The Ketogenic Diet: Breath Acetone Sensing Technology
Abstract
:1. Introduction
2. Current Technology
3. Future Technologies
3.1. Metal Oxides and Organic Based Sensors
3.1.1. Zinc Oxide, Cadmium Based
3.1.2. Iron Oxides
3.1.3. Tin Oxides
3.1.4. Tungsten Oxides
3.1.5. Nickel Oxides
3.2. Light Based
3.3. Comparisons
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Marie, L.D.A. La Lutte Contrjz L’épilepsie Par La Rééducation Alimentaire. Epilepsia 1911, A2, 265–273. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Likhodii, S.S.; Rarama, E.; Benoit, S.; Liu, Y.-M.C.; Chartrand, D.; Curtis, R.; Carmant, L.; Lortie, A.; Comeau, F.J.; et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 2006, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Musa-Veloso, K.; Rarama, E.; Comeau, F.; Curtis, R.; Cunnane, S. Epilepsy and the Ketogenic Diet: Assessment of Ketosis in Children Using Breath Acetone. Pediatr. Res. 2002, 52, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R. The effects of ketonemia on the course of epilepsy. Mayo Clin. Proc. 1921, 2, 307–308. [Google Scholar]
- Musa-Veloso, K.; Likhodii, S.S.; Cunnane, S.C. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 2002, 76, 65–70. [Google Scholar] [CrossRef]
- Saslow, L.R.; Kim, S.; Daubenmier, J.J.; Moskowitz, J.T.; Phinney, S.D.; Goldman, V.; Murphy, E.J.; Cox, R.M.; Moran, P.; Hecht, F.M. A Randomized Pilot Trial of a Moderate Carbohydrate Diet Compared to a Very Low Carbohydrate Diet in Overweight or Obese Individuals with Type 2 Diabetes Mellitus or Prediabetes. PLoS ONE 2014, 9, e91027. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.C. Measuring breath acetone for monitoring fat loss: Review. Obesity 2015, 23, 2327–2334. [Google Scholar] [CrossRef]
- Ketogenic Diet Market to Reach US$ 15,640.6 Mn at CAGR of 5.5% in 2027. The Insight Partners. Available online: https://www.theinsightpartners.com/reports/ketogenic-diet-market (accessed on 4 November 2020).
- Pleil, J.D.; Lindstrom, A.B. Collection of a single alveolar exhaled breath for volatile organic compounds analysis. Am. J. Ind. Med. 1995, 28, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.W.; Boumans, M.L.; Stobberingh, E.; Boots, A.W.; Roekaerts, P.M.H.J.; Bergmans, D.C.J.J.; Van Schooten, F.-J. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Godelmann, R.; Steiner, M.; Ansay, B.; Weigel, J.; Krieg, G. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Central J. 2010, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalapos, M.P. On the mammalian acetone metabolism: From chemistry to clinical implications. Biochim. Biophys. Acta 2003, 1621, 122–139. [Google Scholar] [CrossRef]
- Crofford, O.B.; Mallard, R.E.; Winton, R.E.; Rogers, N.L.; Jackson, J.C.; Keller, U. Acetone in breath and blood. Trans. Am. Clin. Climatol. Assoc. 1977, 88, 128–139. [Google Scholar] [PubMed]
- Samudrala, D.; Lammers, G.; Mandon, J.; Blanchet, L.; Schreuder, T.H.A.; Hopman, M.T.E.; Harren, F.J.; Tappy, L.; Cristescu, S.M. Breath acetone to monitor life style interventions in field conditions: An exploratory study. Obesity 2014, 22, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Laffel, L.M. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab. Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B.W. Blood Ketone Bodies and Breath Acetone Analysis and Their Correlations in Type 2 Diabetes Mellitus. Diagnostics 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Amlendu, P.; Ashley, Q.; Di, W.; Haojiong, Z.; Mirna, T.; David, J.; Xiaojun, X.; Francis, T.; Nongjian, T.; Forzani, E.S. Breath Acetone as Biomarker for Lipid Oxidation and Early Ketone Detection. Glob. J. Obes. Diabetes Metab. Syndr. 