A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection
Abstract
:1. Introduction
2. Methodology
2.1. Focus Questions
2.2. Information Sources
2.3. Risk of Bias Assessment
3. Results
3.1. Animal and Plant Food Allergens
3.2. Allergen Detection
3.3. Biosensor Technology
3.4. Nanotechnology in Allergenic Detection R
3.5. Immobilization Strategies and Nanoparticles-Based Sensors
3.5.1. Immobilization Strategies and Nanoparticles
3.5.2. Nanomaterials Based on Gold (AuNPs)
3.5.3. Nanomaterials Based on Graphene Oxide (GO)
3.5.4. Nanomaterials Based on Magnetic Particles (MPs)
3.5.5. Nanomaterials Based on Quantum Dots (QDs)
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Ashley:, J.; Shukor, Y.; D’Aurelio, R.; Trinh, L.; Rodgers, T.L.; Temblay, J.; Pleasants, M.; Tothill, I.E. Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-Casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor. ACS Sens. 2018, 3, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, M.; Ortea, I.; Vial, S.; Rivas, J.; Calo-Mata, P.; Barros-Velázquez, J. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit. Rev. Food Sci. Nutr. 2016, 56, 2511–2542. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Fang, X.; Liu, Y.; Kong, J.; Chen, Q. A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. Analyst 2019, 144, 3886–3891. [Google Scholar] [CrossRef] [PubMed]
- Boushell, V.; Pang, S.; He, L. Aptamer-Based SERS Detection of Lysozyme on a Food-Handling Surface. J. Food Sci. 2017, 82, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Y.; Qian, Y.; Zhang, T.; Zheng, L.; Fu, L. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control 2020, 107, 106547. [Google Scholar] [CrossRef]
- Ross, G.M.S.; Bremer, M.G.E.G.; Nielen, M.W.F. Consumer-friendly food allergen detection: Moving towards smartphone-based immunoassays. Anal. Bioanal. Chem. 2018, 410, 5353–5371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Jiang, D.; Zhu, P.; Pi, F.; Ji, J.; Sun, C.; Sun, J.; Sun, X. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens. Bioelectron. 2016, 83, 126–133. [Google Scholar] [CrossRef]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Jiang, J.; Blumenstock, J.A.; Davis, M.M.; Schleimer, R.P.; Nadeau, K.C. Prevalence and Severity of Food Allergies Among US Adults. JAMA Netw. Open 2019, 2, e185630. [Google Scholar] [CrossRef]
- Gómez-Arribas, L.N.; Benito-Peña, E.; Hurtado-Sánchez, M.D.C.; Moreno-Bondi, M.C. Biosensing based on nanoparticles for food allergens detection. Sensors 2018, 18, 1087. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.C.; Barroso, M.F.; González-García, M.B.; Oliveira, M.B.P.P.; Delerue-Matos, C. New Trends in Food Allergens Detection: Toward Biosensing Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 2304–2319. [Google Scholar] [CrossRef]
- Gupta, R.S.; Dyer, A.A.; Jain, N.; Greenhawt, M.J. Childhood food allergies: Current diagnosis, treatment, and management strategies. Mayo Clin. Proc. 2013, 88, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chafen, J.J.S.; Newberry, S.J.; Riedl, M.A.; Bravata, D.M.; Maglione, M.; Suttorp, M.J.; Sundaram, V.; Paige, N.M.; Towfigh, A.; Hulley, B.J.; et al. Diagnosing and Managing Common Food Allergies. JAMA 2010, 303, 1848. [Google Scholar] [CrossRef] [PubMed]
- Badran, A.A.; Morais, S.; Maquieira, Á. Simultaneous determination of four food allergens using compact disc immunoassaying technology. Anal. Bioanal. Chem. 2017, 409, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Pilolli, R.; Monaci, L.; Visconti, A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends Anal. Chem. 2013, 47, 12–26. [Google Scholar] [CrossRef]
