Raman Scattering-Based Biosensing: New Prospects and Opportunities
Abstract
:1. Introduction
1.1. Resonance Raman Spectroscopy
1.2. Coherent Raman Spectroscopy
1.3. Surface-Enhanced Raman Spectroscopy
2. Application of SERS and SERS-Combined Raman Techniques in the Detection of Biomolecules
2.1. Direct and Indirect Approaches of SERS-Based Techniques
2.1.1. Substrate Fabrication
Method | Approach | Features | Ref. |
---|---|---|---|
Self-assembly (or bottom-up methods) | Chemical immobilization | Immobilization of the nanoparticles of various shapes and sizes through bifunctional reagents (linkers) containing amine or thiol groups on a solid support. The common bifunctional reagents are aminosilanes (APTES) and mercaptosilanes (MPTS). | [113,114] |
Electrostatic interaction | Electrostatic deposition of nanoparticles onto a polymer-modified solid support. The common polymers are poly (diallydimethylammonium chloride) (PDDA) and polyvinylpyrrolidone (PVP). | [98,115] | |
Capillary force-induced assembly | The deposition of a colloidal solution of nanoparticles onto a solid surface, followed by the evaporation of the solvent-creating capillary force-induced assembly of metal nanoparticles. | [99,109] | |
Langmuir film fabrication | Assembling of metal monolayer at an air–liquid interface, followed by the transfer of the film onto a solid support. | [97] | |
Lithography (or top-down methods) | Electron beam lithography | Design of metal pattern using an electron beam. | [100] |
Hole–mask colloidal lithography | Controlled self-assembly of colloidal nanoparticles serving as a mask for the formation of a metal plasmon pattern. | [101] | |
Nanoimprint lithography | Fabrication of metal plasmonic structures on rigid and flexible substrates. | [106,116] |
2.1.2. Direct SERS-Based Biosensing
Analyte | SERS Substrate | LOD | Laser Wavelength, Laser Power | Features | Year, Ref. |
---|---|---|---|---|---|
Pyruvate, adenosine triphosphate (ATP), and lactate | Fe3O4 microspheres-decorated silver nanoparticles (30 nm) | 0.1, 0.01, and 1.0 pM for ATP, lactate, and pyruvate detection, respectively | 632.8 nm, ≈7 mW | Simultaneous detection of multiple analytes, provided by a combination of a microfluidic SERS platform and magnetic separation that creates hot spots. | 2019, [130] |
Pyocyanin secreted by Pseudomonas aeruginosa | Microchannels made of poly (dimethylsiloxane) (PDMS) with integrated gold nanooctahedrons | 10−19 M | 785 nm laser, 1.74 mW | Detection of biomolecules without extraction from complex biological media using SERS-based microfluidic chip. | 2020, [131] |
Thiram and carbaryl detection | Poly(ethylene terephthalate) covered with indium tin oxide and silver layers | 2.5 µg/mL for thiram and 0.012 µg/mL for carbaryl | 785 nm, 5 mW | Processing the foil with the dielectric barrier discharge method to create a rough surface and subsequent modification with silver nanoparticles allows for the fabrication of a flexible SERS substrate for analysis. | 2019, [132] |
Dopamine | Two-dimensional WS2 grown on three-dimensional WO3 nanohelixes by sulfurization process | 10 nM | Ar-ion 633 nm | Application of two-dimensional dichalcogenides of transition metals in the construction of a substrate for the detection of biomolecules. | 2020, [133] |
Manganese super oxide dismutase (MnSOD) | Glass substrate, modified with gold nanoantennas and thiolated DNA aptamer with specificity to MnSOD protein | Nanomolar range | 660 and 785 nm, 1 mW | Combination of the high sensitivity provided by gold nanoantennas with the specificity provided by the modification of the substrate with an aptamer. | 2015, [134] |