2014, 1, 012–019. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.-S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of Low-Carbohydrate and Low-Fat Diets. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Gemmink, A.; Schrauwen, P.; Hesselink, M.K.C. Exercising your fat (metabolism) into shape: A muscle-centred view. Diabetologia 2020, 63, 1453–1463. [Google Scholar] [CrossRef]
- Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Keulen, K.E.; Jansen, M.E.; Schrauwen, R.W.M.; Kolkman, J.J.; Siersema, P.D. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment. Pharmacol. Ther. 2019, 51, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Mitrayana; Apriyanto, D.K.; Satriawan, M. CO2 Laser Photoacoustic Spectrometer for Measuring Acetone in the Breath of Lung Cancer Patients. Biosensors 2020, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.P.; Liu, C.-P.; Mwakikunga, B.W. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Jones, A. Breath-Acetone Concentrations in Fasting Healthy Men: Response of Infrared Breath-Alcohol Analyzers. J. Anal. Toxicol. 1987, 11, 67–69. [Google Scholar] [CrossRef]
- Paoli, A.; Bosco, G.; Camporesi, E.M.; Mangar, D. Ketosis, ketogenic diet and food intake control: A complex relationship. Front. Psychol. 2015, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Clarke, W.L.; Jones, T.; Rewers, A.; Dunger, D.; Klingensmith, G.J. Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr. Diabetes 2009, 10, 134–145. [Google Scholar] [CrossRef]
- Biosense. Readout Health, Biosense™. Available online: https://mybiosense.com/ (accessed on 5 November 2020).
- Lexico Health. Keto Breath Analyzer. Available online: https://www.lexicohealth.com/ketone-breath-analyzer (accessed on 5 November 2020).
- Lencool. Available online: https://www.amazon.com/Ketosis-breathalyzer-Testing-ketosis-Mouthpieces/dp/B07RXX9Q1Z (accessed on 5 November 2020).
- Qetoe Ketone Breath Meter. Available online: https://www.qetoe.com/ (accessed on 5 November 2020).
- House of Keto Monitor™. Available online: https://www.houseofketo.com/ (accessed on 5 November 2020).
- KETOscan. Available online: https://ketoscan.com/ketoscan-technology/ (accessed on 5 November 2020).
- Schwarm, K.K.; Strand, C.L.; Miller, V.A.; Spearrin, R.M. Calibration-free breath acetone sensor with interference correction based on wavelength modulation spectroscopy near 8.2 μm. Appl. Phys. A 2020, 126, 9. [Google Scholar] [CrossRef]
- Taucher, J.; Hansel, A.; Jordan, A.; Lindinger, W. Analysis of Compounds in Human Breath after Ingestion of Garlic Using Proton-Transfer-Reaction Mass Spectrometry. J. Agric. Food Chem. 1996, 44, 3778–3782. [Google Scholar] [CrossRef]
- Landsberg, L.; Young, J.B.; Leonard, W.R.; Linsenmeier, R.A.; Turek, F.W. Is obesity associated with lower body temperatures? Core temperature: A forgotten variable in energy balance. Metabolism 2009, 58, 871–876. [Google Scholar] [CrossRef]
- Gaffney, E.M.; Lim, K.; Minteer, S.D. Breath biosensing: Using electrochemical enzymatic sensors for detection of biomarkers in human breath. Curr. Opin. Electrochem. 2020, 23, 26–30. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, H.; Wang, X.; Li, L.; Hu, J. Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens. Actuators B Chem. 2016, 235, 56–66. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jang, J.-S.; Koo, W.-T.; Choi, S.-J.; Kim, S.-J.; Kim, I.-D. Hierarchically interconnected porosity control of catalyst-loaded WO3 nanofiber scaffold: Superior acetone sensing layers for exhaled breath analysis. Sens. Actuators B Chem. 2018, 259, 616–625. [Google Scholar] [CrossRef]