- Nurmatov, U.; Venderbosch, I.; Devereux, G.; Simons, F.E.R.; Sheikh, A. Allergen-specific oral immunotherapy for peanut allergy. Cochrane Database Syst. Rev. 2012, 9. [Google Scholar] [CrossRef]
- Sobhan, A.; Oh, J.H.; Park, M.K.; Kim, S.W.; Park, C.; Lee, J. Assessment of peanut allergen Ara h1 in processed foods using a SWCNTs-based nanobiosensor. Biosci. Biotechnol. Biochem. 2018, 82, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Ji, J.; An, L.; Sun, X.; Zhang, Y.; Zhang, G.; Tang, L. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin). Biosens. Bioelectron. 2013, 50, 150–156. [Google Scholar] [CrossRef]
- Wang, W.; Han, J.; Wu, Y.; Yuan, F.; Chen, Y.; Ge, Y. Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. J. Agric. Food Chem. 2011, 59, 6889–6894. [Google Scholar] [CrossRef]
- Campuzano, S.; Montiel, V.R.V.; Serafín, V.; Yáñez-Sedeño, P.; Pingarrón, J.M. Cutting-edge advances in electrochemical affinity biosensing at different molecular level of emerging food allergens and adulterants. Biosensors 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.M.; Khuda, S.E.; Parker, C.H.; Eischeid, A.C.; Pereira, M. Detection of allergen markers in food: Analytical methods. Food Saf. Innov. Anal. Tools Saf. Assess. 2016, 65–121. [Google Scholar] [CrossRef]
- Fiocchi, A.; Schunemann, H.J.; Brozek, k.; Restani, P.; Beyer, K.; Troncone, R.; Martelli, A.; Terracciano, L.; Bahna, S.L.; Rancé, F.; et al. Workshop summary Diagnosis and Rationale for Action against Cow’s Milk Allergy ( DRACMA ): A summary report. J. Allergy Clin. Immunol. 2010, 126, 1119–1128. [Google Scholar] [CrossRef]
- Weng, X.; Gaur, G.; Neethirajan, S. Rapid detection of food allergens by microfluidics ELISA-Based optical sensor. Biosensors. 2016, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, L.Q.; Mahler, V.; Lorenz, Y.; Scheurer, S. Food allergy, anaphylaxis, dermatology, and drug allergy Reduced allergenicity of tomato fruits harvested from Lyc e 1—Silenced transgenic tomato plants. J. Allergy Clin. Immunol. 2006, 118, 1176–1183. [Google Scholar] [CrossRef]
- Dodo, H.W.; Konan, K.N.; Chen, F.C.; Egnin, M.; Viquez, O.M. Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol. J. 2008, 6, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Herman, E.M.; Helm, R.M.; Jung, R.; Kinney, A.J. Genetic Modification Removes an Immunodominant Allergen from Soybean. Plant Physiol. 2003, 132, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katherine, A.B.; Huang, F.R.; Bencharitiwong, R.; Bardina, L.; Ross, A.; Sampson, H.A.; Nowak-Węgrzyn, A. Article Type: Original Effect of Heat Treatment on Milk and Egg Proteins Allergenicity. Pediatr. Allergy Immunol. 2014, 25, 740–746. [Google Scholar]
- Yu, J.; Ahmedna, M.; Goktepe, I.; Cheng, H.; Maleki, S. Enzymatic treatment of peanut kernels to reduce allergen levels. Food Chem. 2011, 127, 1014–1022. [Google Scholar] [CrossRef]
- Quintieri, L.; Monaci, L.; Baruzzi, F.; Gabriella, M.; Candia, S.D.; Caputo, L. Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach. J. Food Sci. Technol. 2017, 54, 1910–1916. [Google Scholar] [CrossRef]
- El Mecherfi, K.E.; Saidi, D.; Kheroua, O.; Boudraa, G.; Touhami, M.; Rouaud, O.; Curet, S.; Choiset, Y.; Rabesona, H.; Chobert, J.M.; et al. Combined microwave and enzymatic treatments for β-lactoglobulin and bovine whey proteins and their effect on the IgE immunoreactivity. Eur. Food Res. Technol. 2011, 233, 859. [Google Scholar] [CrossRef]
- Byun, M.; Lee, J.; Yook, H.; Jo, C.; Kim, H. Application of gamma irradiation for inhibition of food allergy. Radiat. Phys. Chem. 2002, 63, 369–370. [Google Scholar] [CrossRef]
