Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review
Abstract
:1. Introduction
- (1)
- Surface oxide layer: One unique property of Ga-based alloys is the existence of a thin layer of oxide that effectively yields a core-shell structure in NPs, under normal processing conditions [6]. The oxide skin forms rapidly when the inner Ga core is exposed to oxygen. The formation of an oxide layer is beneficial in the production of LMNPs as it helps stabilize the surface to provide a barrier to particle–particle interactions; this becomes particularly important when small NPs are required.
- (2)
- A grafting platform: The oxide layer yields a shell that can be exploited to attach or anchor surface functionality—this is vital for biomedical applications where stealth and targeting are widely required for effective application.
- (3)
- Photothermal conversion ability: LMNPs of Ga alloys possess a relatively good photothermal conversion efficiency (52%) and a wide range of light absorbance (near-infrared light (NIR), 650–1500 nm) [7], both key features for applications in photothermal therapy.
- (4)
- (5)
- Cancer suppressor: Ga has been used for different clinical applications in forms of compound and ion due to its ability to modify structures of DNA, inhibit activities of enzymes, modulate protein synthesis, and alter the permeability of plasma membrane. For example, Ga3+ ions have shown theragnostic effects for hypercalcemia, and therapeutic effects against non-Hodgkin’s lymphoma and bladder cancer [15,16].
2. Production of LMNPs
3. Surface Functionalization of LMNPs
4. Toxicity Evaluation
5. Biomedical Applications of LMNPs
5.1. Treatment against Cancer
5.2. Medical Imaging
5.2.1. X-ray Imaging
5.2.2. CT Imaging
5.2.3. Photoacoustic Imaging
5.3. Ion Channel Regulation
5.4. Pathogen Treatment
5.5. A Glance of Biomedical Applications Using Bulk Liquid Metal
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I.; Esrafilzadeh, D.; Barrow, S.; Dickey, M.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Lu, Y.; Chen, G.; Yang, M.; Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 2018, 47, 2518–2533. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Okamoto, H. Phase Diagrams for Binary Alloys; ASM international Materials Park: Materials Park, OH, USA, 2000; Volume 314. [Google Scholar]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Liu, T.; Sen, P.; Kim, C.-J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 2011, 21, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Dickey, M.D. Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 2014, 6, 18369–18379. [Google Scholar] [CrossRef] [Green Version]
- Chechetka, S.A.; Yu, Y.; Zhen, X.; Pramanik, M.; Pu, K.; Miyako, E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 2017, 8, 15432. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Miyako, E. Alternating-magnetic-field-mediated wireless manipulations of a liquid metal for therapeutic bioengineering. iScience 2018, 3, 134–148. [Google Scholar] [CrossRef] [Green Version]
- Elbourne, A.; Cheeseman, S.; Atkin, P.; Truong, N.P.; Syed, N.; Zavabeti, A.; Mohiuddin, M.; Esrafilzadeh, D.; Cozzolino, D.; McConville, C.F. Antibacterial Liquid Metals: Biofilm Treatment via Magnetic Activation. ACS Nano 2020, 14, 802–817. [Google Scholar] [CrossRef]
- Wu, Q.; Xia, N.; Long, D.; Tan, L.; Rao, W.; Yu, J.; Fu, C.; Ren, X.; Li, H.; Gou, L. Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy. Nano Lett. 2019, 19, 5277–5286. [Google Scholar] [CrossRef]
- Yang, N.; Li, W.; Gong, F.; Cheng, L.; Dong, Z.; Bai, S.; Xiao, Z.; Ni, C.; Liu, Z. Injectable Nonmagnetic Liquid Metal for Eddy-Thermal Ablation of Tumors under Alternating Magnetic Field. Small Methods 2020, 4, 2000147. [Google Scholar] [CrossRef]