- Jung, H.; Cho, W.; Yoo, R.; Lee, H.-S.; Choe, Y.-S.; Jeon, J.Y.; Lee, W. Highly selective real-time detection of breath acetone by using ZnO quantum dots with a miniaturized gas chromatographic column. Sens. Actuators B Chem. 2018, 274, 527–532. [Google Scholar] [CrossRef]
- Jo, Y.-M.; Lim, K.; Choi, H.J.; Yoon, J.W.; Kim, S.Y.; Yoon, J.-W. 2D metal-organic framework derived co-loading of Co3O4 and PdO nanocatalysts on In2O3 hollow spheres for tailored design of high-performance breath acetone sensors. Sens. Actuators B Chem. 2020, 325, 128821. [Google Scholar] [CrossRef]
- Li, J.; Smeeton, T.; Zanola, M.; Barrett, J.; Berryman-Bousquet, V. A compact breath acetone analyser based on an ultraviolet light emitting diode. Sens. Actuators B Chem. 2018, 273, 76–82. [Google Scholar] [CrossRef]
- Sachdeva, S.; Agarwal, A.; Agarwal, R. A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection. J. Electron. Mater. 2019, 48, 1617–1628. [Google Scholar] [CrossRef]
- Peng, S.; Ma, M.; Yang, W.; Wang, Z.; Wang, Z.; Bi, J.; Wu, J. Acetone sensing with parts-per-billion limit of detection using a BiFeO3-based solid solution sensor at the morphotropic phase boundary. Sens. Actuators B Chem. 2020, 313, 128060. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Gass, S.; Schmid, A.; Amann, A.; Pratsinis, S.E. Breath acetone monitoring by portable Si:WO3 gas sensors. Anal. Chim. Acta 2012, 738, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šetka, M.; Bahos, F.; Chmela, O.; Matatagui, D.; Gràcia, I.; Drbohlavová, J.; Vallejos, S. Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature. Sens. Actuators B Chem. 2020, 321, 128573. [Google Scholar] [CrossRef]
- Modi, N.; Priefer, R. Effectiveness of mainstream diets. Obes. Med. 2020, 18, 100239. [Google Scholar] [CrossRef]
- Ito, K.; Kawamura, N.; Suzuki, Y.; Maruo, Y.Y. Colorimetric detection of gaseous acetone based on a reaction between acetone and 4-nitrophenylhydrazine in porous glass. Microchem. J. 2020, 159, 105428. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.; Guo, P.; Li, J.; Chen, C.; Wang, T.; Sun, K.; He, D. Cr-Doped Urchin-Like WO3 Hollow Spheres: The Cooperative Modulation of Crystal Growth and Energy-Band Structure for High-Sensitive Acetone Detection. Sensors 2020, 20, 3473. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, J.; Liu, Z.; Li, X.; Geng, Y.; Tian, X.; Du, Y.; Qian, Z. Enhanced acetone-sensing properties to ppb detection level using Au/Pd-doped ZnO nanorod. Sens. Actuators B Chem. 2020, 310, 127129. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, X.; Xu, L.; Zhu, S.; Yang, S.; Chen, X.; Dong, B.; Bai, X.; Lu, G.; Song, H. Graphene quantum dot-functionalized three-dimensional ordered mesoporous ZnO for acetone detection toward diagnosis of diabetes. Nanoscale 2019, 11, 11496–11504. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, S.; Aasi, A.; Farhangdoust, S.; Panchapakesan, B. Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Appl. Surf. Sci. 2021, 536, 147756. [Google Scholar] [CrossRef]
- Deng, L.; Bao, L.; Xu, J.; Wang, X.; Wang, X. Highly sensitive acetone gas sensor based on ultra-low content bimetallic PtCu modified WO3·H2O hollow sphere. Chin. Chem. Lett. 2020, 31, 2041–2044. [Google Scholar] [CrossRef]
