
biosensors

Article

Dual-Channel Stopped-Flow Apparatus for
Simultaneous Fluorescence, Anisotropy, and FRET
Kinetic Data Acquisition for Binary and Ternary
Biological Complexes

Roberto F. Delgadillo 1,2,3,*,† , Katie A. Carnes 4, Nestor Valles-Villarreal 2 , Omar Olmos 2,
Kathia Zaleta-Rivera 5 and Lawrence J. Parkhurst 1,*

1 Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
2 School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico;

nestor.valles@tec.mx (N.V.-V.); oolmos@tec.mx (O.O.)
3 BASF Enzymes LLC, 3550 John Hopkins Ct, San Diego, CA 92121, USA
4 GlaxoSmithKline, Medicinal Science and Technology, R&D, King of Prussia, PA 19406, USA;

katie.x.carnes@gsk.com
5 Department of Bioengineering, University of California San Diego, San Diego, CA 92093, USA;

kzaletar@eng.ucsd.edu
* Correspondence: delgadillo@tec.mx (R.F.D.); lparkhurst1@unl.edu (L.J.P.); Tel.: +1-650-804-1450 (R.F.D.);

+1-402-472-3316 (L.J.P.)
† Current address: BASF Enzymes LLC, 3550 John Hopkins Ct, San Diego, CA 92121, USA.

Received: 30 September 2020; Accepted: 2 November 2020; Published: 19 November 2020 ����������
�������

Abstract: The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants
in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be
monitored by recording the fluorescence, F(t), anisotropy, r(t), polarization, p(t), or FRET, F(t)FRET, traces
at nanomolar concentrations. These kinetic measurements are critical to elucidate reaction mechanisms,
structural information, and even thermodynamics. In a single detector SF, or L-configuration, the r(t),
p(t), and F(t) traces are acquired by switching the orientation of the emission polarizer to collect the IVV
and IVH signals however it requires two-shot experiments. In a two-detector SF, or T-configuration, these
traces are collected in a single-shot experiment, but it increases the apparatus’ complexity and price.
Herein, we present a single-detector dual-channel SF to obtain the F(t) and r(t) traces simultaneously,
in which a photo-elastic modulator oscillates by 90◦ the excitation light plane at a 50 kHz frequency,
and the emission signal is processed by a set of electronic filters that split it into the r(t) and F(t) analog
signals that are digitized and stored into separated spreadsheets by a custom-tailored instrument control
software. We evaluated the association kinetics of binary and ternary biological complexes acquired
with our dual-channel SF and the traditional methods; such as a single polarizer at the magic angle
to acquire F(t), a set of polarizers to track F(t), and r(t), and by energy transfer quenching, F(t)FRET.
Our dual-channel SF economized labeled material and yielded rate constants in excellent agreement
with the traditional methods.

Keywords: stopped-flow; kinetics; fluorescence; anisotropy; polarizers; magic angle; FRET; trFRET;
L-type instrumentation; steady-state anisotropy

1. Introduction

The fast-mixing apparatus was designed to track fast reactions in solution and it has played
a fundamental role in chemistry, biochemistry, and molecular biology to reveal molecular interactions of
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proteins, DNA, RNA, enzymes, vitamins, or any other biomolecules that can be used as biosensors [1–4].
The Stopped-Flow (SF) origins began in 1923 with the continuous flow mixer of Hartridge and Roughton,
but it required large-volume samples to have practical applications in molecular biology [5]. However,
later modifications were introduced by Britton Chance to preserve material by accommodating small
reaction volumes below ~500 µL [6]. In 1950, Quentin Gibson introduced a stopping syringe and
a double mixer to properly invent the first SF [7]. Later, Robert Berger contributed with the high
efficient ball mixer [8] that brought the mixing dead time in the sub-millisecond range [9]. Lastly,
the last modern breakthrough was made by Gibson’s lab when the first computer-controlled SF system
was introduced [7].

The natural fluorescence or the artificial labeling of biomolecules by fluorescent dyes allows
one to tract association and dissociation reactions in the SF apparatus by following the fluorescence
quenching or enhancement, F(t), and the changes in the rotation of the dye-attached molecule by
anisotropy, r(t), and polarization, p(t) [10]. In addition, the SF apparatus can track Förster Resonance
Energy Transfer, F(t)FRET, when an appropriated dye-pair is attached to each of the reactants or
in the same molecule when conformational changes exist during binding [11]. In the p(t) case, it has
been used to detect drugs of abuse [12–14], and the pesticide atrazine [15]. However, the p(t) signal is
not a fundamental function and can lead to calculation errors; in contrast, the r(t) is a fundamental
expression that is normalized to the total F(t) signal [16]. However, when F(t) varies due to changes
in the dye quantum yield, QY, it is required to analyze the traces by following the product of r(t) and
F(t) or rF(t) since it corrects the distortions and the kinetic traces can follow the exponential-decay
behaviors [17].

Thus, when a single detection is used, the r(t) and p(t) sensing modalities are collected by alternating
the position of the emission from vertical (IVV or I||) to horizontal (IVH or I⊥)with respect to the excitation
polarizer, however, in a two-detector apparatus, the IVV and IVH are recorded simultaneously [18].
These two types of configurations are known as L-format and T-format SF, respectively. The former
requires a double amount of the reactant solutions to acquire sequentially the IVV and IVH traces, making
the L-format very wasteful of valuable material [19]. On the other hand, the T-format is more expensive
but practical, and it has been employed with success to study the refolding and unfolding of several
proteins and enzymes [17,20,21], and to measure the association and dissociation rate constants of several
biomolecules [22–27]

Therefore, preserve valuable material, we have modified an L-type SF to collect simultaneously
the IVV and IVH signals with a single experimental shot by using electronic filters and an instrument
control system, which sorts out the F(t) and r(t) kinetic traces and stores them in spreadsheets for
the corresponding analysis. Our dual-channel SF makes use of a photoelastic modulator (PEM)
that vibrates at 50 kHz to modulate the vertical-polarized excitation laser-beam into circularly polarized
light [28]. The PEM was first employed by J. Wampler and R. Desa for steady-state fluorimetry [29].
Later, Giblin-Parkhurst modified the PEM position for better signal gain to study the kinetic rates of
the ribosome and the initiation factor 3 [1,30].

To corroborate the fidelity of the dual-channel SF, we tested the electronic circuit and
the custom-tailored instrument control software by collecting the association traces of Oregon
green® biocytin (BcO) to avidin (AV) and compare them with the F(t) and rF(t) kinetic traces
obtained with a set of two polarizers [19]. We further compare the dual-channel F(t) traces with
the total fluorescein obtained with a single polarizer at the magic angle (54.7◦) [18]. We continue
testing the linearity of the instrument response for BcO-AV reactions at several concentrations and
temperatures. Furthermore, we measured, by the dual-channel F(t) and rF(t) sensing modalities,
the association kinetics of several dye-labeled DNA probes bearing the Adenovirus major late promoter,
(TATAAAG, AdMLP), and the full-length and its core (N-terminal truncated) yeast Tata Binding
Protein (yTBP and cTBP, respectively) [2,31–33]. We contrasted these dual-channel acquired traces with
the F(t)FRET traces obtained with a double-labeled AdMLP functioning as a FRET probe. In addition,
we monitor the ternary complex formation with preformed TBP-AdMLP complex and the Transcription
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Factor II A (TFIIA), which binds upstream of the TATA box and modulates conformation changes
in the TFIID that enables promoter recognition and binding towards the formation of the Pre-Initiation
Complex (PIC) which is required for the transcription initiation process [34–39].

2. Materials and Methods

2.1. Solution Conditions

All experiments were conducted in a buffered solution of 25 mM Tris, 100 mM KCl, 5 mM MgCl2,
1 mM CaCl2, and 2 mM DTT at pH. The SF reactions and steady-state experiments were acquired
in a temperature range of 15 ◦C to 30 ◦C as indicated in each particular experiment. The temperature
was controlled by a water bath (±0.02 ◦C) measured by a thermistor placed in the water bath of
the temperature-controlled cuvette (Hellma Cells, Inc., Plainview, NY, USA).

2.2. Biological AV-BcO Materials

A summary of all association SF reactions is shown in Figure 1 and Table 1. The Oregon green® 488
biocytin (BcO, lot 40300A) was purchased from Invitrogen (Eugene, OR, USA) and avidin (AV, CAS 1405-69-2,
lot 608540) from Calbiochem (La Jolla, CA, USA). For the SF experimentation, the BcO concentration was
20 nM after mixing, and 200 nM, 260 nM, 520 nM, and 1040 nM for AV (in biotin site basis). The BcO and
AV solutions were placed in syringe 1 and 2, respectively.

2.3. Oligonucleotide Probe Design

The dye-labeled top strands and the corresponding complements were synthesized by TriLink
Biotechnologies, Inc. (San Diego, CA, USA). All strands were both HPLC and PAGE purified and
the correct labeling was confirmed by comparing the dye’s peak absorbance ratios with respect to
the 260 nm DNA absorbance [40]. The duplex DNA (ds) was prepared using a 10 × molar excess
of complementary strands with a preincubation time of at least 20–30 min before reaction mixing.
The dye-labeled top strand contained the TATAAAA box sequence from the Adenovirus Major Late
Promoter (AdMLP) that is bound and bent by TBP [41]. Several dyes were used to label a 14-nucleotide
top coding strand bearing the AdMLP (AdMLP14ds) and giving fluorescent probes of different sensitivity
(Table 1, Figure 1). These dyes were attached to the single-strand oligomer probes by six-carbon linkers
at the 3′ end with fluorescein (3′-Fl), and at the 5′ end either with x-rhodamine (5′-Xr) or TAMRA (N,
N, N′, N′-tetramethyl-6-carboxyrhodamine, 5′-Ta). After complement binding, the duplexed probes
were named AdMLP14ds*Fl, Xr*AdMLP14ds, and Ta*AdMLP14ds, respectively. A fourth single-labeled
probe was a 31-nucleotide AdMLP sequence labeled with an internally labeled carboxy Fl attached
to thymine (dT-Fl) by a nine-atom linker, which was named AdMLP31ds*Flint, and was designed
to accommodate simultaneously the TBP and TFIIA proteins (Table 1, Figure 1). A double-labeled
probe, Xr*AdMLP14ds*Fl, was designed as a FRET probe to yield the F(t)FRET trace that monitors
the donor quenching by energy transfer caused by DNA bending during the cTBP and yTBP binding.
All the preformed duplex probes were placed in syringe 1 with at least 20–30 min incubation to reach
the desired temperature under the water bath. The concentration of single and double labeled duplexes
for all the SF experiments varied from 20 nM to 60 nM and to make comparative analysis between
these different methodologies, it was needed to keep the protein/probe ratio constant.
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Table 1. Stopped-flow association reactions monitored by F(t), r(t), rF(t), and F(t)FRET sensing modalities.

