 (45 days) | - | 2.6 | Human serum | [39] |
H2O2 | 2848.73 | 0.2 to 3.4985 | 0.2 | 0.0 | 91.05 (45 days) | 3.1 | Human serum |
Electrode Material | Analyte | Sensitivity (uA·mM−1·cm−2) | Linear Range (μM–mM) | Detection Limit (μM) | Working Potential (V) | Stability (30 Days) | Repeatability (RSD %) | Reproducibility (RSD %) | Real-Time Application | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Ni/NiO@C | Glucose | 1291 | 10 to 10 | 0.116 | - | [93] | ||||
H2O2 | 32.09 | Up to 80.7 | 0.9 | - | ||||||
La0.6Sr0.4Co0.2Fe0.8O3-δ/CPE | Glucose | 285 | 0 to 0.2 | 7 | 0.50 | - | - | - | - | [94] |
H2O2 | 580 | 0 to 3 | 5 | 0.30 | - | - | - | - | ||
LaNi0.6Co0.4O3/CPE | Glucose | 643 | 0.05 to 0.2 | 0.008 | 0.55 | 96.2 (20 days) | - | 3.01 | Human serum | [95] |
H2O2 | 1813 | 0.01 to 0.1 | 0.001 | +0.55 | 96.7 (20 days) | - | 2.6 | Toothpaste | ||
Co0.4Fe0.6LaO3/CPE | Glucose | 1013.8 | 5 to 0.5 | 0.01 | 0.55 | 92.6 (21 days) | - | 2.7 | - | [96] |
H2O2 | 2376.7 | 0.01 to 0.8 | 0.002 | +0.55 | 95.1 (21 days) | - | 3.16 | - | ||
LSC+RGO/GCE | Glucose | 330 | 2 to 3.35 | 0.063 | 0.60 | - | - | - | - | [97] |
H2O2 | 500 | 0.2 to 3.35 | 0.05 | +0.30 | - | - | - | - | ||
LNFs/CPE | Glucose | 42.321 | 1 to 1 | 0.32 | 0.60 | 92.9 (28 days) | - | 5.23 | - | [98] |
H2O2 | 1135.88 | 0.05 to 1 | 0.033 | +0.60 | 94.6 (28 days) | - | 3.18 | - | ||
CuFe2O4 nanotubes/Ni Foam | Glucose | 1239 | 20 to 5.5 | 0.22 | 0.55 | 102.5 (15 days) | 7.4 | 11 | - | [99] |
H2O2 | 219.4 | 500 to 25 | 0.22 | +0.55 | 115.2 | 7.4 | 11 | - | ||
Ag-SiO2/CPE | Glucose | - | 1.43 to 3.202 | 0.33 | 0.60 | - | - | <5.0 | Blood plasma | [100] |
H2O2 | 31.9 | 1.0 to 1.618 | 0.094 | −0.35 | - | - | - | Milk | ||
CuO/rGO/Cu2O/Cu | Glucose | 3401.1 | 0.5 to 8.266 | 0.1 | 0.65 | - | - | - | human serum | [101] |
H2O2 | 366.22 | 0.5 to 9.7 | 0.05 | −0.30 | - | - | - | - | ||
Co3O4/NPG | Glucose | 4470.4 | 2 to 2.11 | 0.085 | 0.50 | 87.4 (21 days) | 3.9 | 5.02 | human serum | [102] |
H2O2 | 230 | 10 to 1.05 | 1.4 | −0.30 | - | 4.4 | - | - | ||
Ni(OH)2/RGO/Cu2O@Cu | Glucose | 5350 | 0.5 to 7.67 | 0.35 μM | 0.65 | 93.8 (14 days) | 5.66 | - | human serum | [40] |
H2O2 | 1706.3 | 0.5 to 7.5 | 0.2 μM | 0.60 | 94.5 (14 days) | 4.35 | - | - | ||
CuOx/NiOy/GCEs | Glucose | 2043 | 0.20 to 2.5 | 0.08 | 0.60 | 93.6 (14 days) | 2.4 | 3.1 | human serum | [103] |
H2O2 | 271.1 | 0.30 to 9.0 | 0.09 | −0.35 | - | 3.8 | 5.5 | - | ||
ZnO−CoO/rGO−GCE | Glucose | 168.7 | 10 to 11.205 | 1.3 | 0.45 | 94.4 (14 days) | - | 4.13 | - | [104] |
H2O2 | 183.3 | 25 to 11.1 | 0.44 | −0.20 | 91.3 (14 days) | - | 2.91 | - | ||
NHGH/NiCo2O4 | Glucose | 2072 | 5 to 10.95 | 0.39 | 0.50 | 92.5 (28 days) | 5.27 | 8.35 | human serum | [105] |
H2O2 | - | 1 to 0.51 | 0.136 | +0.50 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thatikayala, D.; Ponnamma, D.; Sadasivuni, K.K.; Cabibihan, J.-J.; Al-Ali, A.K.; Malik, R.A.; Min, B. Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors 2020, 10, 151. https://doi.org/10.3390/bios10110151
Thatikayala D, Ponnamma D, Sadasivuni KK, Cabibihan J-J, Al-Ali AK, Malik RA, Min B. Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors. 2020; 10(11):151. https://doi.org/10.3390/bios10110151
Chicago/Turabian StyleThatikayala, Dayakar, Deepalekshmi Ponnamma, Kishor Kumar Sadasivuni, John-John Cabibihan, Abdulaziz Khalid Al-Ali, Rayaz A. Malik, and Booki Min. 2020. "Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2" Biosensors 10, no. 11: 151. https://doi.org/10.3390/bios10110151
APA StyleThatikayala, D., Ponnamma, D., Sadasivuni, K. K., Cabibihan, J. -J., Al-Ali, A. K., Malik, R. A., & Min, B. (2020). Progress of Advanced Nanomaterials in the Non-Enzymatic Electrochemical Sensing of Glucose and H2O2. Biosensors, 10(11), 151. https://doi.org/10.3390/bios10110151