One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Bacteria Cultures
2.3. Nanomaterial Deposition
2.4. Material Characterization
2.5. Electrochemical Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nanobrush Material Characterization
3.2. Electrochemical Characterization
3.3. Actuation of Nanobrushes
3.4. Bacteria Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Burden of Foodborne Illness: Findings. Available online: https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (accessed on 3 April 2021).
- FDA U.S. Food and Drug Administration. Recalls, Market Withdrawals & Safety Alerts. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts (accessed on 10 February 2021).
- Alocilja, E.C.; Radke, S.M. Market Analysis of Biosensors for Food Safety. Biosens. Bioelectron. 2003, 18, 841–846. [Google Scholar] [CrossRef]
- FDA U.S. Food and Drug Administration. Food Safety Modernization Act (FSMA). Available online: https://www.fda.gov/Food/GuidanceRegulation/FSMA/ (accessed on 5 February 2018).
- Heo, E.J.; Song, B.R.; Park, H.J.; Kim, Y.J.; Moon, J.S.; Wee, S.H.; Kim, J.-S.; Yoon, Y. Rapid Detection of Listeria Monocytogenes by Real-Time PCR in Processed Meat and Dairy Products. J. Food Prot. 2014, 77, 453–458. [Google Scholar] [CrossRef]
- Castell-Perez, E.; Gomes, C.; Tahtouh, J.; Moreira, R.; Mclamore, E.S.; Knowles, H.S., III. Food Processing and Waste Within the Nexus Framework. Curr. Sustain. Energy Rep. 2017, 4, 99–108. [Google Scholar] [CrossRef]
- Somerset, V.S. (Ed.) Environmental Biosensors; InTech: Rijeka, Croatia, 2011; ISBN 9789533074863. [Google Scholar]
- Vanegas, D.C.; Gomes, C.L.; Cavallaro, N.D.; Giraldo-Escobar, D.; McLamore, E.S. Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1188–1205. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M.; Schwalb, N.; Rong, Y.; Vanegas, D.C.; Garland, N.; Tan, M.; Yamaguchi, H.; Claussen, J.C.; McLamore, E.S. PulSED: Pulsed Sonoelectrodeposition of Fractal Nanoplatinum for Enhancing Amperometric Biosensor Performance. Analyst 2016, 141, 3367–3378. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Gu, J.; Yang, H.; Nie, J.; Ma, G. Electrodeposition of Alginate/Chitosan Layer-by-Layer Composite Coatings on Titanium Substrates. Carbohydr. Polym. 2014, 103, 38–45. [Google Scholar] [CrossRef]
- Elgadir, M.A.; Uddin, S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, Z.I. Impact of Chitosan Composites and Chitosan Nanoparticle Composites on Various Drug Delivery Systems: A Review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, X.; Shi, X.-W.; Bentley, W.E.; Payne, G.F. Biofabrication Based on the Enzyme-Catalyzed Coupling and Crosslinking of Pre-Formed Biopolymers. Am. Chem. Soc. Symp. Ser. Green Polym. Chem. Biocatal. Biomater. 2010, 1043, 35–44. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, X.; Betz, J.; Buckhout-White, S.; Bekdash, O.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. In Situ Quantitative Visualization and Characterization of Chitosan Electrodeposition with Paired Sidewall Electrodes. Soft Matter 2010, 6, 3177–3183. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Wu, H. Probing the Interactions of Chitosan Capped CdS Quantum Dots with Pathogenic Bacteria and Their Biosensing Application. J. Mater. Chem. B 2013, 1, 6094–6106. [Google Scholar] [CrossRef] [PubMed]
- Hills, K.D.; Oliveira, D.A.; Cavallaro, N.D.; Gomes, C.L.; McLamore, E.S. Actuation of Chitosan-Aptamer Nanobrush Borders for Pathogen Sensing. Analyst 2018, 143, 1650–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacobassi, C.A.; Oliveira, D.A.; Pola, C.C.; Xiang, D.; Tang, Y.; Palit, S.; Datta, A.; Mclamore, E.S.; Gomes, C.L. Sense–Analyze–Respond–Actuate (SARA) Paradigm: Proof of Concept System Spanning Nanoscale and Macroscale Actuation for Detection of Escherichia Coli in Aqueous Media. Actuators 2021, 10, 2. [Google Scholar] [CrossRef]