SF Methodology Signal Reaction Syringe 1 a Syringe 2

Magic angle F(t) AV-BcO BcO AV

Polarizers r(t), F(t), & rF(t)
AV-BcO BcO AV

yTBP-Ta*AdMLP14ds*Fl 5′-Xr*GGGCTATAAAAGGC*Fl-3′

3′-CCCGATATTTTCCG-5′ yTBP

cTBP-Xr*AdMLP14ds
5′-Xr*GGGCTATAAAAGGC*Fl-3′

3′-CCCGATATTTTCCG-5′ cTBP

Dual-Channel r(t), F(t), & rF(t)

AV-BcO BcO AV

yTBP-Ta*AdMLP14ds
5′-Ta*GGGCTATAAAAGGC-3′

3′-CCCGATATTTTCCG-5′ yTBP

yTBP-AdMLP14ds*Fl 5′-GGGCTATAAAAGGC*Fl-3′

3′-CCCGATATTTTCCG-5′ yTBP

yTBP-AdMLP31ds*Flint
5′-GCGGGGAATTCCTATAAAAGAA(T-Fl)GTGCTGGG-3′

3′-CGCCCCTTAAGGATATTTTCTTACACGACCC-5′ yTBP

yTFIIA-yTBP-AdMLP31ds*Flint
b yTBP + 5′-GCGGGGAATTCCTATAAAAGAA(T-Fl)GTGCTGGG-3′

3′-CGCCCCTTAAGGATATTTTCTTACACGACCC-5′ yTFIIA

FRET F(t)FRET
yTBP-Xr*AdMLP14ds*Fl 5′-Xr*GGGCTATAAAAGGC*Fl-3′ 3′-CCCGATATTTTCCG-5′ yTBP

cTBP-Xr*AdMLP14ds*Fl 5′-Xr*GGGCTATAAAAGGC*Fl-3′ 3′-CCCGATATTTTCCG-5′ cTBP
a Labeled top strand and complement were preincubated before protein binding. b The TFIIA-TBP-AdMLP31ds*Flint ternary complex was monitored by pre-forming the yTBP-AdMLP31ds*Flint
binary complex in syringe 1.
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2.4. Transcription Factor Proteins

The full-length Tata Binding Protein and the COOH terminal domain (or core domine) from
Saccharomyces cerevisiae referred to as yTBP and cTBP, respectively; were expressed in Escherichia coli,
purified, and concentrated in 25 mM HEPES-KOH, 20% glycerol, 1 mM EDTA, 1 mM DTT, and 300 mM
KCl (pH 7.9) [2,42]. Both protein activities were determined by a titration protocol as described
previously [2,3]; thus, all concentrations are reported for active proteins. The cTBP final concentrations,
after mixing, were 98 nM for the dual-channel SF experiments, and 43 nM, 86 nM, and 166 nM for
the FRET SF experiments. For the yTBP, the final concentrations, after mixing, were 210 nM, 220 nM,
420 nM, and 500 nM. All the cTBP and yTBP solutions were placed in syringe 2. The TFIIA binding
SF kinetics were obtained with a preincubated TBP-AdMLP31ds complex of 220 nM yTBP and 20 nM
AdMLP31ds*Flint placed in syringe 1, and an 850 nM TFIIA solution placed in syringe 2, all final
concentrations after mixing.
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Figure 1. Stopped-flow association reactions monitored by r(t), F(t), rF(t), and F(t)FRET sensing modalities.
(A) The Oregon Green ® Biocytin (BcO) is attached through 18 non-hydrogen atoms as a spacer between
the carboxy-dye and biotin ring structure, which binds to one of the four sites of avidin (AV) [43] under
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pseudo-first-order condition (or > 10× binding site excess) [44]. (B–G) The Adenovirus Major Late promoter
duplexed probes (AdMLPds, Table 1) are bound and bend by TATA-binding protein (TBP) [2,31]. To track
the TBP-AdMLP association reactions, several duplex probes were used with three different dyes and two
TATA bearing sequences of 14-nucleotide (AdMLP14ds) and 31-nucleotide (AdMLP31ds) oligomer lengths.
(B) The AdMLP14ds probes were labeled at the 5′ end by x-rhodamine (Xr*AdMLP14ds), (C) TAMRA
(Ta*AdMLP14ds), and (D) fluorescein at the 3′ end (AdMLP14ds*Fl). These 5′-Xr, 5-Ta, and 3′-Fl dyes
were attached by six-carbon linkers. (E) The yTBP binding was also tracked with a fourth single labeled
probe, a longer AdMLP31ds sequence, labeled internally by fluorescein (AdMLP31ds*Flint) attached by
a nine-atom linker to the methyl group of the d-thymine (dT*Flint) at position 23, and it was designed
to accommodate at the same time the TBP and the TFIIA. (F) The extra space at the 5′ end allows us to
obtain the TFIIA association rate constant when binding to a preformed yTBP-AdMLP31ds binary complex
thus forming the ternary TFIIA-yTBP-AdMLP31ds*Flint complex [45]. (G) The yTBP was also reacted with
the double-labeled AdMLP duplex (Xr*AdMLP14ds*Fl) to acquire the F(t)FRET traces as the inter-dye probe
distance was decreased by the protein bending thus quenching the donor fluorescence signal.

2.5. Dual-Channel SF

The association reactions were collected in our custom-made SF apparatus (Figure 2) [2,46].
The fluorescence emission was collected with a 520-nm interference filter (10BPF10-520 Oriel Corp.,
Stratford, CT, USA) at 20–40 nM, after reaction mixing, for the BcO, AdMLP14ds*Fl, Xr*AdMLP14ds*Fl,
AdMLP31ds*Flint probes, and the respective complexes. For the Ta*AdMLP14ds and Xr*AdMLP14ds probes,
the emission signal was acquired by the 580-nm (10BPF10-580) and 620-nm interference filters, respectively
(10BPF10-620, Oriel Corp., Stratford, CT), at 40 nM and 60 nM, respectively, after mixing (Figure 1, Table 1).
The SF G-factor values were calculated with the half-wave plate and an emission polarizer to obtain
the IHV/IHH ratio, at 520 nm for the BcO, AdMLP14ds*Fl, and AdMLP31ds*Flint labeled probes and complexes,
and at 580 nm and 620 nm for the Ta*AdMLP14ds and Xr*AdMLP14ds samples, respectively. The SF
mixing dead time was 1 ms, and sufficient to detect a second-order rate constant of at least 1 × 109 M−1s−1.
The excitation light was provided by a Coherent Ar+ ion laser (Innova 70-4 Argon, Santa Clara, CA, USA)
at 488 nm with an excitation power of 10–20 mW, for the BcO, AdMLP14ds*Fl, and AdMLP31ds*Flint probes,
and respective protein-probe complexes. For the Ta*AdMLP14ds and Xr*AdMLP14ds samples, the excitation
was set at 514.5 nm with an excitation power of 135 mW. The laser source was followed by a photo-elastic
modulator (PEM-80; HINDS International, Inc., Portland, OR, USA) oriented 45◦ with respect to the electric
(E) vector of the incident light, and the half-wave modulation was set at 50 kHz (Figure 2).Biosensors 2020, 10, x FOR PEER REVIEW 9 of 29 
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Figure 2. The modular dual-channel Stopped-Flow apparatus is equipped with a frequency rejection circuit
for anisotropy, r(t), and fluorescence, F(t), detection. The optical train consists of the Coherent Ar+ ion
laser (Innova 70-4 Argon, Santa Clara, CA, USA) source, a half-wave plate, the PEM at 45◦ of the vertical
electric vector, and the detector placed in an L-type configuration. The half-wave plate changes by 90◦

laser excitation plane just before being modulated by the PEM. The detector housing can accommodate
interchangeable interference filters (e.g., 520 nm, 580 nm, and 620 nm) to collect the fluorescence emission
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of the diverse dyes. The fluorescence emission is split into two signals, VDC(t) and rectified VAC(t),
by the electronic filters to be later digitized and stored in spreadsheets to yield r(t) and F(t) according to
Equation (7) and Equation (8), respectively. The temperature of the cuvette and syringes is controlled
by a water bath from 10 ◦C to 30 ◦C. The syringes are simultaneously pushed by an air-controlled
piston to deliver 150 µL solution each to be ball mixed with a 1 ms death time.

The dual-channel-SF filtering box consists of a 4-pole-pair digitally programmable band-pass
(828BP), a passive high-pass filter with a set of capacitors, an active high-pass filter, a half-wave rectifier
with negative output, and an integrator with capacitor selector (Figure 3). The demodulator circuitry
provides a VDC(t) and a rectified VAC(t) voltage, yielding differing functions of the anisotropy as a function
of time, r(t), and the time-dependent total fluorescence, F(t), by filtering out the desired frequency.
The fluorescent signal is detected by R928 Photo-Multiplier Tube (PMT, Hamamatsu, Bridgewater, NJ,
USA) having an emission spectral response of 185 to 900 nm, which is selected by an interference filter
(520 nm, 580 or 620 nm, described above), and divided into two channels. The fluorescence light that
passes the interference filter generates a voltage signal in the PMT that is fed as a “signal in” which is
split into two signals. The first half-signal passes through an adjustable resister-capacitor filter (RC)
to obtain a clean VDC(t) signal out. This RC filter has a variable capacitor set for the following time
constants of 1 ms, 10 ms, 50 ms, 100 ms, and 500 ms and 1 s whose selection is equivalent to the time
required for the capacitor voltage to decrease its initial voltage by up to 37%. The second split signal
passes to an 828BP 4-pole-pair digitally programmable band-pass filter (Frequency DevicesTM, Inc.,
Ottawa, IL, USA) to isolate the 50 kHz signal that is transmitted to an active high-pass filter, consisting of
an OP37 High-speed Operational Amplifier, and an RC filter with a resistance selector (RC filter with
an adjustable time constant). Subsequently, the signal is conducted to a half-wave rectifier with negative
output, consisting of an OP271 operational amplifier, a resistor set, and two rectifier diodes. Finally,
the signal is fed to an integrator with a capacitor selector, consisting of an OP271 operational amplifier,
a resistor, and a capacitor selector that yield the rectified VAC(t) signal.
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Figure 3. Circuit diagram for the dual-channel SF filtering box. The frequency selection circuitry
filtered out the r(t), and F(t) traces by getting the ratio of VAC(t)/VDC(t), according to Equation (7) and
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Equation (8), respectively. The fluorescence emission that passes the interference filter (e.g., 520 nm,
580 nm, and 620 nm) produces a PMT analog signal (signal in) that is split into two, the first half goes
through an adjustable resister-capacitor filter (RC) to obtain a clean VDC(t) signal out. This RC filter has
a variable capacitor set for the following time constants of 1 ms, 10 ms, 50 ms, 100 ms, and 500 ms and
1 sec for the dials starting from 1 to 6. The second split signal passes through an 828BP 4-pole-pair
digitally programmable band-pass filter (Frequency Devices TM, Inc.) to isolate the 50 kHz signal,
which is then fed to an active high-pass filter and later to a half-wave rectifier with negative output.
Finally, the signal is fed to an integrator with a capacitor selector to yield the VAC(t). The configuration
of these electronic elements is powered by a 12V power supply. Further details are described in the text.