- Sun, X.; Sun, M.; Liu, M.; Yuan, B.; Gao, W.; Rao, W.; Liu, J. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale 2019, 11, 2655–2667. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, C.; Wang, W.; Sun, M.; Guo, B.; Xie, H.; He, Q. Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 2018, 12, 10212–10220. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lin, Y.; Chen, Z.; Hu, Q.; Liu, Y.; Yu, S.; Gao, W.; Dickey, M.D.; Gu, Z. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett. 2017, 17, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Chitambar, C.R. Gallium-containing anticancer compounds. Future Med. Chem. 2012, 4, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Collery, P.; Keppler, B.; Madoulet, C.; Desoize, B. Gallium in cancer treatment. Crit. Rev. Oncol./Hematol. 2002, 42, 283–296. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Tang, S.-Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-Zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab Chip 2017, 17, 974–993. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, B.; Handschuh-Wang, S.; Zhou, X. Liquid Metal–Based Soft Microfluidics. Small 2020, 16, 1903841. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef]
- Ren, L.; Xu, X.; Du, Y.; Kalantar-Zadeh, K.; Dou, S.X. Liquid metals and their hybrids as stimulus–responsive smart materials. Mater. Today 2020, 34, 92–114. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.-Z.; Zhao, R.-Q.; Rao, W.; Liu, J. Liquid Metal Composites. Matter 2020, 2, 1446–1480. [Google Scholar] [CrossRef]
- Kazem, N.; Hellebrekers, T.; Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 2017, 29, 1605985. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yuan, B.; Sheng, L.; Rao, W.; Liu, J. Liquid metal enabled injectable biomedical technologies and applications. Appl. Mater. Today 2020, 20, 100722. [Google Scholar] [CrossRef]
- Hohman, J.N.; Kim, M.; Wadsworth, G.A.; Bednar, H.R.; Jiang, J.; LeThai, M.A.; Weiss, P.S. Directing substrate morphology via self-assembly: Ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett. 2011, 11, 5104–5110. [Google Scholar] [CrossRef] [PubMed]
- Lear, T.R.; Hyun, S.-H.; Boley, J.W.; White, E.L.; Thompson, D.H.; Kramer, R.K. Liquid metal particle popping: Macroscale to nanoscale. Extrem. Mech. Lett. 2017, 13, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Boley, J.W.; White, E.L.; Kramer, R.K. Mechanically sintered gallium–indium nanoparticles. Adv. Mater. 2015, 27, 2355–2360. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, Q.; Lin, Y.; Pacardo, D.B.; Wang, C.; Sun, W.; Ligler, F.S.; Dickey, M.D.; Gu, Z. Transformable liquid-metal nanomedicine. Nat. Commun. 2015, 6, 10066. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y.; Genzer, J.; Dickey, M.D. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017, 8, 3832–3837. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Tang, S.-Y.; Dong, Z.; Liu, D.; Zhang, Y.; Zhang, C.; Yun, G.; Zhao, Q.; Kalantar-Zadeh, K.; Qiao, R. Dynamic Temperature Control System for the Optimized Production of Liquid Metal Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 6905–6914. [Google Scholar] [CrossRef]
- Tang, S.Y.; Qiao, R.; Lin, Y.; Li, Y.; Zhao, Q.; Yuan, D.; Yun, G.; Guo, J.; Dickey, M.D.; Huang, T.J. Functional Liquid Metal Nanoparticles Produced by Liquid-Based Nebulization. Adv. Mater. Technol. 2019, 4, 1800420. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gao, C.; Zhou, C.; Lin, Z.; He, Q. Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research 2020, 2020. [Google Scholar] [CrossRef]
- Tevis, I.D.; Newcomb, L.B.; Thuo, M. Synthesis of liquid core–shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). Langmuir 2014, 30, 14308–14313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarema, M.; Wörle, M.; Rossell, M.D.; Erni, R.; Caputo, R.; Protesescu, L.; Kravchyk, K.V.; Dirin, D.N.; Lienau, K.; von Rohr, F. Monodisperse colloidal gallium nanoparticles: Synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J. Am. Chem. Soc. 2014, 136, 12422–12430. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Xu, J.; Li, H.; Wang, Z.; Sun, L.; Deng, T.; Tao, P.; Liang, Q. Ga-In liquid metal nanoparticles prepared by physical vapor deposition. Prog. Nat. Sci. Mater. Int. 2018, 28, 28–33. [Google Scholar] [CrossRef]
