Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Feasibility of Ag+ Detection by Using SSO and SGI
2.3. Optimization of Ag+ Detection Conditions
2.4. Selectivity
2.5. Recovery
3. Results and Discussion
3.1. Sensing Mechanism
3.2. Feasibility of This Method for Ag+ Detection
3.3. Optimization of Experimental Conditions for Ag+ Detection
3.3.1. Effect of Bath Temperature for SSO
3.3.2. Effect of SSO Concentration and Dye/SSO Base Ratio for Ag+ Detection
3.3.3. Effect of Ionic Strength and pH for Ag+ Detection
3.3.4. Effect of Reaction Time, Incubation Time and Temperature for Ag+ Detection
3.4. Detection of Ag+
3.5. Selectivity
3.6. Recovery
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wang, M.; Wang, L.; Xu, H.; Tang, S.; Yang, H.H.; Zhang, L.; Song, H. A simple assay for ultrasensitive colorimetric detection of Ag+ at picomolar levels using platinum nanoparticles. Sensors 2017, 17, 2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitpong, N.; Husson, S. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water. Membranes 2016, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorea, J.G.; Donangelo, C.M. Early (in uterus and infant) exposure to mercury and lead. Clin. Nutr. 2006, 25, 369–376. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. BioMetals 2013, 26, 609–621. [Google Scholar] [CrossRef]
- Long, F.; Gao, C.; Shi, H.C.; He, M.; Zhu, A.N.; Klibanov, A.M.; Gu, A.Z. Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens. Bioelectron. 2011, 26, 4018–4023. [Google Scholar] [CrossRef]
- US EPA. Edition of the Drinking Water Standards and Health Advisories Tables. Available online: https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf (accessed on 1 December 2020).
- Liang, H.; Xie, S.; Cui, L.; Wu, C.; Zhang, X. Designing a biostable L-DNAzyme for lead(ii) ion detection in practical samples. Anal. Methods 2016, 8, 7260–7264. [Google Scholar] [CrossRef]
- Memon, A.G.; Zhou, X.; Liu, J.; Wang, R.; Liu, L.; Yu, B.; He, M.; Shi, H. Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J. Hazard. Mater. 2017, 321. [Google Scholar] [CrossRef]
- Memon, A.G.; Xing, Y.; Zhou, X.; Wang, R.; Liu, L.; Zeng, S.; He, M.; Ma, M. Ultrasensitive colorimetric aptasensor for Hg2+ detection using Exo-III assisted target recycling amplification and unmodified AuNPs as indicators. J. Hazard. Mater. 2019, 120948. [Google Scholar] [CrossRef]
- Freeman, R.; Finder, T.; Willner, I. Multiplexed Analysis of Hg 2+ and Ag + Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angew. Chem. Int. Ed. 2009, 48, 7818–7821. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Zhang, Y.; Quan, X. Label-free fluorescent detection of Cu(II) ions based on DNA cleavage-dependent graphene-quenched DNAzymes. Chem. Commun. 2011, 47, 7749–7751. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.G.; Zhou, X.; Xing, Y.; Wang, R.; Liu, L.; Khan, M.; He, M. Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme. Front. Environ. Sci. Eng. 2019, 13, 12. [Google Scholar] [CrossRef]
- Lee, J.H.; Wang, Z.; Liu, J.; Lu, Y. Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO2 2+): Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems. J. Am. Chem. Soc. 2008, 130, 14217–14226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, G.; Wei, G.; Su, Z. One-Pot, In-Situ Synthesis of 8-Armed Poly(Ethylene Glycol)-Coated Ag Nanoclusters as a Fluorescent Sensor for Selective Detection of Cu2+. Biosensors 2020, 10, 131. [Google Scholar] [CrossRef]
- Liu, J.; Brown, A.K.; Meng, X.; Cropek, D.M.; Istok, J.D.; Watson, D.B.; Lu, Y. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA 2007, 104, 2056–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Xu, B.; Li, T.; Huang, J.; Bai, W. A “turn-on” fluorescence copper biosensor based on DNA cleavage-dependent graphene oxide-dsDNA-Cdte quantum dots complex. Sensors 2018, 18, 2605. [Google Scholar] [CrossRef] [Green Version]