The effect of the PEM on the vertically polarized laser beam results in linear polarization, which
is described by the Stokes’ (Sp) vector (Equation (1)), and for the sake of simplicity, we assume unit
irradiance, with periodic retardation, δ = δ0 sin ωt, with scaling factor (δ0) and angular frequency
(ω). At a π/2 scattering angle, the Stokes’ vector for fluorescence (SF) scattering is shown in Equation
(2) [47], where the parameters F, I0, and r account for fluorescence, incident light, and the anisotropy
function, in that order.

SP =


1 0 0 0
0 cos δ 0 sin δ
0 0 1 0
0 − sin δ 0 cos δ




1
−1
0
0

 =


1
− cos δ

0
sin δ

 (1)

SF =
F

6I0


4− r −3r 0 0
−3r 3r 0 0

0 0 0 0
0 0 0 0




1
− cos δ

0
sin δ

 =
F

6I0


4− r(1− 3 cos δ)
−3 r (1 + cos δ)

0
0

 (2)

The first term of the Stokes’ vector gives the total irradiance due to F scattering. Thus, the instantaneous
response in a photomultiplier detector (V) is proportional to this term, the sensitivity (S), and the transducer
gain (κ) of the detector (Equation (3)):

V =
κ S F
6I0

[4− r(1− 3 cos δ)] (3)

The averaged photomultiplier response over a PEM cycle becomes integrated by an RC filter of
the demodulation circuitry resulting in direct current output, VDC(t) proportional to the r(t) function
(Equations (4) and (5)), and a rectified VAC(t) signal (Equation (6)) that together yield the anisotropy
r(t) (Equation (7)) and total fluorescence F(t) information (Equation (8)).

VDC =
1
t

∫ t=k

t=0
Vdt =

κ S F
6I0

{
4− r[1− 3 J0(δ0)]

}
(4)

VDC ∼ F·[1− 0.47818·〈r〉·(1 + 2.3806·H)] (5)

VAC ∼ 1.5〈r〉tFt (6)

where H = (1 − G)/(1 + G) and G = IHV/IHH is the SF grating factor, the instrument sensitivity ratio
towards vertically and horizontally polarized light, which was obtained using an emission polarizer
perpendicular and parallel to the electric (E) vector, respectively. The VDC(t) and VAC(t) were baseline
corrected to obtain the respective ratio as a function of time (ρt) (Equation (7)) where the constant
AGain is the instrumental amplitude gain, which was calculated solving ρ(t) and r(t) at t =∞which is
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equivalent to rss of the complex. Finally, the total fluorescence signal F(t) is obtained after solving for
the r(t) traces (Equation (8)).

ρ(t) =
VAC(t)
VDC(t)

=
1.5 · r(t) ·AGain

1− 0.47818 · r(t) · (1 + 2.3806 ·H)
(7)

F(t) =
VDC(t)

1− 0.47818 · r(t) · (1 + 2.3806 ·H)
(8)

The data acquisition was managed by an instrument control software (8.0 LabVIEW™) to sort
each channel into two separate spreadsheets (Figure 4). The converted digital data was collected
at a rate of 1530, 3060, or 6120 data points per second for 655 µs, 327 µs, and 163 µs separation per
data points whose signals from each channel were baseline subtracted. The two analog signals from
the demodulator were digitized by PCI-5122 high-speed digitizers from National Instruments (Austin,
TX, USA) with a 14-bit resolution and 100 MHz bandwidth, through channel 0 and 1, the instrumental
control panel of which is shown in Figure 5.

Biosensors 2020, 10, x FOR PEER REVIEW 10 of 29 

Figure 3. Circuit diagram for the dual-channel SF filtering box. The frequency selection circuitry 
filtered out the r(t), and F(t) traces by getting the ratio of VAC(t)/VDC(t), according to Equation (7) and 
Equation (8), respectively. The fluorescence emission that passes the interference filter (e.g., 520 nm, 
580 nm, and 620 nm) produces a PMT analog signal (signal in) that is split into two, the first half goes 
through an adjustable resister-capacitor filter (RC) to obtain a clean VDC(t) signal out. This RC filter 
has a variable capacitor set for the following time constants of 1 ms, 10 ms, 50 ms, 100 ms, and 500 ms 
and 1 sec for the dials starting from 1 to 6. The second split signal passes through an 828BP 4-pole-
pair digitally programmable band-pass filter (Frequency Devices TM, Inc.) to isolate the 50 kHz signal, 
which is then fed to an active high-pass filter and later to a half-wave rectifier with negative output. 
Finally, the signal is fed to an integrator with a capacitor selector to yield the VAC(t). The configuration of 
these electronic elements is powered by a 12V power supply. Further details are described in the text. 

 
Figure 4. Schematic representation of the SF dual-channel LabView® instrument control software. The 
instrument virtual software prepares data acquisition to a sample rate of 1536, 3072, and 6144 data 
points per second and creates two text files to store the output VDC(t) and VAC(t) signals in channel 0 
and 1, respectively. The virtual range corresponds to the voltage variation in the detector from -5V 
up to +5V. The collection protocol can be started manually or by a triggering signal (PF10) when the 
stopping syringe mechanism is closed (Figure 5). The waiting period for receiving the triggering 
signal is set at 20 s. When saturation is reached at 5V, the data acquisition is truncated. The 
background is collected with the buffer solution to eliminate it from the r(t) and F(t) traces. 

 

Figure 4. Schematic representation of the SF dual-channel LabView® instrument control software.
The instrument virtual software prepares data acquisition to a sample rate of 1536, 3072, and 6144 data
points per second and creates two text files to store the output VDC(t) and VAC(t) signals in channel
0 and 1, respectively. The virtual range corresponds to the voltage variation in the detector from
-5V up to +5V. The collection protocol can be started manually or by a triggering signal (PF10) when
the stopping syringe mechanism is closed (Figure 5). The waiting period for receiving the triggering
signal is set at 20 s. When saturation is reached at 5V, the data acquisition is truncated. The background
is collected with the buffer solution to eliminate it from the r(t) and F(t) traces.
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Figure 5. National Instrument front-screen interface for the dual-channel SF. (A) Channel 0 and channel
1 panels showing the VDC(t) and VAC(t) split signals, respectively, whose vertical range is 10 V from −5 V
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to +5 V. The data speed acquisition was set at 1530, 3060, or 6120 data points per second in the “Min Sample
Rate” input, which can be stored horizontally in columns, and are set in the “# of columns” input.
(B) The triggering signal is received in the PFI0 input (Figure 4), which has a waiting time window of 20 s
to initiate data collection. The aperture of the air piston pushes the two solution syringes in a 67 ms± 1 ms
window (orange line). The data-acquisition triggering is started by the stopping syringe mechanism
that has a feedback signal (blue line) with a deadtime of 7 ms ± 1 ms with respect to the air-piston
closure (double-arrow separation). In addition, data acquisition can be pre-triggered manually resulting
in a death-time of ~1 ms, which depends on the ball mixing effectiveness.

2.6. Stopped-Flow Association Kinetics Acquired with Excitation and Emission Polarizers

The AV-BcO and yTBP-Ta*AdMLP14ds association reactions, at 20 ◦C and 25 ◦C, respectively,
were acquired by the traditional two-polarizer method to compare the resulted kinetic traces with
those acquired by the dual-channel SF. The two-polarizer SF experiments were carried out with
the same apparatus already described but the analog PMT voltage is fed directly to the digitizer
and without the need of the dual-channel filtering box. The concentration of AV and BcO solutions
was 20 nM and 200 nM, respectively; and the Ta*AdMLP14ds and yTBP were 40 nM and 500 nM,
respectively. The excitation wavelength was provided by the previously described Ar+ laser,
and the fluorescence emission was collected through the 520 nm and 580 nm interference filters
described above. The time-dependent IVV(t) and IVH(t) traces were collected individually in two
experiments yielding r(t) according to Equation (9) [17], where G is the SF grating factor already
described [19]. The F(t) in Equation (10) corresponded to the denominator of Equation (9):

r(t) =
IVV(t) −G ∗ IVH(t)

IVV(t) + 2G ∗ IVH(t)
(9)

F(t) = IVV(t) + 2G ∗ IVH(t) (10)

2.7. Stopped-Flow Association Kinetics Collected at the Magic Angle

The F(t) association kinetics of BcO and AV reacting at concentrations of 20 nM and 200 nM,
respectively, were also tracked with a single emission polarizer between the cuvette and the detector
at the magic angle, θ = 54.74◦ [16,48]. The corresponding F(t) intensity is three times smaller than
the intensity in Equation (10); however, it must yield equivalent eigenvalues to describe the kinetic
trace. The excitation was set at 488 nm provided by the described Ar+ laser at 10–20 mW which
polarization plane was orientated by a half-wave plate to be 90◦ with respect to the detector plane while
the fluorescence emission was collected through the 520-nm interference filter previously described.

