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Abstract: Procalcitonin (PCT) is a known protein biomarker clinically used for the early stages of sepsis
diagnosis and therapy guidance. For its reliable determination, sandwich format magnetic bead-based
immunoassays with two different electrochemical detection approaches are described: (i) disposable
screen-printed carbon electrodes (SPE-C, on-drop detection); (ii) electro-kinetically driven microfluidic
chips with integrated Au electrodes (EMC-Au, on-chip detection). Both approaches exhibited enough
sensitivity (limit of detection (LOD) of 0.1 and 0.04 ng mL−1 for SPE-C and EMC-Au, respectively;
cutoff 0.5 ng mL−1), an adequate working range for the clinically relevant concentrations (0.5–1000
and 0.1–20 ng mL−1 for SPE-C and EMC-Au, respectively), and good precision (RSD < 9%), using low
sample volumes (25 µL) with total assay times less than 20 min. The suitability of both approaches
was successfully demonstrated by the analysis of human serum and plasma samples, for which
good recoveries were obtained (89–120%). Furthermore, the EMC-Au approach enabled the easy
automation of the process, constituting a reliable alternative diagnostic tool for on-site/bed-site
clinical analysis.
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1. Introduction

Nowadays, the burden of sepsis on health care is highly significant. It is estimated that
approximately 13 million people worldwide become septic every year and four million people die
of sepsis. Mortality rates for severe sepsis range between 30 to 50%, and higher than 50% for septic
shock [1]. Furthermore, despite advances in health care, the incidence of sepsis is increasing every year
and a continuous increment is expected as the population ages [2]. With this in mind, new diagnostic
tests that help clinicians to diagnose and manage this disease can significantly yield improvements
in their patients’ outcomes.

Procalcitonin (PCT) is a protein precursor of the calcitonin hormone, composed of 116 amino
acids, with a molecular weight of 13 kDa. It is considered a very specific biomarker in early clinical
diagnosis for severe infection diseases, including sepsis [3]. Under normal physiological conditions,
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PCT levels in human blood is lower than 0.25 ng mL−1, but it can rapidly increase in response to
pro-inflammatory stimulation, with a half-life of 24 h [4,5]. Measurements of PCT levels could be used
for diagnosis, as well as for evaluations of the treatment effectiveness, determining the appropriate
dosage and duration of antibiotic therapy [6–8].

Several methods have been reported for PCT determination, mainly based in the selective recognition
provided by immunological interactions. These methodologies include immunoturbidimetric assays [9],
chemiluminescent immunoassays [10–16], immunochromatographic assays [17–22], surface plasmon
resonance biosensors [23–25], fluorescence immunosensors [26–32], ellipsometry immunosensors [33],
colorimetric immunoassays [34–36], and electrochemical immunoassays [37–56]. Even different
immunoanalytical methodologies are commercially available by Brahams GmbH (Henningsdorf,
Germany). Although some of them reach impressive sensitivity, the vast majority present several
limitations, such as their high complexity, sophisticated instrumentation requirements and/or unproven
applicability in the real clinical scenario.

Furthermore, among all the detection systems, electrochemistry stands out due to its inherent
miniaturization, portability, low cost and ability to tailor electrode materials [57] The coupling of
this detection principle has been widely explored in immunoassays for clinical diagnoses. In particular,
electrochemical magneto-immunosensors have proven to be sensitive, accurate, fast and inexpensive,
capable of achieving adequate limits of detection and very suitable as point-of-care tools for
decentralized analysis. The use of magnetic beads has been largely exploited in recent years due to
their well-known properties such as improved assay kinetics and easy manipulation, while they are
perfectly coupled to electrochemical detection [58]. However, magneto-immunosensors [16,17,35,36]
in general, and particularly those using electrochemical detection [40], have not been widely explored
for PCT determination.