- Farrell, Z.J.; Tabor, C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 2018, 34, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Shang, W.; Handschuh-Wang, S.; Zhou, X. Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating. Small 2019, 15, 1804838. [Google Scholar] [CrossRef]
- Farrell, Z.J.; Reger, N.; Anderson, I.; Gawalt, E.; Tabor, C. Route to Universally Tailorable Room-Temperature Liquid Metal Colloids via Phosphonic Acid Functionalization. J. Phys. Chem. C 2018, 122, 26393–26400. [Google Scholar] [CrossRef]
- Tang, S.Y.; Ayan, B.; Nama, N.; Bian, Y.; Lata, J.P.; Guo, X.; Huang, T.J. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves. Small 2016, 12, 3861–3869. [Google Scholar] [CrossRef]
- Lin, Y.; Genzer, J.; Li, W.; Qiao, R.; Dickey, M.D.; Tang, S.-Y. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly (1-octadecene-alt-maleic anhydride) in aqueous solutions. Nanoscale 2018, 10, 19871–19878. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Sun, M.; Wang, Z.; Yan, J.; Yuan, R.; Liu, T.; Majidi, C.; Matyjaszewski, K. Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. ACS Nano 2020, 14, 9884–9893. [Google Scholar] [CrossRef]
- Farrell, Z.J.; Thrasher, C.; Flynn, A.; Tabor, C. Silanized Liquid Metal Particles for Responsive Electronics. ACS Appl. Nano Mater. 2020, 3, 6297–6303. [Google Scholar] [CrossRef]
- Zhang, C.; Allioux, F.-M.; Rahim, M.A.; Han, J.; Tang, J.; Ghasemian, M.B.; Tang, S.-Y.; Mayyas, M.; Daeneke, T.; Le-Clech, P. Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. Chem. Mater. 2020, 32, 4808–4819. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493. [Google Scholar] [CrossRef] [PubMed]
- Creighton, M.A.; Yuen, M.C.; Susner, M.A.; Farrell, Z.; Maruyama, B.; Tabor, C.E. Oxidation of Gallium-based Liquid Metal Alloys by Water. Langmuir 2020, 36, 12933–12941. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.B.; Gedanken, A.; Kimmel, G.; Porat, Z.E. Ultrasonic cavitation of molten gallium: Formation of micro-and nano-spheres. Ultrason. Sonochem. 2014, 21, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, S.; So, J.-H.; Kim, K.; Koo, H.-J. Cytotoxicity of gallium–indium liquid metal in an aqueous environment. Acs Appl. Mater. Interfaces 2018, 10, 17448–17454. [Google Scholar] [CrossRef] [PubMed]
- Adams IV, W.; Nolan, M.W.; Ivanisevic, A. Ga Ion-Enhanced and Particle Shape-Dependent Generation of Reactive Oxygen Species in X-ray-Irradiated Composites. ACS Omega 2018, 3, 5252–5259. [Google Scholar] [CrossRef]
- Chiechi, R.C.; Weiss, E.A.; Dickey, M.D.; Whitesides, G.M. Eutectic gallium–indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 2008, 47, 142–144. [Google Scholar] [CrossRef]
- Barber, J.R.; Yoon, H.J.; Bowers, C.M.; Thuo, M.M.; Breiten, B.; Gooding, D.M.; Whitesides, G.M. Influence of environment on the measurement of rates of charge transport across AgTS/SAM//Ga2O3/EGaIn junctions. Chem. Mater. 2014, 26, 3938–3947. [Google Scholar] [CrossRef] [Green Version]
- Cademartiri, L.; Thuo, M.M.; Nijhuis, C.A.; Reus, W.F.; Tricard, S.; Barber, J.R.; Sodhi, R.N.; Brodersen, P.; Kim, C.; Chiechi, R.C. Electrical resistance of AgTS–S (CH2) n− 1CH3//Ga2O3/EGaIn tunneling junctions. J. Phys. Chem. C 2012, 116, 10848–10860. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-Y.; Mitchell, D.R.; Zhao, Q.; Yuan, D.; Yun, G.; Zhang, Y.; Qiao, R.; Lin, Y.; Dickey, M.D.; Li, W. Phase separation in liquid metal nanoparticles. Matter 2019, 1, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Lee, C.-W. Electrochemistry of gallium. J. Electrochem. Sci. Technol. 2013, 4, 1–18. [Google Scholar] [CrossRef]