F(t) = 3·F(t)θ=54.74◦ (11)

2.8. Steady-State Anisotropy, rss

The rss values of the free probes (e.g., BcO, Ta*AdMLP14ds, etc.) and protein-probe complex
(e.g., AV-BcO, yTBP-Ta*AdMLP14ds, etc.) were collected with two polarizers or by the method
of Giblin and Parkhurst (Equation (12)) [30]. The steady-state fluorescence signal was detected
in a model A-1010 Alphascan fluorimeter (Photon Technologies, Inc.) equipped with an R928 PMT
(Hamamatsu, Bridgewater, NJ, USA) with the emission-monochromator bandwidth set at 1 turn, and
spectral response of 185 nm to 900 nm. For the polarizer method, the rss was calculated according to
Equation (9). The excitation was provided by a Xenon arc set at 480 nm for the BcO, AdMLP14ds*Fl,
and AdMLP31ds*Fl probes and complex samples. The 535 nm and 560 nm excitation wavelengths
were used for the Ta*AdMLP14ds and Xr*AdMLP14ds probes and complex samples, respectively.
For the Giblin-Parkhurst method, the excitation was provided by the 488 nm line of the Coherent® Ar+

ion laser already described. The 514.5 nm excitation line was used for the Ta*AdMLP14ds,Xr*AdMLP14ds,
and its respective protein-probe complexes. The Giblin-Parkhurst method required a PEM set 45◦
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with respect to the E vector of the laser beam and placed between the Coherent® Ar+ ion laser and
the sample compartment with a retardation level of 1.22·π. Two signals were obtained during 3–5 s
with the power switch set at “on” and “off” position. The resulted signal was fitted to a straight line by
the method of least squares to filter noise and photobleaching effects, yielding a ratio γ = on/off, that is
used to calculate rss according to Equation (12):

rss =
4− 4γ

γ3(2− 3H) + (1− 3A + 3H + 3HB)
(12)

where H = (1 − G)/(1 + G), and G is the fluorimeter grating factor, A =
∫ b=1.62

a=1.55 cos(1.22π· sin x)·H/πdx,

and B =
∫ b=1.62

a=1.55 sin (1.22π· sin x)·H/πdx. The rss values were calculated with at least six independent
measurements at the reported temperatures in Table 2. The emission signals were selected by
the fluorimeter’s monochromator at 520 nm for BcO, AdMLP14ds*Fl, and AdMLP31ds*Fl probes
and respective complexes. The fluorescence emission at 580 nm and 620 nm were collected for
the Ta*AdMLP14ds and Xr*AdMLP14ds samples. The fluorimeter G-factor was obtained from 500–700 nm
by measuring the IHV/IHH ratio acquired by polarizers with 3–5 s scans carried out by triplicated with
a step size of 5–10 nm and the emission monochromator bandwidth set at 1 turn. The fluorimeter
G-factor calculations required an AdMLP14ds*Fl solution at a concentration of 0.5 µM, to yield the values
in the 500–590 nm range. The fluorimeter G-factor in the 580–700 nm range was acquired by a solution
of Xr*AdMLP14ds at a concentration of 4.7 µM at excitations of 510 nm and 560 nm.

Table 2. Steady-state anisotropy (rss) and quantum yield (QY) for unbound probes and complexes.

Sample rss (Free Probe) a rss (Complex) b QY
(Free Probe) QY (Complex)

BcO (25 ◦C) 0.018 ± 0.001 c

0.025 ± 0.001 d
+AV: 0.180 ± 0.003 c

+AV: 0.177 ± 0.004 d

0.91 ± 0.01 0.68 ± 0.02BcO (20 ◦C) 0.025 ± 0.001 d +AV: 0.185 ± 0.004 d

BcO (15 ◦C) 0.054 ± 0.001 d +AV: 0.176 ± 0.004 d

BcO (10 ◦C) 0.055 ± 0.001 d +AV: 0.202 ± 0.004 d

Ta*AdMLP14ds (25 ◦C) 0.164 ± 0.002 d +yTBP: 0.192 ± 0.010 d 0.20 ± 0.01 0.20 ± 0.01

Ta*AdMLP14ds (20 ◦C) 0.122 ± 0.002 d +yTBP: 0.131 ± 0.005 d 0.20 ± 0.01 0.20 ± 0.01

AdMLP14ds*Fl (20 ◦C) 0.071 ± 0.013 d

0.068 ± 0.008 c +yTBP: 0.097 ± 0.002 d 0.22 ± 0.01 0.22 ± 0.01

Xr*AdMLP4ds (20 ◦C) 0.122 ± 0.003 d

0.122 ± 0.001 c +cTBP: 0.130 ± 0.002 d 0.10 ± 0.01 0.10 ± 0.01

AdMLP31ds*Flint (20 ◦C) 0.043 ± 0.004 c

0.040 ± 0.004 d +yTBP: 0.201 ± 0.005 d 0.83 ± 0.03 0.71 ± 0.03

yTBP-AdMLP31ds*Flint (17 ◦C) 0.201 ± 0.005 d +yTFIIA: 0.260 ± 0.002 d 0.71 ± 0.03 0.82 ± 0.03

yTBP-AdMLP31ds*Flint (25 ◦C) 0.198 ± 0.005 d +yTFIIA: 0.217 ± 0.002 d 0.71 ± 0.03 0.72 ± 0.03
a The rss values were used to solve r(t) and F(t) in Equations (7) and (8), since the rss values of the free and bound
probes corresponded to the association anisotropy traces at initial and endpoint, r(t = 0), and r(t =∞), respectively.
The unbound probes have low rss values since they are free to rotate; however, the anisotropy increased when
the probe is bound in the complex. b Protein was added to at least 10× excess to reach at least 98% saturation of
the fluorescent probe. c Calculated with polarizers. d Calculated with the method by Giblin-Parkhurst [30].
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2.9. The F(t), r(t), and rF(t) Sensing Modalities Analysis

For the F(t) signal, the kinetic traces are dependent on the formation and disappearance of
the involved fluorescence emitting species and their respective spectroscopy properties, according to
Equation (13):

F(t) =
∑

xi(t)εi(λex)· fi(λex)·QYi =
∑

xi(t)·QYe f f
i =

2∑
1

xi(t)·∆QY (13)

where xi is the mole fraction of the fluorescence “i” species as a function of time (t), the εi(λex)
term is the molar extinction coefficient at the excitation wavelength, the fi(λem) is the fluorescence
spectral contour at the excitation wavelength, and the QYi is quantum yield of the specie “i” [17].
Since the excitation wavelength is constant (e.g., 488 nm or 514.5 nm) and the emission is collected
by an interference filter (e.g., 520 nm, 580 nm, or 620 nm), the last three terms can be grouped
and simplified as the effective quantum yield, QYi

eff = εi(λex)·fi(λex)·QYi. When i= 2, the QYi
eff

is equal to the QY difference between the free and bound probe in the complex, as following:
QYe f f

i = ∆QY = QYfree − QYbound.
The r(t) signal depends on xi, the specie’s intrinsic anisotropy, ri, and the respective QYi value,

as shown in Equation (14), where the denominator corresponds to Equation (13).

r(t) =

∑
xi(t)·QYe f f

i ·ri∑
xi(t)·QYe f f

i

=

∑2
1 xi(t)·∆QY·ri∑2

1 xi(t)·∆QY
(14)

In the case of large QY changes, the r(t) traces are distorted and do not follow the exponential
decay models. However, the r(t) traces can be corrected by multiplying with the F(t) signals, resulting
in a new function, rF(t), as shown in Equation (15) [17]:

rF(t) =
∑

xi(t)·QYe f f
i ·ri =

2∑
1

xi(t)·∆QY·ri (15)

Since the three F(t), r(t) and rF(t) sensing modalities have different amplitudes and values
depending on the temperature and probe type (e.g., Fl, Xr, and Ta), it is better to normalize them to
make a comparative analysis; which is denoted by a top bar, r(t), F(t) and rF(t), as shown in Equations
(16)–(18), respectively:

r(t) = (r(t) − r(0)) / (r(∞) − r(0)) (16)

F(t) = (F(t) − F(∞)) / (F(∞) − F(0)) (17)

rF(t) = (rF(t) − rF(0)) / (rF(∞) − rF(0)) (18)

The F(t) kinetic traces were fitted to mono- and bi-exponential decays, e.g., F(t) = α × e(−λ × t) + C,
F(t) = α1 × e(−λ1 × t) + α2 × e(−λ2 × t) + C, respectively; where α is the pre-exponential and gives
the relative phase contribution, where α1 + α2 = 1, λ is the eigenvalue with units of reciprocal seconds
(s−1), and C corresponds to a constant or baseline residual. In the case of other r(t) and rF(t) traces,
the models are modified as following: r(t) = 1 − α × e(−λ × t) + C and r(t) = 1 − [α1 × e(−λ1 × t) + α2

× e(−λ2 × t) + C], respectively.

2.10. Stopped-Flow Association Kinetics of TBP-AdMLP14ds Collected by Energy Transfer

The binding association of the yTBP and cTBP proteins to AdMLP14ds was tracked with
the double-labeled Xr*AdMLP14ds*Fl probe. The Fl donor emission was acquired with the previously
described 520-nm interference filter yielding the F(t)FRET traces whose intensities decrease as the acceptor
(Xr) gets closer to the Fl dye caused by the DNA bending as TBP binds to the probe [2,3,49]. In other
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words, the F(t)FRET trace tracks the quenching of the donor as a function of the time due to the energy
transfer towards the acceptor [2]. The F(t)FRET association traces were acquired in the previously
described SF apparatus in which the analogous signal was fed directly to the digitizer. The resulted
F(t)FRET traces were described by exponential decay models according to Equation (19). The excitation
light was provided by the previously described Coherent Ar+ ion laser at 488 nm and 10–20 mW power.