Keeping in mind the aforementioned characteristics of electrochemistry, it can be considered as a
very suitable detection technique to be interfaced with microfluidics as well. In addition, microfluidics
enable lower sample consumption, as well as finely controlled and automated (electro)-chemical
reactions in pocket-sized devices containing microchannels to provide point-of-care applications [59,60].
In this sense, they constitute an ideal platform to perform integrated microscale immunoassays [59–64].
Despite these inherent advantages, few microfluidic immunosensors for PCT determination have been
previously published, and most of them are based on optical techniques [26,28–30,39].

In this work, we demonstrate the use of magnetic bead-based electrochemical immunoassays for
PCT determination in human serum samples using two approaches: (i) disposable screen-printed
carbon electrodes (SPE-C, on-drop detection) and (ii) electro-kinetically driven microfluidic chips with
integrated Au electrodes (EMC-Au, on-chip detection).

2. Materials and Methods

2.1. Reagent and Solutions

The analyte, procalcitonin (PCT) (8PC5), and biotinylated and horseradish peroxidase
(HRP)-conjugated monoclonal anti-PCT antibodies(18B7,44D9) were purchased from HyTest (Turku,
Finland).

The lyophilized PCT was dissolved in deionized water (Millipore Milli-Q purification system).
Further PCT dilutions were carried out with 0.1 M phosphate buffered saline and 0.01% Tween-20
(PBST) buffer, pH 7.5. Antibody solutions were prepared in 0.1 M phosphate buffered saline and 0.01%
Tween-20 (PBST) buffer, pH 7.5.

Streptavidin-coated superparamagnetic beads (Dynabeads® M-280 Streptavidin) (10 mg mL−1)
were obtained from Invitrogen (Carlsbad, CA, USA), and bovine serum albumin (BSA), hydroquinone
(HQ) and 30% H2O2 PERDROGENTM (w/w) were purchased from Sigma-Aldrich (Madrid, Spain).
Hydroquinone and hydrogen peroxide solutions for the electrochemical detection were prepared
in 0.1 M of phosphate-buffered (PB) solution, pH 7.0.
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2.2. Apparatus and Electrodes

Magnetic racks for magnetic bead immobilization onto the working electrode surface were
purchased from Metrohm DropSens (Oviedo, Spain). A magnetic block, DynaMag™-2, and a Sample
Rack for DynaMag™-2 for magnetic particle handling were purchased from ThermoFisher, (Carlsbad,
CA, USA). For the incubation steps, a Vortex Mixer-ZX3 from Velp Scientifica and a Thermoshaker
TS-100C from Biosan, (Riga, Latvia) were used.

Multi potentiostat/galvanostat µSTAT 8000 and “DropView 8400” software for measurement setup
and data acquisition, handling, processing, and exporting was used for the on-drop amperometric
measurements. Screen-printed carbon electrodes (SPCE) DRP-110, with a carbon working electrode
(ø = 4 mm), carbon counter electrode and silver reference electrode, from Metrohm DropSens (Oviedo,
Spain), were used (Figure S1A). A holder (MCE-HOLDER-DC02) and microchips (MCE-SU8-Au002T)
(38× 13× 0.75 mm) from MicruX Technologies S.L. (Oviedo, Spain) were used for on-chip measurements.
The microchips integrate three Au electrodes of 100 µm (working electrode (WE), auxiliary electrode
(AE) and counter electrode (CE)) with a separation channel length of 30 mm and an injection channel
length of 5 mm. The width of the microchannel is 50 µm and their depth is 20 µm. The microchip
was placed into a holder, where all electric contacts and reservoirs were pre-defined (Figure S1B).

For microchip pre-treatment, 0.1 M NaOH solution was flushed through the channels for 20 min,
followed by rinsing with deionized water for 10 min and PBST 0.1 mM (running buffer) for 10 min.

The Bi-potentiostat HVSTAT2010, for applying the high-voltages and recording the amperometric
measurements, was obtained from MicruX Technologies S.L. (Oviedo, Spain).

2.3. Samples

Human samples from healthy volunteers, with undetectable PCT levels, were obtained after their
written informed consent and authorization.

This study was conducted in accordance with the Declaration of Helsinki Ethical Principles,
and was approved by the Ethics Committee of the Hospital Clínico San Carlos (Spain) (reference code:
C.P.—C.I. 16/161-E. Date of approval: 23 May 2016).