- Kohli, N.; Hastir, A.; Kumari, M.; Singh, R.C. Hydrothermally synthesized heterostructures of In2O3/MWCNT as acetone gas sensor. Sens. Actuators A Phys. 2020, 314, 112240. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y.; Ma, C.; He, W. In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor. J. Alloys Compd. 2021, 854, 157234. [Google Scholar] [CrossRef]
- Lavanya, N.; Leonardi, S.G.; Marini, S.; Espro, C.; Kanagaraj, M.; Reddy, S.L.; Sekar, C.; Neri, G. MgNi2O3 nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone. J. Alloys Compd. 2020, 817, 152787. [Google Scholar] [CrossRef]
- Liu, T.; Guan, H.; Wang, T.; Liang, X.; Liu, F.; Liu, F.; Zhang, C.; Lu, G. Mixed potential type acetone sensor based on GDC used for breath analysis. Sens. Actuators B Chem. 2021, 326, 128846. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Li, B.; You, R.; Wang, C.; Jiang, L.; Yang, Y.; Yan, X.; Sun, P.; Lu, G. Ni-based tantalate sensing electrode for fast and low detection limit of acetone sensor combining stabilized zirconia. Sens. Actuators B Chem. 2020, 304, 127375. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Yuan, Z.; Duan, Z.; Zhao, Q.; Zhang, Y.; Su, Y.; Jiang, Y.; Xie, G.; Tai, H. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: Endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Cho, H.-J.; Choi, S.-J.; Kim, N.-H.; Kim, I.-D. Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors. Sens. Actuators B Chem. 2020, 304, 127350. [Google Scholar] [CrossRef]
- Chuang, M.-Y.; Lin, Y.-T.; Tung, T.-W.; Chang, L.-Y.; Zan, H.-W.; Meng, H.-F.; Lu, C.-J.; Tao, Y.-T. Room-temperature-operated organic-based acetone gas sensor for breath analysis. Sens. Actuators B Chem. 2018, 260, 593–600. [Google Scholar] [CrossRef]
- Hussain, T.; Sajjad, M.; Singh, D.; Bae, H.; Lee, H.; Larsson, J.A.; Ahuja, R.; Karton, A. Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon 2020, 163, 213–223. [Google Scholar] [CrossRef]
- Van Duy, L.; Van Duy, N.; Hung, C.M.; Hoa, N.D.; Dich, N.Q. Urea mediated synthesis and acetone-sensing properties of ultrathin porous ZnO nanoplates. Mater. Today Commun. 2020, 25, 101445. [Google Scholar] [CrossRef]
- Hanh, N.H.; Van Duy, L.; Hung, C.M.; Van Duy, N.; Heo, Y.-W.; Van Hieu, N.; Hoa, N.D. VOC gas sensor based on hollow cubic assembled nanocrystal Zn2SnO4 for breath analysis. Sens. Actuators A Phys. 2020, 302, 111834. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Precision Xtra Blood Glucose & Ketone Monitoring System. Available online: https://abbottstore.com/diabetes-management/precision-brand/precision-brand/precision-xtra-blood-glucose-ketone-monitoring-system-1-pack-9881465.html (accessed on 9 November 2020).
- Suntrup, D.J., III; Ratto, T.V.; Ratto, M.; McCarter, J.P. Characterization of a high-resolution breath acetone meter for ketosis monitoring. PeerJ 2020, 8, e9969. [Google Scholar] [CrossRef] [PubMed]
- Akers, R.F. Breath Ketone Detector. U.S. Patent 8871521B2, 28 October 2014. [Google Scholar]
- Lubna, A. Ketone Measurement System and Related Method with Accuracy and Reporting Enhancement Features. U.S. Patent 9486169B1, 8 November 2016. [Google Scholar]
- Herbig, J.; Titzmann, T.; Beauchamp, J.; Kohl, I.; Hansel, A. Buffered end-tidal (BET) sampling—A novel method for real-time breath-gas analysis. J. Breath Res. 2008, 2, 037008. [Google Scholar] [CrossRef]
- Yoo, D.J. Measuring Device for Amount of Body Fat Burned. U.S. Patent 16/619358, 7 May 2020. [Google Scholar]
- Invoy. Available online: https://www.invoy.com/how-it-works/ (accessed on 5 November 2020).