F(t)FRET =
n∑

i=1

αi∗e−λi∗t (19)

2.11. Time-Resolved Energy Transfer, trFRET

To determine the DNA conformation changes caused by the TBP to two double-labeled AdMLP14ds

probes (Ta*AdMLP14ds*Fl and Xr*AdMLP14ds*Fl), we measured the inter-dye distance (R) according to
the FRET rate of transfer (kt) which is inversely proportional to the reciprocal sixth power of interdye
distance (R1/6) as shown in Equation (20), where τD is the donor lifetime reference of 4.1 ns ± 0.1 ns
and the R0 is the Förster distance of 61.8 Å ± 1.7 Å and 65.3 Å ± 0.3 Å for Xr*AdMLP14ds*Fl,
and Ta*AdMLP14ds*Fl, respectively [40]. The solution concentrations of the single labeled donor
(AdMLP14ds*Fl), and double-labeled Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl free probes were between
50–100 nM, and the respective complexes were formed by adding yTBP or cTBP to reach at least 1.5 µM
to ensure >98% probe saturation, at 20 ◦C [3].

kt =
1
τD

(R0

R

)6
(20)

The time-resolved donor intensity in the nanosecond scale, ID(t), of the single-labeled unbound
AdMLP14ds*Fl and bound (yTBP-AdMLP14ds*Fl or cTBP-AdMLP14ds*Fl) complexes, were deconvoluted
according to Equation (21), which yield τD or <τDi> for mono- or multiphasic decays, respectively.
The excitation energy is lost by <τDi> = 1/kF(D) = 1/(kD

0 + Σki(D)), which is the reciprocal of the sum of
the natural fluorescence rate (kD

0 =1/τ0) and the inactivation pathways (Σki(D)). In addition, <τDi>

is equal to Σαiτi, the sum of the area under the curve for each of the ith lifetimes with its respective
fractional contribution (αDi) so that ΣαDi = 1:

IExc/Emi
Di (t) =

n∑
i=1

αDi·e
−( t
〈τDi〉

)
(21)

The same time-resolved deconvolution model is used for the unbound and bound double-labeled
duplexes, ID(A)(t), where A is the acceptor, and the fluorescence donor emission is collected by the 520-nm
interference filter already described:

IExc/Emi
Di(A)

(t) =
n∑

i=1

αDi(A)·e
−( t
〈τDi(A)〉

)
(22)

The deconvolution yielded the lifetimes of single and double-labeled duplexes, the <τDi> and
<τD(A)i> respectively, of free and TBP bound samples. To obtain the interdye R (Equation (23)),
the <τDi> is used as the donor reference lifetime for which the transfer rate constant (kt) is optimized
as a function of a distance distribution, denoted as P(R) described by a mean inter-dye distance,
R, and a standard deviation, σ (Equation (24)). These two parameters of P(R) are optimized using
nonlinear regression algorithms or a method of moments [2] to match the observed donor decay
in the presence of the acceptor, <τD(A)i>.

IExc/Emi
Di(A)

(t) =
∫
∞

0
P(R)

n∑
i=1

αDie[−(τDi
−1+kt)·t]dR (23)
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P(R) =
1

σ
√

2π
exp

[
−

(
R−R

)2
/
(
2σ2

)]
(24)

The corresponding DNA bend angle (α) was calculated according to Equation (25) in a simple rod
model with two-kinks, based on the R for the free and bound double-labeled Xr*AdMLP14ds*Fl and
Ta*AdMLP14ds*Fl probes [50].

Rbound

Runbound
=

(
R f ree − L2

)
cos(∝ /2) + L2

Runbound
(25)

The raw ID and ID(A) decays were acquired using a dye-tunable laser pumped by an N2 LaserStrobe®

spectrofluorometer (PTI, Photon Technologies, Inc., Birmingham, NJ, USA) with a 10 Hz pulsed
excitation set at 481 nm provided by PLD481 dye (Photon Technologies, Inc.). The decays were collected
by filtering donor fluorescence emission through a 520-nm interference filter (10BPF10-520, Oriel
Corp., Stratford, CT, USA) preceded by a liquid filter containing a 1 cm path length of 24.1 mM
acetate-buffered dichromate (pH 4) to remove extra scattered light that may pass the interference
filter. Three successive replicate decays were collected and immediately averaged to yield one sample
decay having 120 points with 30 excitation pulses per point. Two instrument response functions
(IRF) were collected with a glycogen solution for deconvolution purposes, and six sample curves
were collected per set. At least four sets of six decays per set were collected per sample, which were
deconvoluted in the nanosecond (ns) range to mono- bi- and tri-exponential decay models (Equations
(21) and (22)) which were discriminated depending on the selection criteria of χ2 between 0.9–1.1 [51],
the residual correlation Durbin-Watson (DW) above 1.5 [52], and the runs test Z [53].

3. Results and Discussions

3.1. Steady-State Anisotropy

The fluorimeter G-factor values are used to correct for the detector-sensitivity deviations at the three
emission wavelengths (e.g., 520 nm, 580 nm, and 620 nm) (Table 2, Supplementary Materials Figure S1).
The fluorimeter G-factor at 520 nm was 0.7933 ± 0.0128 (Figure S1), which is the emission wavelength
for the BcO, AdMLP14ds*Fl, and AdMLP31ds*Flint free probes and respective protein-bound complexes.
The fluorimeter G-factor values, at 580 and 620 nm, were 0.6950 ± 0.0033 and 0.6388 ± 0.0134 at 620 nm,
respectively (Figure S1), for the Ta*AdMLP14ds and Xr*AdMLP14ds labeled free and bound with TBP.
Indeed, the free probes showed low rss values that increased when complexed with the proteins,
and the complex rss values were used to solve for the association kinetic traces (Equation (7)) since they
give the endpoint of the reaction at r(t =∞). To make sure it was calculated correctly, we added large
excess of protein concentration until the rss value remained unchanged, indicating that the reaction
was driven to completion. Thus, in all the cases, the reactions were carried out at pseudo-first-order
conditions with a protein excess of 10×, for at least 98% probe saturation. We observed an rss

temperature dependence in the BcO samples, from 10 ◦C, 15 ◦C, 20 ◦C, and 25 ◦C (Table 2), which was
carefully determined to make a good kinetic comparative analysis.

3.2. Dual-Channel SF Validation by Polarizers and Magic Angle Methodologies

The association traces of BcO binding to AV were acquired with the F(t) and r(t) sensing
modalities by the dual-channel SF methodology (Figure 6A–F) and the traditional two-polarizer
method (Equations (9) and (10), Figure 6G,H). We also collected the F(t) with a single polarizer at
the magic angle position (Equation (11)). For these three methodologies, the SF G-factor at 520 nm was
0.819 ± 0.015 (Figure S1). For the F(t) traces, the baseline-subtracted amplitudes were proportional
to the change of the relative QY of the unbound and complex, ∆F = (QYunbound − QYcomplex) (Table 2).
Certainly, to make a comparison of the F(t) traces acquired at multiple excitation intensities and the r(t)
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at different temperatures, all traces were normalized according to Equation (16) to Equation (18),
yielding the r(t), F(t), and rF(t), respectively.

Table 3. The eigenvalues (λ) and calculated association rate constants (kon) of the association reaction of
BcO (20 nM) and AV (200 nM) at 20 ◦C, obtained with the F(t) and rF(t) sensing modalities, and acquired
by the tree stopped-flow methodologies.

Fluorescence,
¯
F(t) a λ (s−1) kon (×10−6 M−1s−1) Error (%) c

Dual channel 1.186 ± 0.043 5.93 ± 0.22 3.6

Polarizers 1.187 ± 0.083 5.94 ± 0.42 7.0

Magic angle 1.199 ± 0.099 5.99 ± 0.60 8.3

rF(t) b λ (s−1) kon (×10−6 M−1s−1) Error (%) d

Dual channel 1.183 ± 0.023 5.92 ± 0.12 2.0

Polarizers 1.198 ± 0.039 5.99 ± 0.20 3.3

Magic angle NA NA NA
a The photobleaching was discarded from the reaction model. b The rF(t) is the product of r(t) × F(t), which corrects
the distortion of the r(t) traces by changes in the QYi [17]. c The F(t) errors acquired by polarizers and magic angle
methodologies were ~2× larger than the errors observed with the dual-channel and magic-angle SF methodology. d

The rF(t) error acquired by polarizers was 1.65× larger than the error observer with the dual-channel methodology.
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Figure 6. Stopped-flow kinetic traces acquired by dual-channel (A–F), polarizers (G,H), and magic-angle
(I) methodologies for the binding association of BcO (20 nM) and AV (200 nM) at 20 ◦C. The F(t) and rF(t)
sensing modalities were employed to track the AV-BcO complex formation. For the former trace, the ∆F
decreased as the BcO fluorescence is quenched when the complex is formed and it is equivalent to
∆QY (Table 2), and in the case of the rF(t), the trace value increased as the probe binds to the protein
decreasing its rotation. (A,B) The dual-channel VAC(t) and VDC(t) traces were collected in channels
0 and 1, respectively. (C,D) The endpoint ratio of channel 0 and channel 1, ρ(∞)= 1.2, and the rss of
the AV-BcO complex are used to solve for the r(t) traces according to Equation (7) (Table 2) to later obtain
the F(t) (Equation (8)), and subsequently the rF(t) traces. (E) The F(t) traces were solved with
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Equation (8) and the respective fitted curves (black line, and residual in green) yielded two eigenvalues
of λ1= 1.186 s−1

± 0.046 s−1 and λ2 = 0.02± 0.01 s−1 (Table 3). The latter λ corresponds to photobleaching
and is neglected from further analysis. (F) The rF(t) fitting parameters yielded an λ = 1.183 s−1

± 0.023
s−1 as the probe’s rotation decreases in the newly formed complex. (G,H) The F(t) and rF(t) association
traces acquired by polarizers yielded mono-exponential decays with λ1 = 1.198 s−1

± 0.039 s−1, and λ1

= 1.187s−1
± 0.083 s−1, respectively. The photobleaching was λ2 = 0.02 s−1

± 0.01 s−1. (I) The F(t)
traces collected by a single polarizer at the magic angle (54.7◦) yielded λ1 = 1.199 s−1

± 0.099 s−1 and
the photobleaching decay was λ2 = 0.01 s−1

± 0.01 s−1.

The F(t) traces were better described by a bi-exponential model; however, the second phase,
α2 × e(−λ2/t), corresponded to photobleaching as shown by traces acquired by discontinuous excitation
(Figure 7A,B). The photobleaching eigenvalue ranged from λ2 = 0.01 s−1 to 0.02 s−1 depending on
the laser intensity, and it is ignored in the data analysis. The kinetic traces were fitted to a reaction model
of AV + BcO→AV−BcO, under pseudo-first-order condition (>10×protein excess) after photobleaching
was discarded. The biomolecular rate constant (kon) was obtained with the reaction eigenvalue, λ1 =

k’[BcO], where k’ = kon[AV]. The kon values calculated from the F(t) traces; acquired by the dual-channel,
polarizers, and the single polarizer at the magic angle methodologies; were in excellent agreement
with the overlapping errors (Table 3).
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Table 4. Fitted eigenvalues (λ) and association rate constants (kon) of AV-BcO as a function of concentration and temperature, at pH 8, and under pseudo-first-order
conditions. a.