2.4. Immunoassay Procedures

Based on a typical sandwich ELISA protocol, 2 µL of the commercial streptavidin-coated magnetic
bead (MBs) suspension was placed into a microcentrifuge tube, and subjected to a washing step
according to the manufacturer’s protocol. These beads were incubated in 50 µL (5 µg mL−1) of
biotinylated anti-PCT solution in PBST buffer at room temperature and stirred for 5 min. After that,
the microcentrifuge tube was placed on the magnetic block and the supernatant was removed,
followed by two washing steps with 100 µL of PBST buffer. Then, the MBs functionalized with
anti-PCT antibody were re-suspended in 25 µL of sample or PCT standard solutions, plus 25 µL of
HRP-conjugated anti-PCT antibody solution (0.36 µg mL−1, final concentration) in PBST with 0.1%
BSA. After the suspension incubation at room temperature for 15 min, the supernatant was removed
and three washing steps were carried out.

Once the immunoreaction was carried out, electrochemical detection was performed using
both approaches: (i) on-drop onto screen-printed carbon electrodes (SPE-C); (ii) on-chip into
electro-kinetically driven microfluidic chips with integrated Au electrodes (EMC-Au) (Figure 1).
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Figure 1. Magnetic bead-based electrochemical immunoassays—on-drop screen-printed carbon
electrodes (SPE-C) and on-chip electro-kinetically driven microfluidic chips with integrated Au
electrodes (EMC-Au).

2.5. Electrochemical Detection On-Drop onto SPE-C

After the immunocomplex formation, the MBs were re-suspended in 1-mM (45-µL) hydroquinone
solution and transferred to the SPCE, where they were placed onto the working electrode surface using
a magnet. Finally, amperometric measurements were performed at an applied potential of −0.20 V.
After current stabilization, 5 µL of hydrogen peroxide solution (final concentration = 5 mM) was added,
and the current was recorded.

The amperometric signals were calculated as the difference between the steady-state
and the background currents at 200 s (Figure S2A). The signals were then fit to a four-parameter logistic
regression using SigmaPlot 10.0 (Equation (1)).

ip =

 imax − imin

1 +
(EC50

x

)h
+ imin

 (1)

where imax and imin are the maximum and minimum current values of the calibration graph; EC50 value
is the analyte concentration corresponding to 50% of the maximum signal; h is the hill slope.

2.6. Electrochemical Detection into EMC-Au

In this case, the MB immunocomplexes were re-suspended in 10 µL of PBST buffer for their
subsequent electro-kinetical introduction into the microfluidic chip. Therefore, this suspension
was deposited into the sample reservoir (SR) of the microfluidic chip (Figure 2). In addition,
microchannels, the running buffer and detection reservoirs (RB and DR) were filled with PBST, while
the enzymatic substrate reservoir (ER) was filled with a mixture of 45 µL of 1 mM HQ plus 5 µL of
50 mM H2O2.

An electrokinetic injection protocol was optimized for the EMC-Au electrochemical detection
(Figure 2). MBs were dragged to the longitudinal channel, applying a voltage of +1500 V between
reservoirs SR and DR for three pulses of 25 s, while other reservoirs were left floating. They were
retained within the microchannel by the aid of a magnet situated on the top. After a washing step
with PBST (10 s applying +1500 V from RB to DR reservoirs) the enzymatic substrates were injected
and pumped to cross through the particle bed (200 s applying +1500 V from ES to DR reservoirs).
In-channel amperometric measurements were taken at an applied potential of −0.20 V on the Au
working electrode. The amperometric signals were calculated as the difference between the steady-state
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and the background currents at 200 s (Figure S2B) and fit to a four-parameter logistic regression
(Equation 1) using SigmaPlot 10.0. After the measurement, MBs were removed from the main channel
by taking off the magnet and washing the channel by injection of buffer for 200 s (+1500 V) from RB
to DR.
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Taking into account that only a small fraction of the MBs deposited into the sample reservoir are
introduced into the main channel, the analysis can be automatically repeated several times without
the need for manual intervention or conditioning of the microchip.