- Kato, T.; Katayama, E.; Matsubara, S.; Omi, Y.; Matsuda, T. Release of Allergenic Proteins from Rice Grains Induced by High Hydrostatic Pressure. J. Agric. Food Chem. 2000, 48, 3124–3129. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Akmal, M.R.; Maghsoudi, A.S.; Rahmani, S.; Vakhshiteh, F.; Norouzi, P.; Ganjali, M.R.; Abdollahi, M. High-Performance Voltammetric Aptasensing Platform for Ultrasensitive Detection of Bisphenol A as an Environmental Pollutant. Front. Bioeng. Biotechnol. 2020, 8, 1055. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. Anal. Chim. Acta 2015, 853, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Kumar, R.; Panda, A.K.; Solanki, P.R. An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods. J. Mater. Res. Technol. 2019, 8, 5490–5503. [Google Scholar] [CrossRef]
- Li, G.; Wen, A.; Liu, J.; Wu, D.; Wu, Y. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites. Food Chem. 2020, 337, 127974. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.D.; Marty, J.L.; Vasilescu, A. Advances in enzyme-based biosensors for pesticide detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Hassani, S.; Maghsoudi, A.S.; Akmal, M.R.; Rahmani, S.; Sarihi, P.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. A sensitive aptamer-based biosensor for electrochemical quantification of PSA as a specific diagnostic marker of prostate cancer. J. Pharm. Pharm. Sci. 2020, 23, 243–258. [Google Scholar] [CrossRef]
- Sun, X.; Jia, M.; Guan, L.; Ji, J.; Zhang, Y.; Tang, L.; Li, Z. Multilayer graphene—Gold nanocomposite modified stem-loop DNA biosensor for peanut allergen-Ara h1 detection. Food Chem. 2015, 172, 335–342. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Bartuzi, Z.; Kaczmarski, M.; Czerwionka-Szaflarska, M.; Malaczynska, T.; Krogulska, A. The diagnosis and management of food allergies. Position paper of the Food Allergy Section the Polish Society of Allergology. Postep. Dermatol. I Alergol. 2017, 34, 391–404. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Bøgh, K.L.; Constable, A.; Epstein, M.M.; Sommergruber, K.H.; Holzhauser, T.; Houben, G.; Kuehn, A.; Roggen, E.; O’Mahony, L.; et al. COST Action “ImpARAS”: What have we learnt to improve food allergy risk assessment. A summary of a 4 year networking consortium. Clin. Transl. Allergy 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, Q.; Zhou, J.; Li, H.; Fu, L. Graphene oxide and gold nanoparticles-based dual amplification method for immunomagnetic beads-derived ELISA of parvalbumin. Food Control 2020, 110, 106989. [Google Scholar] [CrossRef]
- Neethirajan, S.; Weng, X.; Tah, A.; Cordero, J.O.; Ragavan, K.V. Nano-biosensor platforms for detecting food allergens—New trends. Sens. Bio Sens. Res. 2018, 18, 13–30. [Google Scholar] [CrossRef]
- Chang, C.; Lahti, T.; Tanaka, T.; Nickerson, M.T. Egg proteins: Fractionation, bioactive peptides and allergenicity. J. Sci. Food Agric. 2018, 98, 5547–5558. [Google Scholar] [CrossRef] [PubMed]
- Romantsik, O.; Tosca, M.A.; Zappettini, S.; Calevo, M.G. Oral and sublingual immunotherapy for egg allergy. Cochrane Database Syst. Rev. 2018, 2018, 4. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, A.K.; Das, M.; Premendra, D. Allergenic Diversity among Plant and Animal Food Proteins. Food Rev. Int. 2012, 28, 277–298. [Google Scholar] [CrossRef]
- Mohamad, A.; Rizwan, M.; Keasberry, N.A.; Ahmed, M.U. Fabrication of label-free electrochemical food biosensor for the sensitive detection of ovalbumin on nanocomposite-modified graphene electrode. Biointerface Res. Appl. Chem. 2019, 9, 4655–4662. [Google Scholar]
- Eissa, S.; Zourob, M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens. Bioelectron. 2017, 91, 169–174. [Google Scholar] [CrossRef]