200 nM 260 nM 520 nM 1040 nM

λ(s−1) F(t) rF(t) F(t) rF(t) F(t) rF(t) F(t) rF(t)

10 ◦C NA NA 0.629 ± 0.042 0.690 ± 0.035 1.355 ± 0.047 1.372 ± 0.003 2.825 ± 0.107 2.620 ± 0.012

15 ◦C NA NA 1.058 ± 0.016 1.035 ± 0.005 1.840 ± 0.055 1.840 ± 0.009 4.000 ± 0.108 4.200 ± 0.365

20 ◦C 1.186 ± 0.043 1.183 ± 0.023 1.491 ± 0.027 1.543 ± 0.014 3.045 ± 0.085 3.024 ± 0.030 6.209 ± 0.571 6.357 ± 0.058

25 ◦C NA NA 2.465 ± 0.014 2.473 ± 0.018 4.920 ± 0.093 4.920 ± 0.034 10.031 ± 0.401 9.810 ± 0.091

kon
× 10−6 M−1s−1 F(t) rF(t) F(t) rF(t) F(t) rF(t) F(t) rF(t) kon (Average)

10 ◦C NA NA 2.419 ± 0.162 2.655 ± 0.133 2.606 ± 0.091 2.638 ± 0.006 2.520 ± 0.010 2.716 ± 0.012 2.592 ± 0.107

15 ◦C NA NA 4.069 ± 0.061 3.980 ± 0.021 3.539 ± 0.106 3.539 ± 0.018 3.846 ± 0.104 4.038 ± 0.351 3.835 ± 0.242

20 ◦C 5.931 ± 0.216 5.931 ± 0.117 5.733 ± 0.103 5.935 ± 0.054 5.855 ± 0.164 5.815 ± 0.058 5.970 ± 0.549 6.113 ± 0.056 5.904 ± 0.133

25 ◦C NA NA 9.479 ± 0.052 9.513 ± 0.068 9.461 ± 0.180 9.461 ± 0.066 9.646 ± 0.386 9.433 ± 0.088 9.499 ± 0.077
a The association reactions were acquired with BcO (20 nM) binding to AV at 200 nM, 260 nM, 520 nM, and 1040 nM concentrations from 10 ◦C to 25 ◦C at pH 8. The normalized F(t) and
rF(t) sensing modalities yielded equivalent bimolecular rate constant (kon) for the BcO binding to the AV at each temperature.
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Figure 7. Concentration and temperature dependence of the AV-BcO association kinetics. (A,B) The F(t)
and rF(t) sensing modalities were collected with the dual-channel SF under continuous (pale line)
and discontinuous (dotted line) laser excitation at 488 nm. The F(t) trace, under continuous excitation,
showed a second eigenvalue (λ2) that ranged from 0.02 s−1 to 0.01 s−1 caused by photobleaching. In contrast,
when the excitation was blocked, the intensity stayed constant after the reaction was completed, so that,
the intensity decreased by 25.3± 2.2% and it was proportional to a change in the QY of 0.91± 0.01 for the free
BcO probe and the 0.68 ± 0.02 of the AV-BcO complex (Table 2). (C,D) The concentration-dependence of
the binding reaction of BcO (20 nM) and AV (200 nM, 260 nM, 520 nM and 1040 nM), at 20 ◦C, for both F(t)
and rF(t) sensing modalities, respectively. (E,F) The temperature-dependence in the binding reactions of
BcO (20 nM) and AV (260 nM) at 10 ◦C, 15 ◦C, 20 ◦C and 25 ◦C, were tracked by F(t) and rF(t) modalities.
The black lines corresponded to the fitted curves that yielded the λ and kon values, shown in Table 4.

On the other hand, the ∆F(t) dropped by 25% and produced a small distortion in the r(t) traces;
therefore, the r(t) needed to be analyzed as rF(t), as shown in Equation (15) [17]. As the AV-BcO
complex is formed, the rotation of the probe decreased as shown by the rF(t) traces, which were
collected only by two SF methodologies: polarizers and dual-channel SF (Figure 6F,H). The rF(t) traces
acquired by these methodologies yielded equivalent eigenvalues, which were also in perfect agreement
with the information obtained by the F(t) sensing modality. Thus, F(t) and rF(t) traces yielded kon

overlapping values, which indeed validated the accuracy of the dual-channel SF methodology (Table 3,
Figure 6).

3.3. Concentration and Temperature Dependence of AV-BcO Binding Association Acquired by
Dual-Channel SF

After validation of the dual-channel methodology, we acquired the AV-BcO traces as a function
of concentration and temperature. For the former case, the F(t) and rF(t) sensing modalities
showed an increment in the reaction velocity when the protein concentration increased from 200 nM,
260 nM, 520 nM up to 1040 nM, for all the temperatures tested, from 10 ◦C to 25 ◦C. Consequently,
when the concentration increased, the resulted fits yielded increasing λ values that were equivalent
to both sensing modalities (Figure 7, Table 4). For instance, for the F(t) traces at 20 ◦C, the t1/2 were
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584 ms ± 21 ms, 465 ms ± 8 ms, 228 ms ± 6 ms, and 112 ms ± 10 ms, and for the rF(t) traces, the t1/2

were 586 ms ± 11 ms, 449 ms ± 9 ms, 229 ms ± 2 ms, and 109 ms ± 1 ms, respectively. The λ values of
F(t) and rF(t) traces at each concentration, resulted in kon values equivalent for both sensing modalities
(Table 4).

The AV-BcO reaction speed also showed a temperature dependence from 10 ◦C to 25 ◦C from both
F(t) and rF(t) sensing modalities. Thus, for the former traces, the t1/2 values were 1,102.0 ms ± 0.074
ms, 655 ms ± 0.010 ms, 465 ms ± 0.008 ms and 0.281 ms ± 0.002 s from 10 ◦C, 15 ◦C, 20 ◦C, and 25 ◦C.
These t1/2 overlapped within the error of the rF(t) values of 1004.0 ms ± 0.050 ms, 670 ms ± 0.003 ms,
449 ms ± 0.004 ms and 0.280 ms ± 0.002 s, for the same order of the listed temperatures (Figure 7C,D).
The kon values increased 47.9 % from 10 ◦C to 15 ◦C, 53.9 % from 15 ◦C to 20 ◦C, and 60.9 % from 20 ◦C
to 25 ◦C, suggesting a strong temperature dependence in good accordance with ITC titrations [44].

3.4. The yTBP-AdMLP14ds Association Traces Acquired by Dual-Channel and FRET SF Methodologies

To initiate gene transcription, the RNA polymerase II (RNAPII) needs the binding and bending of
TBP to the TATA sequence (AdMLP) situated at the -31 nucleotide position of the first transcription
codon [35]. Therefore, the yTBP-AdMLP complex formation is critical for gene expression [34] but it also
requires several other proteins to form a multiprotein pre-initiation complex (PIC) to ensure the fidelity
of transcription [32,36,39,45]. Here, we acquired the F(t) and r(t) traces of the yTBP (Figure 8, Figure
S1) binding to the single labeled AdMLP14ds probes labeled with tethered Ta, Xr, and Fl dyes and
contrasted with F(t)FRET traces acquired with the double-labeled Xr*AdMLP14ds*Fl probe.

Biosensors 2020, 10, x FOR PEER REVIEW 19 of 29 

To further evaluate the dual-channel r(t) traces, we compared yTBP binding, at 20 °C, with the 
single labeled AdMLP14ds*Fl (Figure 8D), Xr*AdMLP14ds (Figure 8E), and the FRET Xr*AdMLP14ds*Fl 
probe (Figure 8F), at the same protein/probe ratio. The ΔF(t)FRET traces dropped 34.0% ± 2.0% 
(Equation (15)) for the yTBP-Xr*AdMLP14ds*Fl and the F(t)FRET traces were described by three 
eigenvalues (λ1, λ2, and λ3) whose faster component matched with the one observed with the r(t) 
traces (Figure 8D,E). The r(t) traces of yTBP-AdMLP14ds*Fl and yTBP-Ta*AdMLP14ds, at 20 °C, yielded 
kon values that overlapped in error between each other and as well with the k+1 acquired in this study 
by F(t)FRET and elsewhere [11]. To analyze conformational changes, we acquired the time-resolved 
FRET (trFRET) of the free single labeled AdMLP14ds*Fl and bound to yTBP and cTBP. We also 
obtained trFRET of the unbound double-labeled Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl, and the 
respective yTBP and cTBP complex (Table 5) to obtain the⎯R and σ parameters for free duplexes and 
complexes (Figure 9A,B). The trFRET lifetime in ns, Σαiτi or τD(A), of the free and yTBP bound probe, 
Xr*AdMLP14ds*Fl and yTBP-Xr*AdMLP14ds*Fl were 1.575 ns ± 0.066 ns and 1.042 ns ± 0.040 ns, 
respectively. The ΔtD(A) between the free Xr*AdMLP14ds*Fl and bound to the yTBP-Xr*AdMLP14ds*Fl 
complex was 33.8% ± 2.0 % and it was equivalent to the observed ΔF(t)FRET in the association traces. 
Likewise, the ΔtD(A) when Ta was used as acceptor was 33.5% ± 1.7% (Table 5). The bend angles α were 
equivalent for both yTBP-Ta*AdMLP14ds*Fl and yTBP-Xr*AdMLP14ds*Fl complexes with values of 
79.8° and 79.2°, respectively (Figure 9C). 

 

Figure 8. Yeast TBP-AdMLP14ds association kinetics. (A) The dual-channel 𝐹ത(𝑡) traces of yTBP (500 
nM)-Ta*AdMLP14ds (40 nM, red), and yTBP (420 nM)-AdMLP14ds*Fl (40 nM, orange line) were not 
sensible to the binding process; in contrast, the r(t) traces were sensible to the complex formation. 
(B,C) The 𝑟̅(𝑡) association reaction of yTBP (500 nM)-Ta*AdMLP14ds (40 nM), at 25 °C, were acquired 
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exponentials, 1 – α × e(−λ × t), with λ= 0.384 s−1 (±0.020 s−1) and λ = 0.436 s−1 (±0.035 s−1), respectively. 