3. Results and Discussion

3.1. Optimization of the Immunoassay

The functionalization of the MBs with the biotinylated captured antibody (cAb) was evaluated in a
concentration of antibodies between zero and 7.5 µg mL−1. The amount of cAb depends on the number
of MBs used and the number of streptavidin molecules immobilized onto them. The maximum
current intensity was obtained using a concentration of 5.0 µg mL−1, followed by a plateau that
denotes the saturation of the binding sites (Figure S3A). A similar selection protocol was followed for
the determination of the optimal concentration of the detection antibody. Titration was performed for
concentrations ranging from 0.04 to 0.7 µg mL−1, where the maximum intensity current was reached
for 0.36 µg mL−1 of anti-PCT-HRP producing the saturation of the antigen/capture-antibody binding
sites (sandwich format) (Figure S3B). Incubation times were also studied for different stages. Times of
5 min for the immobilization of captured antibodies to modified magnetic beads produced 85% of
the maximum intensity current (Figure S4A). Moreover, the simultaneous or sequential incubation
of the analyte and detection antibody was also considered. In total, 97% of the maximum current
was obtained when simultaneous incubation of both species was performed for 15 min (Figure S4B).
Non-specific adsorption was almost negligible (<1%) when adding 0.1% BSA to the dilution buffer
during the incubation stages.

Once the immunorecognition was performed, the electrochemical detection was carefully studied
using two different approaches: (i) SPE-C, on-drop detection; (ii) EMC-Au, on-chip detection.

MB immunocomplexes were deposited onto the surface of the SPE-C and retained by a magnet,
while the enzymatic substrate and electrochemical mediator (H2O2 and HQ) were added to perform
the amperometric detection at −0.20 V. The detection potential was evaluated between zero and −0.3 V.
The signal increased up to−0.2 V, keeping constant for larger negative potentials, as this one was the one
we selected for the amperometric measurements.
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For the EMC-Au approach, electrokinetic protocol for the injection of modified MB
immunocomplexes and enzymatic substrate/electrochemical mediators as well as electrochemical
detection were carefully studied as well (see Table 1).

Table 1. Electrokinetics and electrochemical detection, EMC-Au optimizations.

Step Parameter Studied Range Selected Value

Immunocomplex-MB Injection

Immunocomplex-MB
dilution (v/v) 1:10–1:200 1:10

Applied Voltage (V) +1000–2000 +1500

Number of pulses 1–5 3

Pulse time (s) 10–50 25

Washing

Applied Voltage (V) +1000–2000 1500

Number of pulses 1–5 1

Pulse time (s) 10–50 25

Enzyme substrates pumping/driven
Applied Voltage (V) +1000–2000 +1500

Time (s) —- 200 s

Detection E (V) −0.10–(−0.30) −0.20

The applied voltage, number of pulses and pulse time for the MB immunocomplex injection
from the SR were assayed to place the optimum amount of MBs in the microchannel, in order to
obtain the highest signal without clogging the channel. Electrokinetic conditions for the washing
step were also studied to eliminate non-magnetically retained MBs, improving the assay precision.
Then, the enzymatic substrates were continuously driven at +1500 V for 200 s. Under these optimal
electrokinetic conditions, the detection potential was assayed between −0.10 V and −0.30 V. The highest
signal/noise features were obtained at −0.20 V, which was chosen as the optimum detection potential.

3.2. Analytical Characteristics

Analytical performance was carefully evaluated in both SPE-C and EMC-Au approaches.
The calibration curves are depicted in Figure 3, while their corresponding analytical characteristics are
summarized in Table 2.
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Table 2. Analytical characteristics for procalcitonin (PCT) determination using both approaches: SPE-C
and EMC-Au.