- Vines, J.B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Gao, S.; Lin, H.; Lu, X.; Yang, B.; Zhang, L.; Chen, Y.; Shi, J. Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. Nano Lett. 2019, 19, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-J.; Liu, M.-D.; Chen, Y.; Gao, F.; Peng, S.-Y.; Xie, B.-R.; Li, C.-X.; Zeng, X.; Zhang, X.-Z. Immobilized liquid metal nanoparticles with improved stability and photothermal performance for combinational therapy of tumor. Biomaterials 2019, 207, 76–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.D.; Li, C.X.; Li, B.; Zhang, X.Z. Tumor Cell Membrane-Coated Liquid Metal Nanovaccine for Tumor Preventionǂ. Chin. J. Chem. 2020, 38, 595–600. [Google Scholar] [CrossRef]
- Hu, J.-J.; Liu, M.-D.; Gao, F.; Chen, Y.; Peng, S.-Y.; Li, Z.-H.; Cheng, H.; Zhang, X.-Z. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. Biomaterials 2019, 217, 119303. [Google Scholar] [CrossRef]
- Xia, N.; Li, N.; Rao, W.; Yu, J.; Wu, Q.; Tan, L.; Li, H.; Gou, L.; Liang, P.; Li, L. Multifunctional and flexible ZrO 2-coated EGaIn nanoparticles for photothermal therapy. Nanoscale 2019, 11, 10183–10189. [Google Scholar] [CrossRef]
- Fan, L.; Duan, M.; Sun, X.; Wang, H.; Liu, J. Injectable Liquid Metal-and Methotrexate-Loaded Microsphere for Cancer Chemophotothermal Synergistic Therapy. ACS Appl. Bio Mater. 2020, 3, 3553–3559. [Google Scholar] [CrossRef]
- Boyd, B.; Suslov, S.A.; Becker, S.; Greentree, A.D.; Maksymov, I.S. Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles. Sci. Rep. 2020, 10, 1501. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Genzer, J.; Dickey, M.D. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. Adv. Sci. 2020, 7, 2000192. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Kim, T.; Kang, S.; Jin, H.; Lee, K.; Yoon, H.J. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small 2020, 16, 1903391. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, W.; Wang, H. Synthesis and application of core–shell liquid metal particles: A perspective of surface engineering. Mater. Horiz. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Yao, W.; Guo, R.; Yang, X.; Tang, J.; Zhang, J.; Gao, W.; Timchenko, V.; Liu, J. Soft and Moldable Mg-Doped Liquid Metal for Conformable Skin Tumor Photothermal Therapy. Adv. Healthc. Mater. 2018, 7, 1800318. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, P.; Wang, D.; Liu, J.; Rao, W. Liquid Metal Hybrid Platform Mediated Ice-Fire Dual Non-invasive Conformable Melanoma Therapy. ACS Appl. Mater. Interfaces 2020, 12, 27984–27993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, R.; Liu, J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. J. Mater. Chem. B 2016, 4, 5349–5357. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shu, J.; Zhang, L.; Yang, N.; Xie, J.; Li, X.; Cheng, L.; Kuang, S.; Tang, S.-Y.; Zhang, S. Liquid metal droplet robot. Appl. Mater. Today 2020, 19, 100597. [Google Scholar] [CrossRef]
- Wang, D.; Xie, W.; Gao, Q.; Yan, H.; Zhang, J.; Lu, J.; Liaw, B.; Guo, Z.; Gao, F.; Yin, L. Non-Magnetic Injectable Implant for Magnetic Field-Driven Thermochemotherapy and Dual Stimuli-Responsive Drug Delivery: Transformable Liquid Metal Hybrid Platform for Cancer Theranostics. Small 2019, 15, 1900511. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Pan, K.; Liu, J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans. Biomed. Eng. 2014, 61, 2161–2166. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.; Ortiz, D.; Alcaraz De La Osa, R.; Saiz, J.; González, F.; Brown, A.; Losurdo, M.; Everitt, H.; Moreno, F. UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: Geometry and substrate effects. J. Phys. Chem. C 2013, 117, 19606–19615. [Google Scholar] [CrossRef]
- Reineck, P.; Lin, Y.; Gibson, B.C.; Dickey, M.D.; Greentree, A.D.; Maksymov, I.S. UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles. Sci. Rep. 2019, 9, 5345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin. Drug Deliv. 2018, 15, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, N.P.; Whittaker, M.R.; Mak, C.W.; Davis, T.P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 2015, 12, 129–142. [Google Scholar] [CrossRef] [PubMed]
Method | Size | Shape | Throughput | Costs 1 |
---|---|---|---|---|
Sonication, e.g., [24,27,28,29] (Top-down) | 10s to 100s nm (Polydisperse) | Mostly spherical | High | ★★★ |