- Ketonix. KETONIX Breath Ketone Analyzer. Available online: https://www.ketonix.com/ (accessed on 5 November 2020).
- Keto PRX. Available online: https://www.amazon.com/PRX-Ketone-Breath-Testing-Mouthpieces/dp/B0814H9J89 (accessed on 5 November 2020).
- Keyto. Available online: https://getkeyto.com/ (accessed on 5 November 2020).
- Evans, M.; Cogan, K.E.; Egan, B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017, 595, 2857–2871. [Google Scholar] [CrossRef] [Green Version]
- LEVLcare. Available online: https://levlcare.com/science/ (accessed on 5 November 2020).
- Weber, I.C.; Braun, H.P.; Krumeich, F.; Güntner, A.T.; Pratsinis, S.E. Superior Acetone Selectivity in Gas Mixtures by Catalyst-Filtered Chemoresistive Sensors. Adv. Sci. 2020, 7, 2001503. [Google Scholar] [CrossRef]
- Hanson, R.K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 2011, 33, 1–40. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Righettoni, M.; Schmid, A.; Amann, A.; Pratsinis, E.S. Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. J. Breath Res. 2013, 7, 037110. [Google Scholar] [CrossRef]
- Wang, L.; Teleki, A.; Pratsinis, S.E.; Gouma, P.I. Ferroelectric WO3 Nanoparticles for Acetone Selective Detection. Chem. Mater. 2008, 20, 4794–4796. [Google Scholar] [CrossRef]
- Güntner, A.T.; Sievi, N.A.; Theodore, S.J.; Gulich, T.; Kohler, M.; Pratsinis, S.E. Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO3-sensing Nanoparticles. Anal. Chem. 2017, 89, 10578–10584. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Kompalla, J.F.; Landis, H.; Theodore, S.J.; Geidl, B.; Sievi, N.A.; Kohler, M.; Pratsinis, S.E.; Gerber, P. Guiding Ketogenic Diet with Breath Acetone Sensors. Sensors 2018, 18, 3655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntner, A.T.; Pineau, N.J.; Mochalski, P.; Wiesenhofer, H.; Agapiou, A.; Mayhew, C.A.; Pratsinis, S.E. Sniffing Entrapped Humans with Sensor Arrays. Anal. Chem. 2018, 90, 4940–4945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Brand | Technology | FDA Status | Strengths | Limits |
---|---|---|---|---|
METRON [71] | SNP c, ammonium sulfate powder | N/A b | Disposable | Off Market |
INVOY [72,75] | Liquid Cartridges with Metal Oxide d | Registered Class 1 | Available through a nutrition program | Disposable cartridges |
Ketoscan [36,73] | Photoionization Detector | Registered Class 1 | Undergoing trials | Limited data |
House of Keto [35] | Metal Oxide Detector | N/A b | Cheap cost | Generic build, Limited data |
Ketonix [76] | N/A a | Registered Class 1 | Cheap cost | Limited data |
Qetoe [34] | Metal Oxide Detector | N/A b | Cheap cost | Generic build, Limited data |
Lencool [33] | Metal Oxide Detector | N/A b | Cheap cost | Generic build, Limited data |