Analytical Characteristic SPE-C EMC-Au

EC50, ng mL−1 20.2 2.2

Working range, ng mL−1 0.5–1000 0.1–20

r 0.990 0.990

LOD, ng mL−1 0.1 0.04

Intra-assay, CV% <7.5% 5%

Inter-assay, CV% 8% 9%

From the obtained results, it is important to remark that both immunoassay detection approaches
(SPE-C and EMC-Au) enabled PCT determination at the clinical significance levels needed for sepsis
diagnosis and monitoring (LOD < cutoff). Interestingly, EMC-Au detection provides a lower LOD
(calculated with a 3 S/m criteria where S is the standard deviation of the lowest assayed concentration
(n = 10) and m is the slope of the calibration plot), while the SPE-C detection offers a wider working range
(see Figure 3 and Table 2). This aspect can be attributed to the difference in the number of MBs trapped
onto the SPE-C and the dimensions and material of the working electrode (C electrode, Ø = 4 mm)
compared to that of the microfluidic chip (Au electrode, w = 100 µm). Moreover, a relevant comparative
aspect deals with the shorter analysis time in the microfluidic chip, together with the possibility to
automate the process, which enhances its potential as a point-of-care (POC) device. Indeed, taking
into account that only a small fraction of the MBs from the sample reservoir are introduced into
the main channel for detection each time, the analysis can be automatically repeated several times
by programming the corresponding electro-kinetically driven protocol; (washing out the MBs from
the previous run and placing a new batch into the central channel without any external intervention
for a next run). The same MB immunocomplex batch (using 25 µL of sample) can be consecutively
measured five times with good intra-assay precision (CV < 5%) in just 40 min. However, in the case
of the SPE-C approach, to obtain five replicates, 125 µL of the sample and around 100 min would
be needed.

PCT concentrations at two levels were used to evaluate the intra-assay (0.5 and 0.1 ng mL−1)
and inter-assay precision (1000 and 20 ng mL−1) for on-drop SPE-C and on-chip EMC-Au, respectively
(Table 2). In the case of SPE-C detection, the intra-assay and inter-assay precisions (n = 5) gave
CV values below 8% in both cases. For EMC-Au, the intra-assay precision gave CV values of 5%
(n = 5, same batch of MB immunocomplexes). The inter-assay precision for different MBs batches gave
CV values of 9%.

The selectivity of the immunosensing configuration for PCT analysis was checked in the presence
of a large excess of C-reactive protein (CRP) (16 µg mL−1, another biomarker usually determined
for sepsis diagnosis), heparin (1 mg mL−1), ethylenedinitrilotetraacetic acid (EDTA) (1 mg mL−1)
and citrate (0.15 M), as other relevant molecules that can coexist in blood samples. Without exception,
cross-reactivity percentages lower than 1% were obtained. These results demonstrate the excellent
selectivity of the PCT immunoassay.

Due to its potential use as a POC, in order to simplify the entire procedure and, in turn, to reduce
the final analysis times, the stability of the MB–captured antibody complexes was studied to be used
as stock “reagents”. Their stability was studied at 4 ◦C during a period of 1 month using the on-drop
SPE-C immunosensor approach. The control chart of the stability assay is shown in Figure 4, where
each point corresponds to the mean value for three successive measurements performed in the same
day (intra-day immunoassays). As can be seen, the immunosensor response remained inside the control
limits placed at ±three times the standard deviation value calculated for the whole set of experiments,
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during the entire period of time checked (inter-day immunoassays, n = 14). These results demonstrate
the excellent stability of the MB–cAb complexes.Biosensors 2020, 10, x FOR PEER REVIEW 8 of 15 
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Figure 4. Stability of the MB–cAb complexes. Central and limit lines correspond to average ± three
times the standard deviation (n = 14) obtained for inter-day immunoassays. Each individual point
corresponds to the average ± standard deviation (n = 3) obtained for the intra-day immunoassays.

3.3. Analysis of Human Serum and Plasma Samples

Analytical capabilities for PCT determination in clinical samples were also evaluated. Calibration
curves were carried out in human serum and plasma from healthy individuals, using the on-drop
SPE-C immunosensor. No matrix effect was observed after a comparison of the slope calibration plots
obtained in PBS buffer with those obtained in both kinds of matrices. Indeed, identical slope calibration
values (sensitivities) of 4300 ± 200, 4400 ± 400 and 4500 ± 200 nA ng−1 mL were obtained in buffer,
serum and plasma, respectively.