- Hwang, J.; Pathak, P.; Wang, X.; Rodriguez, K.L.; Cho, H.J.; Lee, W.H. A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb (I), Cd (II) and Zn (II) in Wastewater. Micromachines 2019, 10, 511. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.A.; Ilyas, K.; Dlouh, I.; Siska, F.; Boccaccini, A.R. Electrophoretic Deposition of Copper (II)– Chitosan Complexes for Antibacterial Coatings. Int. J. Mol. Sci. 2020, 21, 2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Z.; Wang, X.; Guo, X.; Zhang, Z.; Chen, Y.; Wang, Y. Electrodeposition of Chitosan Based on Coordination with Metal Ions in Situ -Generated by Electrochemical Oxidation. J. Mater. Chem. B 2016, 4, 3331–3338. [Google Scholar] [CrossRef]
- Ohk, S.H.; Koo, O.K.; Sen, T.; Yamamoto, C.M.; Bhunia, A.K. Antibody-Aptamer Functionalized Fibre-Optic Biosensor for Specific Detection of Listeria Monocytogenes from Food. J. Appl. Microbiol. 2010, 109, 808–817. [Google Scholar] [CrossRef]
- Baio, J.E.; Weidner, T.; Brison, J.; Graham, D.J.; Gamble, L.J.; Castner, D.G. Amine Terminated SAMs: Investigating Why Oxygen Is Present in These Films. J. Electron Spectrosc. Relat. Phenom. 2009, 172, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; ISBN 0-9648124-1-X. [Google Scholar]
- Romanchenko, A.; Likhatski, M.; Mikhlin, Y. X-ray Photoelectron Spectroscopy (XPS) Study of the Products Formed on Sulfide Minerals Upon the Interaction with Aqueous Platinum (IV) Chloride Complexes. Minerals 2018, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Agrios, A.G. Attachment of Pt Nanoparticles to a Metal Oxide Surface Using a Thiol—Carboxyl Bifunctional Molecule. J. Colloid Interface Sci. 2018, 513, 464–469. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Y.; Cao, H.; Yang, J. Pt-Containing Ag2S-Noble Metal Nanocomposites as Highly Active Electrocatalysts for the Oxidation of Formic Acid. Nano-Micro Lett. 2014, 6, 252–257. [Google Scholar] [CrossRef]
- Minko, S. Responsive Polymer Brushes. J. Macromol. Sci. Part C Polym. Rev. 2006, 46, 397–420. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, C.; Du, X.; Wu, Y.; Xu, P.; Liu, J.; Hu, W. Pulsed Electrodeposition of Pt Particles on Indium Tin Oxide Substrates and Their Electrocatalytic Properties for Methanol Oxidation. Electrochim. Acta 2013, 100, 164–170. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Bentley, W.E.; Payne, G.F. Biofabrication to Build the Biology-Device Interface. Biofabrication 2010, 2, 022002. [Google Scholar] [CrossRef]
- Fernandes, R.; Wu, L.; Chen, T.; Yi, H.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface. Langmuir 2003, 19, 4058–4062. [Google Scholar] [CrossRef]
- Wu, L.; Gadre, A.P.; Yi, H.; Kastantin, M.J.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F.; Ghodssi, R. Voltage-Dependent Assembly of the Polysaccharide Chitosan onto an Electrode Surface. Langmuir 2002, 18, 8620–8625. [Google Scholar] [CrossRef]
- Luo, X.L.; Xu, J.J.; Du, Y.; Chen, H.Y. A Glucose Biosensor Based on Chitosan-Glucose Oxidase-Gold Nanoparticles Biocomposite Formed by One-Step Electrodeposition. Anal. Biochem. 2004, 334, 284–289. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Dinshaw, I.J.; Muniandy, S.; Teh, S.J.; Ibrahim, F.; Leo, B.F.; Thong, K.L. Development of an Aptasensor Using Reduced Graphene Oxide Chitosan Complex to Detect Salmonella. J. Electroanal. Chem. 2017, 806, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.C.; Ravi, N. A Magnetic Study of an Fe-Chitosan Complex and Its Relevance to Other Biomolecules. Biomacromolecules 2000, 1, 413–417. [Google Scholar] [CrossRef]
- Strand, S.P.; Tømmeraas, K.; Vårum, K.M.; Østgaard, K. Electrophoretic Light Scattering Studies of Chitosans with Different Degrees of N-Acetylation. Biomacromolecules 2001, 2, 1310–1314. [Google Scholar] [CrossRef]
- Briandet, R.; Meylheuc, T.; Maher, C.; Bellon-Fontaine, M.N. Listeria Monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions. Appl. Environ. Microbiol. 1999, 65, 5328–5333. [Google Scholar] [CrossRef] [Green Version]
- Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R. Electrical Impedance Spectroscopy Study of Biological Tissues. J. Electrostat. 2008, 66, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Le, T.N.; Tran, T.D.; Kim, M. Il A Convenient Colorimetric Bacteria Detection Method Utilizing Chitosan-Coated Magnetic Nanoparticles. Nanomaterials 2020, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, H.N.; Wu, H. Multifunctional Graphene Magnetic Nanosheet Decorated with Chitosan for Highly Sensitive Detection of Pathogenic Bacteria. J. Mater. Chem. B 2013, 3950–3961. [Google Scholar] [CrossRef]