Bilirubin | A hybrid of graphene oxide and gold nanostars applied to filter paper | 0.436 μM | 785 nm, 6.57 mW | Physical self-assembly between graphene oxide and gold nanostars to obtain SERS active substrate. | 2019, [135] |
Bacteria mixture (Shigella flexneri, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes) | Silver nanoparticles | 1.5 cfu/mL | He–Ne 632.8 nm, 14 mW | Homogeneous SERS detection of bacteria based on the binding of bacteria to the aptamer, followed by the in situ synthesis of silver nanoparticles on the bound aptamer. | 2017, [136] |
Carbapenem-sensitive E. coli (CSEC) and carbapenem-resistant E. coli (CREC) | Silver-coated gold nanorods (Au@Ag NRs) | Identification of CSEC and CREC | 785 nm, 20% of the laser power | Homogeneous SERRS identification of bacteria, where the plasmon peak of the Au@Ag NRs nanostructure coincides with the laser wavelength, which provides the necessary sensitivity due to the resonance enhancement effect. | 2018, [137] |
Biomarkers of breast cancer in human tears | Gold-decorated, hexagonal-close-packed polystyrene nanosphere monolayer | Identification of breast cancer markers | 785 nm, 10 mW | SERS biosensor for identification of breast cancer biomarkers, which are predictors of disease, based on the analysis of human tear spectra. | 2020, [138] |
2.1.3. Raman Reporter Molecules
2.1.4. Protection Strategies for SERS Nanotags
2.1.5. Capture Receptor Molecules for Indirect Approach
3. Recent Advances of Raman Spectroscopy in Biosensing
Analyte | SERS Substrate/Receptor Molecule | Assay | SERS Nanotag | LOD | Sample | Features | Year, Ref. |
---|---|---|---|---|---|---|---|
Gp51 antigen of bovine leukemia virus | Magnetic gold nanoparticles (AuNPs)/the native (anti-gp51) and fragmented anti-gp51 antibody (Ab) | Homogenous SERS-based sandwich immunoassay | Gold nanorods modified with 5-thio-nitrobenzoic acid (DTNB) and specific anti-gp51 Ab | 0.95 μg/mL | Milk | Oriented and random Ab immobilization, application of two kinds of nanoparticles | 2013, [175] |
Escherichia coli (E. coli) | Gold-coated magnetic spherical nanoparticles/polyclonal antibody (pAb) | Homogenous SERS-based sandwich immunoassay | Rod shaped AuNPs modified with DTNB, avidin, and biotin-labeled Ab | 8 cfu/mL | Real water samples | Two kinds of AuNPs | 2011, [153] |
E. coli and Staphylococcus aureus (S. aureus) | Magnetic beads (400 nm)/anti-E. coli2, anti-S. aureus2 monoclonal antibody (mAb) | Homogenous SERS-based sandwich immunoassay | Poly-l-lysine-coated triple-bond-coded AuNPs modified with 4-cyanobenzenethiol (MBN) | 10 and 25 cfu/mL | Bottled water and milk | Simultaneous detection with “hot spot” effect resulting in a significant enhancement of the Raman signal at 2105 and 2227 cm−1 | 2020, [152] |
Human immunoglobulin (hIgG) | 100 nm thick gold film evaporated on microscope slide or silicon wafer/goat anti-human IgG Ab | SERS immunoassay of human immunoglobulin | 60 nm gold nanoparticles modified with 4-nitrobenzenethiol (4-NBT) and anti-human IgG Ab | 3 pM on silicon and 28 pM on gold | Standard solution | Comparison of Si wafer and tradition gold surface | 2020, [154] |
Human IgG, prostate-specific antigen (PSA) | 2D arrays of Au (42 nm-core)@Ag (4.5 nm-shell) NPs on ITO substrate/polyclonal anti H-IgG, PSA mAb | Heterogenous SERS-based sandwich immunoassay | SH-PEG-COOH-coated AuNPs modified with 4-mercaptobenzoic acid (MBA) and anti H-IgG or PSA mAb | 0.3 pg/mL (10 fM) for PSA and 0.05 pg/mL (0.3 fM) for H-IgG | Standard solution | Comparison of the size of AuNPs in SERS nanotag (26, 53, 110 nm) | 2017, [155] |