Then, accuracy was carefully studied using both detection approaches by recovery experiments
conducted on both kinds of matrices spiked with relevant clinical levels of PCT. Table 3 demonstrates
the suitability of the developed on-drop SPE-C and on-chip EMC-Au for PCT determination in human
blood matrices at clinically relevant levels. It is important to remark that no single sample pretreatment
was needed, due to the absence of matrix effects and the adequate working range of the immunoassay
in both detection schemes. This aspect, which enhances the ease of use, together with the automation
of the detection step and the portable characteristics of the devices, make the developed approaches
suitable for potential POC tools for PCT determination and its use for sepsis diagnosis.

Table 3. PCT determination in human plasma and serum samples.

PCTadded (ng/mL)

SPE-C EMC-Au

Serum Plasma Serum

PCTfound
(ng/mL)

Recovery
(%)

PCTfound
(ng/mL)

Recovery
(%)

PCTfound
(ng/mL)

Recovery
(%)

Before spiked <0.1 — <0.1 — <0.04 —
1.0 0.9 90 ± 3 1.2 120 ± 6 1.1 110 ± 5
10.0 8.9 89 ± 14 10.4 104 ± 7 9.6 96 ± 2

100.0 99 99 ± 7 101 101 ± 2 — * —

* Sample was not directly measured, since its concentration is beyond the working range.
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As previously mentioned in the introduction section, in recent years, significant effort has been
focused on the development of new approaches for PCT determination. However, the potential of
immunosensors based on magnetic beads has not been widely explored for PCT determination, which
is apparent in the low number of publications (Table 4). In comparison with those works, our SPE-C
approach offers enough sensitivity (similar to our previous work [40]) to perform reliable PCT detection,
but with a significant reduction in the analysis time and sample volumes [16,17,35,36]. Moreover,
the easy automation of the electrochemical transduction and the improved sensitivity [40] bring our
new approach (on-chip EMC-Au) closer to the POC concept.

On the other hand, our on-chip EMC-Au approach has demonstrated to be a promising
analytical strategy for PCT determination. It couples a magneto immunoassay and an electrochemical
microfluidic chip under controlled electrokinetics. This approach presents advantages such as the easy
miniaturization and integration of all system elements, fulfilling the POC requirements. As can be
observed in Table 5, our approach is highly competitive in terms of sensitivity, analysis time and sample
volume with previous on-chip non electrochemical-based approaches reported in the literature.



Biosensors 2020, 10, 66 10 of 15

Table 4. Overview of magneto-immunosensors for PCT determination.

Technique cAb Immobilization Assay Format dAb Label WR LOD Analysis Time * Sample Volume Sample Ref.

Chemiluminescence MB–(anti-FITC–Ab)/FITC–cAb Double
Sandwich dAb–ABEI 0.09–600 ng mL−1 30 pg mL−1 25 min 40 µL Serum 16

Chemiluminescence MB–COOH/cAb Sandwich dAb–(PS-ALP) 1–104 pg mL−1 0.045 pg mL−1 1 h 800 µL Serum 17

UV-vis Spectroscopy MB–COOH/cAb Sandwich dAb–HRP 0.1–10 ng mL−1 40 pg mL−1 1.5 h 100 µL Serum 35

UV-vis Spectroscopy MB–COOH/cAb Sandwich dAb–(AuNPs-HRP) 0.02–20 ng mL−1 20 pg mL−1 1.5 h 50 µL Serum 36

Amperometry MB–Streptavidin/Biotin–cAb Sandwich dAb–HRP 0.25–100 ng mL−1 50 pg mL−1 20 min 25 µL Neonates plasma 40

Amperometry MB–Streptavidin/Biotin–cAb Sandwich dAb–HRP 0.5–1000 ng mL−1 100 pg mL−1 20 min 25 µL Serum Plasma Our work (SPE-C)

* Analysis time is measured after captured Ab immobilization stage. Abbreviations used: antibody (Ab); captured antibody (cAb); detection antibody (dAb); working range (WR); limit of
detection (LOD); magnetic beads (MBs); horseradish peroxidase (HRP); fluorescein isothiocyanate (FITC); (aminobutyl)-N-(ethylisoluminol) (ABEI-N); alkaline phosphatase (ALP);
polystyrene microsphere (PS); gold nanoparticles (AuNPs).