Lexico health [32] | Metal Oxide Detector | N/A b | Cheap cost | Generic build, Limited data |
KetoPRX [77] | N/A a | N/A b | Cheap cost | Generic build, Limited data |
Keyto [78] | N/A a | N/A b | Easy use | Limited data |
LEVL [79] | N/A a | Registered Class 1 | Clinician coaching included | Expensive, limited data |
Biosense [31,70] | Metal Oxide Detector | Registered Class 1 | Data available | expensive |
Technology | Operating Temp (°C) | Detection Limit (ppb) | Response/Recovery Time (s) | Maximum Response (Rair/Rgas) a | Reference | Selectivity (Max Response/2nd Best Response) | Relative Humidity Tested | Tested on Human Breath? (Y/N) |
---|---|---|---|---|---|---|---|---|
MgNi2O3 | 200 | 500 | 25/250 (40 ppm) | 2.3 (10 ppm) | Lavanya et al. [59] | ~1.87 | N/A | N |
NiTa2O6 | 600 | 200 | 9/18 (2 ppm) | N/A | Liu et al. [61] | ~1.5 | 20–98% | Y |
PtCu/WO3·H2O HS | 280 | 10 | 3.4/7.5 (50 ppm) | 204.9 (50 ppm) | Deng et al. [56] | ~5.4 | N/A | N |
PdAu/SnO2 | 250 | 45 | 5/4 (2 ppm) | 6.5 (2 ppm) | Li at al. [48] | ~2.1 | 40–70% | N |
Cr/WO3 | 250 | 298 | N/A | 71.52 (100 ppm) | Ding et al. [52] | ~4.3 | 25–90% | N |
Apo-Pt@HP WO3NFs | 350 | N/A | N/A | 88.04 (5 ppm) | Kim et al. [42] | ~2.95 | 90% | Y |
ZnO QDs | 430 | 100 | N/A | N/A | Jung et al. [43] | N/A | N/A | Y |
3DOM ZnO | 320 | 8.7 | 9/16 (1 ppm) | 15.2 (1 ppm) | Liu et al. [54] | ~3.75 | 25–90% | Y |
Au (2%)/ZnO nanorod | 150 | 5 | 8/5 (100 ppm) | 102 (100 ppm) | Huang et al. [53] | ~3.4 | N/A | N |
Pd (1.5%)/ZnO nanorod | 150 | 5 | 9/7 (100 ppm) | 69 (100 ppm) | Huang et al. [53] | ~2.6 | N/A | N |
CdTe/PPY | 24 | 5 | 155/270–310 (5 ppm) | N/A | Šetka et al. [50] | N/A | 30% | N |
Bi0.9La0.1FeO3 | 260 | 50 | 15/13 (50 ppb) | 40 (100 ppm) | Peng et al. [47] | 5.71 | 55–90% | N |
ZnO nanoplates | 450 | 45 | 23/637 (50 ppm) | 20 (125 ppm) | Van Duy et al. [66] | 2.22 | 10–80% | N |
Pt-PH-SO2 | 400 | 200 | 7/(N/A) | 44.83 (5 ppm) | Cho et al. [63] | ~3.57 | 90% | N |
Si:WO3 | 350 | 20 | 14/36 (100 ppb) | N/A | Righettoni [49] | 18 | 0–90% | Y |
Catalytic enhanced Si:WO3 | 400 | 50 | 55/100 (500 ppb) | 4.3 (1 ppm) | Weber et al. [81] | 250 | 90% | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkedeh, O.; Priefer, R. The Ketogenic Diet: Breath Acetone Sensing Technology. Biosensors 2021, 11, 26. https://doi.org/10.3390/bios11010026
Alkedeh O, Priefer R. The Ketogenic Diet: Breath Acetone Sensing Technology. Biosensors. 2021; 11(1):26. https://doi.org/10.3390/bios11010026
Chicago/Turabian StyleAlkedeh, Omar, and Ronny Priefer. 2021. "The Ketogenic Diet: Breath Acetone Sensing Technology" Biosensors 11, no. 1: 26. https://doi.org/10.3390/bios11010026
APA StyleAlkedeh, O., & Priefer, R. (2021). The Ketogenic Diet: Breath Acetone Sensing Technology. Biosensors, 11(1), 26. https://doi.org/10.3390/bios11010026