

Article

Microelectrochemical Smart Needle for Real Time Minimally Invasive Oximetry

Daniela Vieira¹, Francis McEachern¹, Romina Filippelli¹, Evan Dimentberg¹, Edward J Harvey² and Geraldine Merle^{2,3*}

- ¹ Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; daniela.vieira@mail.mcgill.ca (D.V.); francis.mceachern@mail.mcgill.ca (F.M.); romina.filippelli@mail.mcgill.ca (R.F.); Evan.dimentberg@mail.mcgill.ca (E.D.)
- ² Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3A 0C5, Canada; edward.harvey@mcgill.ca
- ³ Chemical Engineering Department, Ecole Polytechnique de Montréal, P.O. Box 6079 Station, Montreal, QC H3C 3A7, Canada
- * Correspondence: Geraldine.merle@polymtl.ca; Tel.: +1-514-340-4711 (ext. 3667)

Received: 15 September 2020; Accepted: 27 October 2020; Published: date

Supplementary Materials

	Selected Area 1		Elected Area 3
Element	UAN Weight% (SD)	PAN5 Weight % (SD)	ΔWeight%
Element	UAN Weight% (SD)	PAN5 Weight % (SD)	ΔWeight%
Element	UAN Weight% (SD)	PAN5 Weight % (SD)	ΔWeight%
Fe	58.52 (±0.80)	48.66 (±1.37)	-9.86
Element	UAN Weight% (SD)	PAN5 Weight % (SD)	ΔWeight%
Fe	58.52 (±0.80)	48.66 (±1.37)	-9.86
Cr	28.54 (±0.1.34)	27.81 (±2.39)	-0.7225
Element	UAN Weight% (SD)	PAN5 Weight % (SD)	ΔWeight%
Fe	58.52 (±0.80)	48.66 (±1.37)	-9.86
Cr	28.54 (±0.1.34)	27.81 (±2.39)	-0.7225
C	9.23 (±0.69)	5.85 (±0.96)	-3.37

Figure S1. EDX analysis of UAN **(left)** and PAN5 (**right**), with four selected regions of analysis to contract weight% and shifts in elemental constituents prior to and post electrochemical pitting corrosion.

0.64 (±0.03)

1.54 (±0.13)

Si

-0.9

Figure S2. Schematic of SEM-image treating using FIJI software to characterize porosity. (**a**) SEM images of PAN5 and PAN10 (2000×), (**b**) snipped to a 300 × 300-pixel area and skeletonized, with 40 'pits' identified and measured to scale. Resulting measure of porosity found PAN5 and PAN10 average pit size to be 0.166 μ m ± 0.09 and 0.25 μ m ± 0.21, respectively.

Table S1. Atomic force microscopy data, displaying measures of physical characterization such a range (max, min) along the z-axis, RMS, SA, scan size for 10 μ m² for the UAN, PAN5, and PAN10 electrode sample.

AFM DATA	UAN	UAN (2)	PAN5	PAN10
NUMBER OF POINTS	262,144	262,144	262,144	262,144
ΜΑΧ-Ζ (μΜ)	32.65	48.03	738.02	1682.00
ΜΙΝ-Ζ (μΜ)	22.92	38.29	908.032	1127.00
RMS (μM)	5.45	7.54	224.37	270.343
PERCENT XY (%)	100	100	100	100
SA (μM)	100.1	100.4	117.9	159.6
SCAN SIZE (µM2)	10	10	10	10

Figure S3. Instron graph detailing the average load for both UAN and PAN subtypes (n = 3, respectively) while compressing into ballistic gel. Initial penetration of ballistic gel achieved at ~5mm of displacement from the 100 N force plate. Error bands mark the standard deviation of the moving load averages for both groups.

Matorial	Current density (O2 saturated)	Electrode size
Wateria	(mA/cm2)	(mm)
Lacc-CNP-PPy/PAN (this work)	-4.2	0.3
Carbon microfiber - Co/N/C [1]	-1	0.15
AuragenTM Depth Electrode (Pt) [2]	-0.35	1.2
Pt/Nafion [3]	-2.16	0.5

Figure S4. SEM pictures (**A**) before and (**B**) after simulating the injection of the Lacc-CNP-PPy/PAN needle in ballistic gel.

Figure S5. Cyclic voltammograms of the CNP-PPy/PAN electrode. The experiments were performed in 0.1 M phosphate buffer, pH 7.5, in a nitrogen solution at scan rates of 5 mV s-1.

Figure S6. (**A**) Plot of the calibrated O₂-concentrations function of the measured current across the Lacc-CNP-PPy/PAN electrode and counter electrode. (**B**) Electrocatalytic oxygen reduction performance at three different Lacc-CNP-PPy/PAN electrodes in PBS solution (pH 7.4) at room temperature.

References

- Cao, Y.; Ma, W.; Ji, P.; Yu, F.; Wu, H.; Wu, L. Electrophoretically Sheathed Carbon Fiber Microelectrodes with Metal/Nitrogen/Carbon Electrocatalyst for Electrochemical Monitoring of Oxygen in Vivo. ACS Appl. Biol. Mater. 2019, 2, 1376.
- 2. Ledo, A.; Fernandes, E.; Quintero, J.E.; Gerhardt, G.A.; Barbosa, R.M. Electrochemical evaluation of a multisite clinical depth recording electrode for monitoring cerebral tissue oxygen. *Micromachines* **2020**, *11*, 632.
- Rivas, L.; Dulay, S.; Miserere, S.; Pla, L.; Marin, S.B.; Parra, J.; Eixarch, E.; Gratacós, E.; Illa, M.; Mir, M. Micro-needle implantable electrochemical oxygen sensor: ex-vivo and in-vivo studies. *Biosens. Bioelectron*. 2020, 153, 112028.