Table 5. Overview of microfluidics immunoassays for PCT determination.

Technique cAb
Immobilization Assay Format dAb Label WR LOD Analysis Time * Sample Volume Sample Ref.

Fluorescence Covalent cAb Sandwich dAb–DY647 0.7–25 ng mL−1 0.2 ng mL−1 23 min 100 µL Serum 26

Reflection
Fluorescence Covalent cAb Sandwich dAb–DY647 5–500 ng mL−1 1 ng mL−1 11 min 10–75 µL Serum

Plasma 28

Fluorescence Adsorption cAb Sandwich dAb–DY647 640–3400 ng mL−1 50 ng mL−1 22 min 280 µL Serum
Diluted 1:10 29

Reflection
Fluorescence Adsorption cAb Sandwich dAb–cyanine 0.06–7.18 ng mL−1 0.02 ng mL−1 <9 min 50 µL

Serum
Plasma

Whole blood
30

Nanoplasmonic Covalent cAb Sandwich dAb–AuNPs 1 pg
mL−1–100 ng mL−1 95 fg mL−1 <15 min — Serum 39

Amperometry MB–Streptavidin/Biotin–cAb Sandwich dAb–HRP 0.1–20 ng mL−1 40 pg mL−1 20 min 25 µL Serum
Plasma

Our work
(EMC-Au)

* Analysis time is measured after captured Ab immobilization stage. Abbreviations used: antibody (Ab); captured antibody (cAb); detection antibody (dAb); working range (WR); limit of
detection (LOD); magnetic beads (MBs); horseradish peroxidase (HRP); fluorescein isothiocyanate (FITC); (aminobutyl)-N-(ethylisoluminol) (ABEI-N); alkaline phosphatase (ALP);
polystyrene microsphere (PS); gold nanoparticles (AuNPs).
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4. Conclusions

A magnetic bead-based immunoassay using both on-drop SPE-C and on-chip EMC-Au
electrochemical detection approaches have exhibited an excellent analytical performance for PCT
determination, allowing for its determination in the clinically relevant concentration range, using very
short analysis times and a low volume of serum and plasma samples. Both detection technologies
are complementary. While SPE-C was simpler, the EMC-Au approach permits greater control
and easier automation of the process, constituting an even more reliable alternative diagnostic tool for
on-site/bed-site clinical analysis.

Both investigated approaches have demonstrated excellent biosensing capabilities for the simple
and accurate determination of PCT in human samples when only small sample volumes are accessible.
Therefore, these results reveal the analytical potential of highly miniaturized electrochemical devices
in the field of PCT biosensing, one of the most important sepsis protein biomarkers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6374/10/6/66/s1,
Figure S1: Electrochemical devices for immunoassay electrochemical detection: disposable SPE-C for on-drop
approach and EMC-Au for on-chip approach; Figure S2: Amperometric detection of the mediated reduction of H2O2
with HQ using on-drop (A) and on-chip (B) approaches in the absence and presence of PCT; [PCT] = 100 ng mL−1

(A), 0.5 ng mL−1 (B); Figure S3: Current signals obtained for different concentrations of capture antibody (cAb)
(A) and detection antibody (dAb) (B) using the on-drop SPE-C approach. Conditions: incubation time = 60 min
each stage; PCT concentration 1000 ng mL−1; Figure S4: Current signals obtained for different incubation times
in the immobilization of capture antibody (cAb) (A) and binding of detection antibody (dAb) (B) using the on-drop
SPE-C approach. Conditions: cAb = 5 µg mL−1; dAb = 0.36 µg mL−1; PCT concentration 1000 ng mL−1.
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