Figure 8. Yeast TBP-AdMLP14ds association kinetics. (A) The dual-channel F(t) traces of yTBP
(500 nM)-Ta*AdMLP14ds (40 nM, red), and yTBP (420 nM)-AdMLP14ds*Fl (40 nM, orange line) were
not sensible to the binding process; in contrast, the r(t) traces were sensible to the complex formation.
(B,C) The r(t) association reaction of yTBP (500 nM)-Ta*AdMLP14ds (40 nM), at 25 ◦C, were acquired
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by the dual-channel and polarizer SF methodologies whose fitted traces (black line)
were mono-exponentials, 1 – α × e(−λ × t), with λ= 0.384 s−1 (±0.020 s−1) and λ= 0.436 s−1 (±0.035 s−1),
respectively. The dual-channel and polarizer r(t) traces resulted in kon values of 1.54 (±0.08) × 106 M−1s−1

and 1.74 (±0.14) × 106 M−1s−1, respectively; and were in the error range of first rate constant (k+1) of 1.59
[0.03−0.07] × 106 M−1s−1, reported by FRET analysis, at 25 ◦C [11]. (D) At 20 ◦C, the r(t) dual-channel SF
association reaction of yTBP (420 nM)-AdMLP14ds*Fl (20 nM) was also mono-exponential (black line) with
a λ= 0.247 s−1 (±0.025) s−1, which yielded a kon of 5.87 (±0.60) × 105 M−1s−1. (E) The 5′-Ta single labeled
probe was used to acquire the r(t) dual-channel SF association reaction of yTBP (440 nM)-Ta*AdMLP14ds

(40 nM), at 20 ◦C. The trace was fitted to a bi-exponential model (black line) with the following
parameters: α1 = 97.39% (±0.20%), λ1 = 0.1276 s−1 (±0.0256 s−1), α2 = 2.61% (±0.02)%, λ2 = 0.0181 s−1

(±0.0200 −1). The faster phase yielded in a kon of 5.80 (± 1.16) × 105 M−1s−1 that is excellent agreement
with the 5.80 (± 0.26) × 105 M−1s−1 reported, at 20 ◦C [11]. (F) The FRET SF association reaction of yTBP
(220 nM)-Xr*AdMLP14ds*Fl (20 nM), at 20 ◦C, showed a triphasic exponential-decay model: α1 = 30.9%
(±0.5%), λ1 = 0.22 s−1 (± 0.01 s−1), α2 = 11.9% (±2.1%), λ2 = 0.040 s−1 (±0.013 s−1) and α3 = 58.2% (±0.9%),
λ3 = 0.0012 s−1 (±0.0002 s−1). The fast λ1 yielded a kon= 5.50 (±0.25) × 105 M−1s−1 which is in excellent
agreement with the k+1= 5.80 (±0.26) × 105 M−1s−1 reported at 20 ◦C [11].

The F(t) traces of yTBP binding to the Ta*AdMLP14ds and AdMLP14ds*Fl probes did not show
any fluorescence change (Figure 8A). On the other hand, the r(t) sensing modality tracked very
well the binding process (Figure 8B,C); therefore, the association kinetic can be studied with the r(t)
traces and there is no need to obtain the rF(t) product as in the AV-BcO case (Figures 6 and 7).
To ensure that dual-channel traces were reliable for the yTBP-Ta*AdMLP14ds complex formation,
we compared them with the traces acquired by the polarizer methodology, at 25 ◦C (Figure 8B,C).
Indeed, both methodologies yielded traces that resulted in overlapping λvalues in the error (Figure 8B,C)
that yielded the initial rate constant (k+1), at 25 ◦C, of the complex reaction mechanism previously
elucidated by F(t)FRET, which consisted of six rate constants for a two-intermediates reaction [11].

To further evaluate the dual-channel r(t) traces, we compared yTBP binding, at 20 ◦C, with the single
labeled AdMLP14ds*Fl (Figure 8D), Xr*AdMLP14ds (Figure 8E), and the FRET Xr*AdMLP14ds*Fl probe
(Figure 8F), at the same protein/probe ratio. The ∆F(t)FRET traces dropped 34.0% ± 2.0% (Equation (15))
for the yTBP-Xr*AdMLP14ds*Fl and the F(t)FRET traces were described by three eigenvalues (λ1, λ2,
and λ3) whose faster component matched with the one observed with the r(t) traces (Figure 8D,E).
The r(t) traces of yTBP-AdMLP14ds*Fl and yTBP-Ta*AdMLP14ds, at 20 ◦C, yielded kon values that
overlapped in error between each other and as well with the k+1 acquired in this study by F(t)FRET
and elsewhere [11]. To analyze conformational changes, we acquired the time-resolved FRET (trFRET)
of the free single labeled AdMLP14ds*Fl and bound to yTBP and cTBP. We also obtained trFRET of
the unbound double-labeled Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl, and the respective yTBP and
cTBP complex (Table 5) to obtain the R and σ parameters for free duplexes and complexes (Figure 9A,B).
The trFRET lifetime in ns, Σαiτi or τD(A), of the free and yTBP bound probe, Xr*AdMLP14ds*Fl and
yTBP-Xr*AdMLP14ds*Fl were 1.575 ns ± 0.066 ns and 1.042 ns ± 0.040 ns, respectively. The ∆tD(A)
between the free Xr*AdMLP14ds*Fl and bound to the yTBP-Xr*AdMLP14ds*Fl complex was 33.8% ±
2.0 % and it was equivalent to the observed ∆F(t)FRET in the association traces. Likewise, the ∆tD(A)
when Ta was used as acceptor was 33.5% ± 1.7% (Table 5). The bend angles α were equivalent for
both yTBP-Ta*AdMLP14ds*Fl and yTBP-Xr*AdMLP14ds*Fl complexes with values of 79.8◦ and 79.2◦,
respectively (Figure 9C).
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Table 5. Time-resolved FRET of the free duplexes and TBP bound to AdMLP14ds*Fl, Xr*AdMLP14ds*Fl, and Ta*AdMLP14ds*Fl, at 20 ◦C. All the decays were best
described by a bi-exponential decay model according to the statistical parameters χ2, Durbin-Watson (DW), and Z run (Equation (21)).

Sample χ DW Z α τ (ns) α τ (ns) ϕ (ns) a ϕ (ns) αiτi (ns) b

AdMLP14ds*Fl 0.985 ± 0.030 1.965 ± 0.135 0.069 ± 0.400 0.340 ± 0.033 0.852 ± 0.098 0.660 ± 0.033 3.729 ± 0.043 0.105 ± 0.012 0.895 ± 0.012 2.749 ± 0.132

Xr*AdMLP14ds*Fl 1.008 ± 0.030 2.027 ± 0.115 −0.075 ± 0.352 0.494 ± 0.033 0.645 ± 0.097 0.506 ± 0.033 2.493 ± 0.119 0.201 ± 0.022 0.799 ± 0.022 1.575 ± 0.066

Ta*AdMLP14ds*Fl 0.984 ± 0.040 1.942 ± 0.067 −0.021 ± 0.170 0.520 ± 0.014 0.607 ± 0.034 0.480 ± 0.014 2.230 ± 0.037 0.279 ± 0.049 0.949 ± 0.173 1.385 ± 0.042

cTBP-AdMLP14ds*Fl 1.009 ± 0.022 1.987 ± 0.132 −0.006 ± 0.404 0.315 ± 0.013 0.826 ± 0.123 0.685 ± 0.013 3.823 ± 0.084 0.090 ± 0.012 0.910 ± 0.012 2.878 ± 0.096

yTBP-AdMLP14ds*Fl 1.016 ± 0.029 1.916 ± 0.086 −0.050 ± 0.349 0.330 ± 0.018 0.852 ± 0.060 0.670 ± 0.018 3.998 ± 0.127 0.095 ± 0.005 0.905 ± 0.005 2.959 ± 0.149

cTBP-Xr*AdMLP14ds*Fl 1.018 ± 0.026 2.017 ± 0.157 0.160 ± 0.313 0.715 ± 0.036 0.428 ± 0.043 0.285 ± 0.036 1.763 ± 0.112 0.381 ± 0.048 0.619 ± 0.048 0.805 ± 0.034

yTBP-Xr*AdMLP14ds*Fl 1.016 ± 0.010 1.916 ± 0.045 −0.185 ± 0.114 0.668 ± 0.013 0.529 ± 0.035 0.332 ± 0.013 2.077 ± 0.047 0.339 ± 0.010 0.661 ± 0.010 1.042 ± 0.040

cTBP-Ta*AdMLP14ds*Fl 1.011 ± 0.024 1.972 ± 0.142 0.388 ± 0.234 0.772 ± 0.012 0.434 ± 0.010 0.228 ± 0.012 1.601 ± 0.022 0.335 ± 0.010 0.364 ± 0.014 0.699 ± 0.010

yTBP-Ta*AdMLP14ds*Fl 0.974 ± 0.058 1.902 ± 0.106 0.299 ± 0.344 0.806 ± 0.008 0.564 ± 0.032 0.194 ± 0.008 2.264 ± 0.068 0.509 ± 0.007 0.491 ± 0.007 0.894 ± 0.046
a The ϕ parameters are the normalized contribution of each phase in nanoseconds (ns). b The area under the deconvoluted decay is described by Σαiτi.
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Figure 9. The interdye distances and bend angles of free AdMLP14ds probes and bound to cTBP and yTBP,
at 20 ◦C. (A) To calculate the P(R) distance distribution, it is required to obtain the lifetime of the single
and double-labeled probe as free and bound complexes with TBP proteins. The Xr*AdMLP14ds*Fl and
Ta*AdMLP14ds*Fl probes were straight but after complex formation with yTBP or cTBP, the DNA is
bent, which shortens the interdye R resulting in more energy transfer from Fl donor toward the acceptor
(Ta or Xr). (B) The P(R) distance distribution is described by the mean distance R and the spread σ of
the unbound probes and the respective complexes formed with yTBP and cTBP. (C) The bend angle (α)
of the TATA distortion for the canonical AdMLP is calculated according to Equation (25), requiring
the R-value and where L2 was 20.4 Å. The bend angle produced by each protein was independent of
the probe used since the values overlapped in error for the Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl
complexes formed with yTBP and cTBP, respectively. The bend angles caused by cTBP for both probes
were larger than those observed by yTBP since the latter has an N-terminal domain that regulated
the binding and shifts the equilibrium to the left, or towards the reactants [40].
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3.5. Core TBP-AdMLP14ds Association Kinetics Acquired by Dual-Channel and FRET SF Methodologies