- Tabasi, A.; Noorbakhsh, A.; Shari, E. Biosensors and Bioelectronics Reduced Graphene Oxide-Chitosan-Aptamer Interface as New Platform for Ultrasensitive Detection of Human Epidermal Growth Factor Receptor 2. Biosens. Bioelectron. J. 2017, 95, 117–123. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Bhosale, S.V.; Riu, J.; Rius, F.X. Real-Time Potentiometric Detection of Bacteria in Complex Samples. Anal. Chem. 2010, 82, 9254–9260. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Jahne, M.; Rogers, S.; Suni, I.I. Detection of Listeria Monocytogenes by Electrochemical Impedance Spectroscopy. Electroanalysis 2013, 25, 2231–2237. [Google Scholar] [CrossRef]
- Wang, R.; Ruan, C.; Kanayeva, D.; Lassiter, K.; Li, Y. TiO2 Nanowire Bundle Microelectrode Based Impedance Immunosensor for Rapid and Sensitive Detection of Listeria Monocytogenes. Nano Lett. 2008, 8, 2625–2631. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, C.; Liu, Y.; Nie, H.; Guo, X.; Song, X.; Xu, K.; Li, J.; Wang, J. A Novel Fluorescence Method for the Rapid and Effective Detection of Listeria Monocytogenes. Analyst 2020, 145, 3857–3863. [Google Scholar] [CrossRef]
- Sidhu, R.; Rong, Y.; Vanegas, D.C.; Claussen, J.; McLamore, E.S.; Gomes, C. Impedance Biosensor for the Rapid Detection of Listeria spp. Based on Aptamer Functionalized Pt-Interdigitated Microelectrodes Array. In Proceedings of the SPIE, Baltimore, MD, USA, 13 May 2016; Volume 9863, p. 98630F. [Google Scholar] [CrossRef]
- Sarabaegi, M.; Roushani, M. A Nano-Sized Chitosan Particle Based Electrochemical Aptasensor for Sensitive Detection of P. Aeruginosa. Anal. Methods 2019, 11, 5591–5597. [Google Scholar] [CrossRef]
- Xie, X.; Tan, F.; Xu, A.; Deng, K.; Zeng, Y.; Huang, H. UV-Induced Peroxidase-like Activity of Gold Nanoclusters for Differentiating Pathogenic Bacteria and Detection of Enterotoxin with Colorimetric Readout. Sens. Actuators B Chem. 2019, 279, 289–297. [Google Scholar] [CrossRef]
- Zelada-Guillen, G.A.; Riu, J.; Düzgün, A.; Rius, F.X. Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor. Angew. Chemie Int. Ed. Engl. 2009, 48, 7334–7337. [Google Scholar] [CrossRef] [PubMed]
Biorecognition Agent and Platform | Bacteria | Detection Mode | Test Medium | Detection Range * (CFU/mL) | Response Time (min) | Reference |
---|---|---|---|---|---|---|
CHI/Pt + aptamer | L. monocytogenes | Impedimetric | PBS | 2.5–106 | 17 | This work |
CHI/Pt + aptamer | L. monocytogenes | Impedimetric | PBS + S. aureus | 2.6–106 | 17 | This work |
CHI/Pt + aptamer | L. monocytogenes | Impedimetric | Chicken broth | 3.3–106 | 17 | This work |
rGO-nPt + CHI + aptamer | L. monocytogenes | Impedimetric | Vegetable broth | 9.1–102 | 17 | Hills et al. [15] |
Pt-IDEs + aptamer | L. monocytogenes | Impedimetric | PBS | 5.39–106 | 17 | Sidhu et al. [45] |
GCE-NCs + aptamer | P. aeruginosa | Impedimetric | PBS | 3–107 | 30 | Sarabaegi and Roushani [46] |
rGO-CHI + aptamer | Salmonella Typhimurium | DPV | PBS | 10–107 | Not reported | Dinshaw et al. [33] |
AuNC-chitosan + aptamer | S. aureus | Colorimetric | PBS | 102–107 | >35 | Xie et al. [47] |
SWCNT + aptamer | E. coli CECT 675 | Potentiometric | Milk Apple juice | 6–104 26–104 | 2–20 | Zelada- Guillén et al. [41] |
SWCNT + aptamer | Salmonella Typhi | Potentiometric | PBS | 1–103 | 1–30 | Zelada- Guillén et al. [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.A.; Althawab, S.; McLamore, E.S.; Gomes, C.L. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. Biosensors 2021, 11, 511. https://doi.org/10.3390/bios11120511
Oliveira DA, Althawab S, McLamore ES, Gomes CL. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. Biosensors. 2021; 11(12):511. https://doi.org/10.3390/bios11120511
Chicago/Turabian StyleOliveira, Daniela A., Suleiman Althawab, Eric S. McLamore, and Carmen L. Gomes. 2021. "One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection" Biosensors 11, no. 12: 511. https://doi.org/10.3390/bios11120511
APA StyleOliveira, D. A., Althawab, S., McLamore, E. S., & Gomes, C. L. (2021). One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. Biosensors, 11(12), 511. https://doi.org/10.3390/bios11120511