- Pu, W.; Zhao, H.; Huang, C.; Wu, L.; Xua, D. Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchim. Acta 2012, 177, 137–144. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, C. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2014, 139, 6326–6342. [Google Scholar] [CrossRef]
- Mao, P.; Ning, Y.; Li, W.; Peng, Z.; Chen, Y.; Deng, L. Novel strategy combining SYBR Green I with carbon nanotubes for highly sensitive detection of Salmonella typhimurium DNA. Enzyme Microb. Technol. 2014, 54, 15–19. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chem. Commun. 2008, 4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koba, M.; Szostek, A.; Konopa, J. Limitation of usage of PicoGreen dye in quantitative assays of double-stranded DNA in the presence of intercalating compounds. Acta Biochim. Pol. 2007, 54, 883–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhou, X.; Shi, H. An Optical Biosensor-Based Quantification of the Microcystin Synthetase A Gene: Early Warning of Toxic Cyanobacterial Blooming. Anal. Chem. 2018, 90, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, P.; Horobin, R.; Blázquez-Castro, A.; Stockert, J. Binding of cationic dyes to DNA: Distinguishing intercalation and groove binding mechanisms using simple experimental and numerical models. Biotech. Histochem. 2010, 85, 247–256. [Google Scholar] [CrossRef]
- Soares, L.; Csáki, A.; Jatschka, J.; Fritzsche, W.; Flores, O.; Franco, R.; Pereira, E. Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: Detection of DNA hybridization events at room temperature. Analyst 2014, 139, 4964–4973. [Google Scholar] [CrossRef]
Performance | DBR = 0.06 | DBR = 0.31 | DBR = 0.61 |
---|---|---|---|
Regression | FL = 0.053CAg + 18.36 | FL = 0.32CAg+67.13 | FL = 0.423CAg+125.3 |
Linear range | 80–800 nM | 100–800 nM | 100–1000 nM |
R2 | 0.998 | 0.997 | 0.997 |
Detection limit (3σ, n = 11) | 6.4 nM | 36.7 nM | 59.9 nM |
Item | Interference | Potential Highest Concentrations are Chosen as the Upper Limits |
---|---|---|
1 | Calcium Hardness | 1000 mg/L as calcium carbonate, 400 mg/L as calcium (10 mM in Ca(NO3)2) |
2 | Magnesium Hardness | 1000 mg/L as calcium carbonate, 240 mg/L as mgnesium (10 mM in Mg(NO3)2) |
3 | Copper | 1.0 mg/L Cu2+ in Cu(NO3)2 |
4 | Nitrate | 10.0 mg/L NO3- in NaNO3 |
5 | Total iron | 1.0 mg/L total Fe element in Fe(NO3)3 |
6 | Zinc | 2.0 mg/L Zn2+ in Zn(NO3)2 |
7 | Fluoride | 1.5 mg/L F- in HF |
8 | Aluminum | 0.2 mg/L Al3+ in Al(NO3)3 |
9 | Manganese | 0.2 mg/L Mn2+ in Mn(NO3)2 |
10 | Hypochlorite | 4.0 mg/L ClO- in NaClO |
11 | Ammonium nitrogen | 15 mg/L NH4+-N in NH4NO3 |
Added nM | Measured nM | Recoveries % | |
---|---|---|---|
Danjiangkou Reservoir | 300 | 283 | 94.5 ± 5.6 |
464 | 501 | 108 ± 36 | |
700 | 662 | 94.5 ± 3.3 | |
Hetang Lake | 300 | 253 | 84.3 ± 21 |
464 | 368 | 79.3 ± 7.3 | |
700 | 572 | 81.7 ± 4.1 | |
Groundwater in Tsinghua Yuan | 300 | 287 | 95.6 ± 5.0 |
464 | 387 | 83.3 ± 15 | |
700 | 638 | 91.1 ± 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Memon, A.G.; Sun, W.; Fang, F.; Guo, J. Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch. Biosensors 2021, 11, 6. https://doi.org/10.3390/bios11010006
Zhou X, Memon AG, Sun W, Fang F, Guo J. Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch. Biosensors. 2021; 11(1):6. https://doi.org/10.3390/bios11010006
Chicago/Turabian StyleZhou, Xiaohong, Abdul Ghaffar Memon, Weiming Sun, Fang Fang, and Jinsong Guo. 2021. "Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch" Biosensors 11, no. 1: 6. https://doi.org/10.3390/bios11010006
APA StyleZhou, X., Memon, A. G., Sun, W., Fang, F., & Guo, J. (2021). Fluorescent Probe for Ag+ Detection Using SYBR GREEN I and C-C Mismatch. Biosensors, 11(1), 6. https://doi.org/10.3390/bios11010006