- Allergens, M.; Overview, A.; Nehra, M.; Lettieri, M.; Dilbaghi, N.; Kumar, S. Nano-Biosensing Platforms for Detection of Cow’s. Milk Allergens: An Overview. Sensors 2020, 20, 32. [Google Scholar]
- Shi, M.; Cen, Y.; Sohail, M.; Xu, G.; Wei, F.; Ma, Y.; Xu, X.; Ma, Y.; Song, Y.; Hu, Q. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Microchim. Acta 2018, 185, 1–8. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Shamsipur, M.; Saber, R.; Sarkar, S.; Ebrahimi, V. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosens. Bioelectron. 2017, 98, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Chinnappan, R.; Rahamn, A.A.; AlZabn, R.; Kamath, S.; Lopata, A.L.; Abu-Salah, K.M.; Zourob, M. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chem. 2020, 314, 126133. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Ibáñez, A.; Eletxigerra, U.; Lasheras, X.; Campuzano, S.; Merino, S. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Anal. Chim. Acta 2019, 1079, 94–102. [Google Scholar] [CrossRef]
- David, M.; Team, L.T.; Fleischer, D.M.; Sicherer, S.; Greenhawt, M.; Campbell, D.; Chan, E.S. Consensus communication on early peanut introduction and the prevention of peanut allergy in high-risk infants. Pediatrics 2015, 136, 600–604. [Google Scholar]
- Yin, H.Y.; Fang, T.J.; Li, Y.T.; Fung, Y.F.; Tsai, W.C.; Dai, H.Y.; Wen, H.W. Rapidly detecting major peanut allergen-Ara h2 in edible oils using a new immunomagnetic nanoparticle-based lateral flow assay. Food Chem. 2019, 271, 505–515. [Google Scholar] [CrossRef]
- Olkhov, R.V.; Kaminski, E.R.; Shaw, A.M. Differential immuno-kinetic assays of allergen-specific binding for peanut allergy serum analysis. Anal. Bioanal. Chem. 2012, 404, 2241–2247. [Google Scholar] [CrossRef] [Green Version]
- Sobhab, A.; Oh, J.-H. Detection of Peanut Allergen Ara h 6 in Commercially Processed Foods using a Single-Walled Carbon Nanotube–Based Biosensor. J. AOAC Int. 2018, 101, 1558–1565. [Google Scholar] [CrossRef]
- Wade, W.; de Mejia, E.G.; Zheng, H.; Lee, Y. Soybean Allergens: Presence, Detection and Methods for Mitigation. Soybean Health 2011, 20, 433–464. [Google Scholar]
- Chu, P.T.; Lin, C.S.; Chen, W.J.; Chen, C.F.; Wen, H.W. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles. J. Agric. Food Chem. 2012, 60, 6483–6492. [Google Scholar] [CrossRef] [Green Version]
- Koestel, C.; Belcher, S.; Johannes, R. Implementation of an Enzyme Linked Immunosorbent Assay for the Quantification of Allergenic Egg Residues in Red Wines Using Commercially Available Antibodies. J. Food Sci. 2016, 81, T2099–T2106. [Google Scholar] [CrossRef] [Green Version]
- Wessels, H.; Paschke-kratzin, A. New SPR-based methods for analysis of allergenic agents used in wine treatment. BIO Web Conf. EDP Sci. 2016, 7, 04002. [Google Scholar] [CrossRef] [Green Version]
- Asensio, L.; González, I.; García, T.; Martín, R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 2008, 19, 1–8. [Google Scholar] [CrossRef]
- Pollet, J.; Delport, F.; Janssen, K.P.F.; Tran, D.T.; Wouters, J.; Verbiest, T.; Lammertyn, J. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 2011, 83, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Grinyte, R.; Barroso, J.; Möller, M.; Saa, V.P.L. Microbead QD-ELISA: Microbead ELISA Using Biocatalytic Formation of Quantum Dots for Ultra High Sensitive Optical and Electrochemical Detection. ACS Appl. Mater. Interfaces 2016, 8, 29252–29260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzhauser, T.; Stephan, O.; Vieths, S. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: A comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J. Agric. Food Chem. 2002, 50, 5808–5815. [Google Scholar] [CrossRef]