Liquid-based nebulization [30] (Top-down) | 80 to 400 nm (Polydisperse) | Mostly spherical | Medium | ★ |
Pressure-template [13,31] (Top-down) | >300 nm in diameter, >5 μm in length (Monodisperse) | Rod or needle-shaped | Low | ★★ |
Shearing with a rotary tool [32] (Top-down) | 6.4 nm to 10s μm (Polydisperse) | Mostly spherical | High | ★★ |
Thermal decomposition [33] (Bottom-up) | 12 to 46 nm (Monodisperse) | Spherical | High | ★★★ |
Physical deposition [34] (Bottom-up) | 25 to 100s nm (Polydisperse) | Spherical | Medium | ★★★★ |
Size and Shape | Surface Functionalization | References |
---|---|---|
Nanospheres, a diameter of ~107 nm | Grafting molecule: (2-hydroxypropyl)-b-cyclodextrin (designated MUA-CD) and thiolated hyaluronic acid (designated m-HA) Drug loaded: doxorubicin (DOX) Shape transformation: triggered by pH changes | [27] |
Nanospheres, a diameter of ~150 nm | Grafting molecule: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2,000] (DSPE-PEG2000-Amine) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC) Shape transformation: triggered by NIR light | [7] |
Nanospheres, hydrodynamic size of ~127 nm | Surface grafting: a surface mesoporous silica coating Drug loaded: DOX Shape transformation: N/A | [55] |
~100 nm in diameter for LMNP@GOX and LMNPs | Grafting molecule: glucose oxidase (GOX) Drug loaded: N/A Shape transformation: triggered by NIR | [57] |
Average diameters of GaNS, GaNR, and LMNR are 220, 255, and 237 nm, respectively | Grafting molecule: N/A Drug loaded: N/A Shape transformation: induced by ultrasound or laser | [12] |
Nanospheres, a diameter of ~700 nm without silica coating; diameter of ~250 nm with a silica coating | Grafting molecule: Inorganic SiO2 shell using four silica sources (1) tetraethylorthosilicate (TEOS) (2) 3-mercaptopropyltriethoxysilane (MPTES), (3) bis(γ-triethoxysilylpropyl)-tetrasulfide (BTES) (4) tetraethylorthosilicate + bis(γ-triethoxysilylpropyl)-tetrasulfide (TEOS + BTES) Drug loaded: N/A Shape transformation: triggered by NIR | [54] |
Nanorod with a diameter of 360–620 nm and a length of about 5.5 μm | Grafting molecule: N/A Drug loaded: N/A Shape transformation: triggered by NIR irradiation | [13] |
Needle-like shape, length of ~7 μm and diameters of 800 ± 51 nm and 153 ± 37 nm at each end | Grafting molecule: a natural leukocyte membrane shell Drug loaded: aminopropyltrimethoxysilane (APTMS) and carbonylated β-cyclodextrin (β-CD) Shape transformation: trigger by NIR or pH changes | [31] |
Nanospheres with GQD coating, a diameter of ~150 nm | Surface grafting: graphene quantum dots (GQDs) Drug loaded: DOX Shape transformation: trigger by light irradiation (wavelength = 635 nm) | [14] |
Spherical particles, a diameter of 6–80 μm | Surface grafting: chitosan Drug loaded: methotrexate (MTX) Shape transformation: triggered by NIR | [59] |
Non-coated nanospheres with a diameter of 120 ± 60 nmHydrodynamic size of ~120 nm for the LM@ZrO2 NPs | Surface grafting: ZrO2 and polyethylene glycol (PEG) Drug loaded: N/A Shape transformation: triggered by NIR | [58] |
Nanospheres, a diameter of ~270 nm (LMNP@CM) | Surface grafting: polyethylene glycol and tumor cell membranes (CM) as antigens Drug loaded: N/AShape transformation: triggered by NIR | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Qiao, R.; Davis, T.P.; Tang, S.-Y. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors 2020, 10, 196. https://doi.org/10.3390/bios10120196
Li H, Qiao R, Davis TP, Tang S-Y. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors. 2020; 10(12):196. https://doi.org/10.3390/bios10120196
Chicago/Turabian StyleLi, Haiyue, Ruirui Qiao, Thomas P. Davis, and Shi-Yang Tang. 2020. "Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review" Biosensors 10, no. 12: 196. https://doi.org/10.3390/bios10120196
APA StyleLi, H., Qiao, R., Davis, T. P., & Tang, S. -Y. (2020). Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors, 10(12), 196. https://doi.org/10.3390/bios10120196