We also contrasted the r(t) dual-channel association trace of cTBP and AdMLP acquired with
the single labeled Xr*AdMLP14ds probe (Figure 10A, purple line, Figure S1) and the F(t)FRET trace
collected with the double-labeled Xr*AdMLP14ds*Fl probe (Figure 10A, yellow line). The association
reaction reactions were collected under discontinuous excitation to eliminate the photobleaching effect
and the respective fit passed through the traces (solid and slashed lines, Figure 10A). The cTBP has
the N-terminal domain truncated in comparison with the full-length yTBP and as previously described
for full-length yTBP-AdMLP, the F(t) trace of cTBP-Xr*AdMLP14ds*Fl was not sensitive to the protein
binding but the r(t) trace tracked the complex formation by increasing its value as the dye rotation
decreased. For the FRET probe, the F(t)FRET trace decreased as the cTBP bent the probe, resulting
in a decrement in the fluorescence by energy transfer. To visualize the comparison of these two traces,
we inverted the r(t) trace and yielded just over the F(t)FRET whose fitting lines overlap perfectly
(Figure 10B).
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Figure 10. Core TBP-AdMLP14ds association kinetics. (A,B) The association kinetics of cTBP
(260 nM)-Xr*AdMLP14ds (60 nM) and cTBP (86 nM)-Xr*AdMLP14ds*Fl (20 nM) were monitored
by r(t) (orange) and F(t)FRET (purple) sensing modalities, at 20 ◦C. The r(t) and F(t)FRET fits
yielded eigenvalues of 0.350 (±0.040) s−1 and 0.337 (±0.078) s−1, which resulted in kon values of
1.35 (±0.05) × 106 M−1s−1 and 1.30 (± 0.10) × 106 M−1s−1, respectively. Both kon values are in excellent
agreement since the protein/probe ratio is 4.3 and they are in the error range of the reported k+1 of 1.26
(±0.05) × 106 M−1s−1, at 25 ◦C [2]. (C) The concentration dependence of the cTBP-AdMLP14ds complex
was observed by the F(t)FRET sensing modality with cTBP at 43 nM (red), 86 nM (orange), and 165 nM
(blue) concentrations, at 20 ◦C, reacting with 20 nM Xr*AdMLP14ds*Fl. (D) The temperature dependence
was also monitored by the F(t)FRET traces, at 15 ◦C (green), 20 ◦C (orange), and 25 ◦C (blue) of 86 nM
cTBP reacting with 20 nM Xr*AdMLP14ds*Fl. The FRET global fits (black lines) of the concentration
and temperature dependence traces yielded a two-intermediate reaction mechanism with k+1 values of
9.62 (±0.41) × 105 M−1s−1, 1.26 (±0.05) × 106 M−1s−1 and 1.64 (±0.06) × 106 M−1s−1 at 15 ◦C, 20 ◦C and
25 ◦C, respectively [2].



Biosensors 2020, 10, 180 24 of 28

The F(t)FRET traces of the cTBP-AdMLP reactions showed concentration dependence when
the protein concentration increased from 43 nM, 86 nM, and 165 nM (Figure 10 C) while the concentration
of Xr*AdMLP14ds*Fl, was constant at 20 nM, at 20 ◦C. Furthermore, there was a temperature dependence
as the reaction speed increased from 15 ◦C, up to 25 ◦C, at 86 nM cTBP and 20 nM Xr*AdMLP14ds*Fl
(Figure 10D). These observed reactions were completed at 49.0% ± 1.0% whose fits showed three
exponential phases (black lines). In addition, we measured the trFRET lifetimes of the unbound
Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl and complexed by cTBP (Table 5) whose corresponding
changes were 48.9% ± 3.0% and 49.5% ± 2.0%, respectively, perfectly matching the F(t)FRET association
change. The R and σ were obtained for the free probes Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl and
the respective complexes formed by the cTBP (Figure 9B). The cTBP bend angle was larger than α
produced by the full-length yTBP (Figure 9C) since the N-terminal domain has a regulatory activity [2].
Both protein complexes formed with Xr*AdMLP14ds*Fl and Ta*AdMLP14ds*Fl yielded equivalent bend
angles showing that acceptor Ta and Xr dyes are excellent FRET biosensors and yielded the same results.

3.6. Ternary Association Kinetics of TFIIA and the Binary yTBP-AdMLP31ds Acquired by Dual-Channel SF

The function of TFIIA in the PIC complex is to shift the equilibrium towards a rearranged more
stable state, as shown by 3D cryo-EM reconstructions [54]. To test out the dual-channel SF ability to
measure large complexes, we used a longer 31mer internally-labeled with fluorescein (AdMLP31ds*Flint)
to allow space for the TFIIA binding at the 5′ upstream of the TATA sequence [39,41,55]. First,
we validated the yTBP binding to the longer AdMLP31ds*Flint, and in contrast to the 3′Fl in the shorter
AdMLP14ds probes, the Flint was sensitive to yTBP binding since the QY dropped 15.5% (Table 2),
and consequently the binding was followed as well by the F(t) sensing modality (Figure 11A).
Interestingly, the QY increased after TFIIA binding (Table 2). To compensate for QY changes, the r(t)
was multiplied by F(t) to analyze the rF(t) sensing modality, at 20 ◦C and 30 ◦C (Figure 11B),
thus the resulting kon overlapped with the reported k+1 values at the same temperatures indicating that
longer probe is functional [11] and in excellent accord with the shorter single labeled and double-labeled
probes (Figure 8).Biosensors 2020, 10, x FOR PEER REVIEW 25 of 29 
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Figure 11. Association kinetic of binary yTBP-AdMLP31ds*Flint and ternary complex TFIIA-yTBP-
AdMLP31ds*Flint. (A) The association traces of yTBP (220 nM) and AdMLP31ds*Flint (20 nM), at 20 ◦C (blue)
and 30 ◦C (red), were monitored by the F(t) sensing modality, yielding parameters of α1 = 8.0% (±1.0%),
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λ 1= 0.15 s−1 (±0.010 s−1), α2 = 7.0% (±1.0%), λ2 = 0.025 s−1 (±0.010 s−1), baseline = 85.0%± 2.0%; and α1

= 9.8% (±0.3%), λ1 = 0.26 s−1 (±0.03 s−1), α2 = 5.2% (±0.3%), λ2 = 0.0085 s−1 (±0.0015 s−1), baseline =

85.0% ± 2.0%, respectively. (B) The rF(t) association traces of binary yTBP (220 nM)-AdMLP31ds*Flint

(20 nM) complex, at 20 ◦C, yielded the following parameters: α1 = 27.2% (±11.6%), λ1= 0.1245 s−1

(±0.0133) s−1, α2 = 72.8% (±6.1)%, λ2 = 0.0221 s−1 (±0.0060 s−1); and at 30 ◦C, the parameters were:
α1 = 35.0% (±8.0)%, λ1 = 0.30 s−1 (±0.03 s−1), α2 = 65.0% (±7.0%), λ2 = 0.925 s−1 (±0.06 s−1). The kon

values for this longer probe in the yTBP-AdMLP31ds*Flint, at 20 ◦C and 30 ◦C, were calculated
with the faster λ1 resulting in values of 5.91 (± 0.46) × 105 M−1s−1 and 4.20 (± 0.27) × 105 M−1s−1,
respectively, which were in excellent agreement with the respective values of 5.80 (± 0.26) × 105

M−1s−1 and 4.21 (± 0.19) × 105 M−1s−1, obtained with the 14-nucleotide probe (yTBP-AdMLP14ds*Fl),
at the same temperatures, respectively [11]. (C) The dual-channel-SF association of yTFIIA (850 nM) and
the binary yTBP (220 nM)-AdMLP31ds*Flint (20 nM) complex, at 15 ◦C (blue), 17 ◦C (green), and 25 ◦C
(orange), were biphasic with normalized values of α1 = 55.5% (±9.0%), λ1 = 1.24 s−1 (±0.33 s−1), α2 =

44.5% (±15.0%), λ2 = 0.18 s−1 (±0.05 s−1); α1 = 53.7% (±8.5%), λ1 = 1.56 s−1 (±0.33 s−1), α2 = 39.5 %
(±12.7%), λ2 = 0.20 s−1 (±0.06 s−1); and α1 = 63.4% (±0.06%), λ1 = 3.98 s−1 (±1.35 s−1), α2 = 32.6%
(±7.6%), λ2 = 0.24 s−1 (±0.01 s−1), respectively. The calculated kon values, at 15 ◦C, 17 ◦C and 25 ◦C,
were 1.45 (±0.3) × 106 M−1s−1, 1.84 (±0.34) × 106 M−1s−1 and 4.68 (±1.59) × 106 M−1s−1, respectively.
(D) The calculated van’t Hoff plot yielded an enthalpy of 19.6 ± 1.6 Kcal/mol for the yTFIIA and
yTBP-AdMLP31ds*Flint binding process.

After confirming that the longer probe is functional, we pre-formed the binary yTBP-AdMLP31ds*Flint

complex and reacted with TFIIA, at 15 ◦C, 17 ◦C, and 25 ◦C, which was tracked by the rF(t) sensing modality
(Figure 11C). The kon values of TFIIA binding to the binary complex, at 15 ◦C 17 C, and 25 ◦C, were 1.45 (±0.3)
× 106 M−1s−1 and 4.68 (±1.59) × 106 M−1s−1. There is a reported dissociation rate constant of the ternary
TFIIA-TBP-TATA of 7.1 × 10−4 s−1 at room temperature [38], which let us estimate the KD values between
2.1 nM and 6.6 nM for yTFIIA and the binary yTBP-TATA complex, between the 15 ◦C and 25 ◦C range.

4. Conclusions

We evaluated the electronic filters and custom-tailored instrument control system of a new
dual-channel SF apparatus that allows simultaneous acquisition of the F(t) and r(t) with an optical
train in L-type configuration [18,19]. In our dual-channel SF apparatus, we economized by a factor
of two the biomolecule solution consumption in comparison to the polarizer SF, allowing us to
preserve precious labeled biological material such as proteins, DNA, RNA, ligands, and other labeled
biomolecules [19]. To validate our dual-channel SF, we tracked multiple association reactions at diverse
conditions and contrasted the resulted kon values with those acquired by other methodologies with
multiple sensing modalities, such as r(t), F(t), rF(t), and F(t)FRET.

In conclusion, the dual-channel SF has functional and robust electronic filtering since the tested
circuit separates the VDC and VAC signals and stores them in separate spreadsheets, acquiring the r(t)
and F(t) information in one single shot. The calculated kon values acquired by the dual-channel
SF traces showed ~50% lower noise levels, as shown in the errors reported in Table 3. Our new
setting was reliable and allowed the association traces of relevant biological complexes by monitoring
the F(t), r(t), and rF(t) sensing modalities. Our work describes new hardware to collect kinetic data at
different concentrations and temperatures to elucidate reaction mechanisms [56] and thermodynamic
information according to the Arrhenius equation [57,58] and Eyring relationship [59,60], which is
relevant for protein-protein, protein-DNA, or protein-drug studies [61,62].
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