- Palmer, L.K.; Marsh, J.T.; Baumert, J.L.; Johnson, P.E. Persistence of peanut allergen-derived peptides throughout excessive dry thermal processing. LWT 2020, 132, 109903. [Google Scholar] [CrossRef]
- Ruiz-Valdepenas, M.V.; Povedano, E.; Vargas, E.; Torrente-Rodríguez, R.M.; Pedrero, M.; Reviejo, A.J.; Campuzano, S.; Pingarrón, J.M. Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification. ACS Sens. 2018, 3, 211–221. [Google Scholar] [CrossRef]
- Weng, X.; Neethirajan, S. Biosensors and Bioelectronics A micro fl uidic biosensor using graphene oxide and aptamer- functionalized quantum dots for peanut allergen detection. Biosens. Bioelectron. 2016, 85, 649–656. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Van Rijn, C.J.M.; Jongsma, M.A. Biosensor-based detection of tuberculosis. RSC Adv. 2016, 6, 17759–17771. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Aburatani, K.; Mizumura, T.; Sakai, M.; Muraoka, S.; Mamegosi, S.; Honjoh, T. Novel ELISA for the detection of raw and processed egg using extraction buffer containing a surfactant and a reducing agent. J. Immunol. Methods 2005, 300, 115–123. [Google Scholar] [CrossRef]
- Angelopoulou, M.; Botsialas, A.; Salapatas, A.; Petrou, P.S.; Haasnoot, W.; Makarona, E.; Jobst, G.; Goustouridis, D.; Siafaka-Kapadai, A.; Raptis, I.; et al. Assessment of goat milk adulteration with a label-free monolithically integrated optoelectronic biosensor. Anal. Bioanal. Chem. 2015, 407, 3995–4004. [Google Scholar] [CrossRef] [PubMed]
- Eischeid, A.C. A method to detect allergenic fish, specifically cod and pollock, using quantitative real-time PCR and COI DNA barcoding sequences. J. Sci. Food Agric. 2019, 99, 2641–2645. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, X.; Mariën, G.; Meyts, I.; Proesmans, M.; De Boeck, K. Determination of IgG subclasses: A need for standardization. J. Allergy Clin. Immunol. 2005, 115, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, M.; Suzuki, F.; Ishida, M.; Nagashima, Y.; Shiomi, K. Identification of tropomyosin as a major allergen in the octopus Octopus vulgaris and elucidation of its IgE-binding epitopes. Fish. Sci. 2001, 67, 934–942. [Google Scholar] [CrossRef]
- Trashin, S.A.; Cucu, T.; Devreese, B.; Adriaens, A.; De Meulenaer, B. Development of a highly sensitive and robust Cor a 9 specific enzyme-linked immunosorbent assay for the detection of hazelnut traces. Anal. Chim. Acta 2011, 708, 116–122. [Google Scholar] [CrossRef]
- Chu, P.T.; Wen, H.W. Sensitive detection and quantification of gliadin contamination in gluten-free food with immunomagnetic beads based liposomal fluorescence immunoassay. Anal. Chim. Acta 2013, 787, 246–253. [Google Scholar] [CrossRef]
- Alves, R.C.; Pimentel, F.B.; Nouws, H.P.A.; Correr, W.; González-García, M.B.; Oliveira, M.B.P.P.; Delerue-Matos, C. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Anal. Bioanal. Chem. 2015, 407, 7157–7163. [Google Scholar] [CrossRef]
- Puente-Lelievre, C.; Eischeid, A.C. Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. J. Agric. Food Chem. 2018, 66, 8623–8629. [Google Scholar] [CrossRef]
- Ozasa, S.; Maebuchi, M.; Urade, R.; Maruyama, N.; May, R. A novel enzyme-linked immunosorbent assay for quantification of soybean beta-conglycinin, a major soybean storage protein, in soybean and soybean food products. J. Nutr. Sci. Vitaminol. 2005, 51, 34–39. [Google Scholar]
- Teixeira, L.; Agnol, D. Recent Advances in Biosensor Technology for Potential Applications—An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar]
- Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Prabowo, B.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Hashim, U. ScienceDirect Advances in biosensors: Principle, architecture and. J. Econ. Financ. Adm. Sci. 2013, 12, 1–15. [Google Scholar]
- Ng, E.; Nadeau, K.C.; Wang, S.X. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosens. Bioelectron. 2016, 80, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.I.; Maddaus, A.G.; Song, E. A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.T.; Janssen, K.P.F.; Pollet, J.; Lammertyn, E.; Anné, J.; Van Schepdael, A.; Lammertyn, J. Selection and characterization of DNA aptamers for egg white lysozyme. Molecules 2010, 15, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Vaculovicova, M.; Michalek, P.; Krizkova, S.; Adam, V. Analytical Methods Nanotechnology-based analytical approaches for detection of viruses Marketa. Anal. Methods 2017, 9, 2375–2391. [Google Scholar] [CrossRef]
- Tah, A.; Cordero, J.M.O.; Weng, X.; Neethirajan, S. Aptamer-based biosensor for food allergen determination using graphene oxide/gold nanocomposite on a paper-assisted analytical device. bioRxiv 2018, 343368. [Google Scholar] [CrossRef]
- Lv, M.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Biosensors and Bioelectronics Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef]
- He, X.; Hwang, H. ScienceDirect Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 2016, 24, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Ye, Y.; He, S.; Wu, Z.; Yue, J.; Sun, H.; Cao, X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens. Bioelectron. 2019, 143, 111607. [Google Scholar] [CrossRef] [PubMed]
- Ontiveros, G.P.H.; Ibarra, I.S.; Dominguez, J.M.; Rodriguez, J.A. Development of a Biosensor Modified with Nanoparticles for Sensitive Detection of Gluten by Chronoamperometry. ECS Trans. 2017, 76, 103–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Wei, X.; Zhang, J.; Mo, S. DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchim. Acta 2017, 184, 633–639. [Google Scholar] [CrossRef]
- Norris, J.L.; Patel, T.; Dasari, A.K.R.; Cope, T.A.; Lim, K.H.; Hughes, R.M. Covalent and non-covalent strategies for the immobilization of Tobacco Etch Virus protease (TEVp) on superparamagnetic nanoparticles. J. Biotechnol. 2020, 322, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, P.; Cui, L.; Qiu, J.G.; Jiang, B.H.; Zhang, C.Y. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. TrAC Trends Anal. Chem. 2020, 129, 115959. [Google Scholar] [CrossRef]
- Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review. Anal. Chim. Acta 2015, 872, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Byzova, N.A.; Safenkova, I.V.; Slutskaya, E.S.; Zherdev, A.V.; Dzantiev, B.B. Less is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios. Bioconjug. Chem. 2017, 28, 2737–2746. [Google Scholar] [CrossRef]
- Lazcka, O.; Campo, F.J.D.; Muñoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Jahanban-Esfahlan, R.; Roufegarinejad, L.; Tabibiazar, M.; Amarowicz, R. Recent developments in the detection of bovine serum albumin. Int. J. Biol. Macromol. 2019, 138, 602–617. [Google Scholar] [CrossRef]
- Tran, D.T.; Knez, K.; Janssen, K.P.; Pollet, J.; Spasic, D.; Lammertyn, J. Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices. Biosens. Bioelectron. 2013, 43, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, D. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev. Mol. Diagn. 2012, 12, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ruiz, E.; Lammertyn, J.; Spasic, D. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers. New Biotechnol. 2016, 33, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Speroni, F.; Elviri, L.; Careri, M.; Mangia, A. Magnetic particles functionalized with PAMAM-dendrimers and antibodies: A new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal. Bioanal. Chem. 2010, 397, 3035–3042. [Google Scholar] [CrossRef]
Treatments | Allergenic | Matrix | References |
---|---|---|---|
Genetic engineering | Profilin | Tomato | [23] |
Genetic engineering | Ara h 2 | Peanut | [24] |
Genetic Modification | Gly m Bd 30 K | Soybean | [25] |
Heat Treatment | Lactoglobulin, Lactalbumin, Ovalbumin | Milk, Eggs | [26] |
Enzymatic Treatment | Ara h 1 and Ara h 2 | Peanut Kernels | [27] |
Enzymatic Digestion and Ultrafiltration | β-Lactoglobulin | Cow’s Milk | [28] |
Microwave and Enzymatic | β-Lactoglobulin | Cow’s Milk | [29] |
Irradiation | β-Lactoglobulin, Albumin, and Tropomyosin | Shrimp, Egg, Milk | [30] |
High Hydrostatic Pressure | 16 kDa Albumin, R-Globulin, and 33 kDa Globulin | Rice | [31] |
Matrix Animal | Allergenic | Method | References |
---|---|---|---|
Eggs | Ovalbumin | ELISA | [70] |
Milk | Bovine k-casein | Biosensor | [71] |
Fish | Cod and pollock | Real-Time PCR | [72] |
Fish | Parvalbumin | Immunoblot | [73] |
Crustacean Shellfis | Tropomyosin (octopus Octopus vulgaris) | ELISA | [74] |
Matrix Plant | |||
Tree nuts | Cor a 9 (hazelnut) | ELISA | [75] |
Wheat | Gliadin | Emmunomagnetic beads | [76] |
Peanut | Ara h 6 | Voltammetric biosensing | [77] |
Peanut | Arah | Real-Time PCR Multiplex | [78] |
Soybeans | Beta-conglycinin | ELISA | [79] |
Nanoparticle | Allergenic | Matrix | Caracteristics (Detection Limit) | Sensor Type | References |
---|---|---|---|---|---|
Gold nanoparticle | Ara h 6; Gly m Bd 28K; and 2S albumin | peanut, soybean and sesame | <0.5 nM | Genosensors | [3] |
Carbon | Gluten | food samples based in cereals grains | 0.54 mg L−1 | Immunosensor | [93] |
Graphene oxide | tropomyosin | shrimp | 0.15 μg·mL−1 | Immunosensor | [94] |
MIP Nanoparticles | α-Casein | food manufacturing environments | 0.127 ppm | Immunosensor | [1] |
Gold nanoparticles-polyethyleneimine-multiwalled carbon nanotubes nanocomposite | kidney bean lectin (KBL) | kidney beans | 0.023 μg/mL | Immunosensor | [92] |
GO-AuNP complexes | Ara h 1; β-lactoglobulin (β LG); tropomyosin (Pen a 1) | peanuts; milk; shrimp | 7.8 nM (Peanuts), 12.4 nM (Milk), 6.2 nM (shrimp) | Genosensors | [89] |
Goldnanoparticle-modified SPCE | Ara h 6 | peanut | 0.27 ng/mL | Immunosensor | [77] |
Quartz crystal microbalance (QCM) chip and gold | gliadin | wheat, barley, oat, rice, foxtail millet, corn, buckwheat, and soybean were | 8 ppb | Immunosensor | [59] |
Multilayer graphene–gold nanocomposite | Ara h 1 | peanut | 0.041 fM | Genosensors | [38] |
Quantum dots (QDs) aptamer functionalized graphene oxide (GO)QDs-aptamer-GO complexes as | Ara h 1 | peanut | 56 ng/mL | Genosensors | [68] |
L-cysteine/gold nanoparticle (AuNPsCys)-modified | tropomyosin | shrimp | 0.15 μg·mL−1 | Immunosensor | [17] |
Graphene oxide (GO) and gold | Parvalbumin | Fish | 4.29 ng/mL | Immunosensor | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, A.; Conte-Junior, C.A. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. Biosensors 2020, 10, 194. https://doi.org/10.3390/bios10120194
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. Biosensors. 2020; 10(12):194. https://doi.org/10.3390/bios10120194
Chicago/Turabian StyleAquino, Adriano, and Carlos Adam Conte-Junior. 2020. "A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection" Biosensors 10, no. 12: 194. https://doi.org/10.3390/bios10120194
APA StyleAquino, A., & Conte-Junior, C. A. (2020). A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. Biosensors, 10(12), 194. https://doi.org/10.3390/bios10120194