Escherichia coli (E. coli) | Spherical gold coated magnetic nanoparticles/pAb | Homogenous SERS-based sandwich immunoassay | Gold nanorods labeled with alkaline phosphatase (ALP) enzyme and also modified with 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and E. coli Ab | 10 cfu mL−1 | Standard solution | ALP activity; BCIP was hydrolyzed to SERS-active product; 5-bromo-4-chloro-3-indole (BCI) | 2018, [166] |
IgM and IgG to SARS-CoV-2 | No SERS substrate/mouse anti-human IgM and IgG capture Abs | SERS-based LFIA | Gap-enhanced Raman nanotags (GERTs) with 4-nitrobenzenethiol (4-NBT) between core and shell, modified with COVID-19 recombinant antigens (CN97) | 1 ng/mL (IgM), 0.1 ng/mL (IgG) | Standard solution | Simultaneous determination of IgM and IgG | 2021, [176] |
IgM and IgG to SARS-CoV-2 | No SERS substrate/anti-human IgM and anti-human IgG Abs | SERS-based LFIA | Ag shell on SiO2 core (SiO2@Ag) 5,5-dithiobis-(2-nitrobenzoic acid) modified with dual layers of DTNB and SARS-CoV-2 spike (S) protein | 1.28 × 107-fold dilution by the IUPAC standard method, which is 800 times lower than that of the visualization results | Clinical serum samples (n = 68) | Simultaneous determination of IgM and IgG | 2021, [177] |
Ferritin (FER) | Hydrophilic AgNPs onto the specific area of the hydrophobic polydimethylsiloxane (PDMS)–hydrophilic/hydrophobic Ag/PDMS/anti-FER Ab | SERS-based LFIA | Raspberry-like AuNPs modified with 4-MBA and anti-FER Ab | 0.41 pg/mL | Standard solution | Combination of SERS substrate and SERS nanotag in LFIA format | 2020, [178] |
Carcinoembryonic antigen (CEA) | Hydrophilic AgNPs with polymethylmethacrylate (PMMA)/anti-CEA Ab | SERS-based LFIA | Flower-shaped Ag nanoplates modified with crystal violet and anti-CEA Ab | 4.92 pg/mL | Standard solution | Combination of SERS substrate and SERS nanotag in LFIA format | 2021, [156] |
α-Fetoprotein (AFP) | Few layers of MoS2 nanosheets exfoliated by NaK alloys/capture mAb | SERS-based sandwich immunoassay | Au@AgNCs and R6G–mAb complex | 0.03 pg/mL | Human blood serum samples | The sandwich immunocomplex “capture probe/target/SERS tag” was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of “hot spots” on the surface of the immunosensor | 2021, [110] |
Human immunoglobulin (hIgG) | AuNP array (AuA)-coated solid substrate/rabbit anti-human IgG Ab | SERS-based sandwich immunoassay | AuNPs modified with 4-aminothiophenol (4-ATP) and rabbit anti-human IgG Ab | 0.1 μg mL−1 | Human serum samples | The combination of a SERS substrate based on AuNP array with SERS nanotag resulted in sensitive detection | 2021, [109] |
Pancreatic cancer marker MUC4 | Immobilization of gold nanoflowers onto thiol-functionalized silicon wafer/Anti-MUC4 Ab | SERS-based sandwich immunoassay | Gold nanoflowers modified with 4-mercaptobenzoic acid and anti-MUC4 Ab | 0.1 ng mL−1 | Standard solution | Raman mapping was applied for a large substrate area to decrease a “spot-to-spot” variation of SERS signal | 2020, [179] |
IgG/PSA | No SERS substrate/anti-rabbit IgG/anti-PSA Ab | Homogeneous enzyme-amplified SERS immunoassay | AuNP-assembled silica NPs (SiO2@Au-RLC@Ag) with Ag shell modified with 4-aminothiophenol (4-ATP) Polyclonal alkaline phosphatase (AP)-conjugated goat anti-rabbit IgG or AP-streptavidin-biotin-conjugated anti-PSA Ab were used as a tracer Ab to produce ascorbic acid for reduction of Ag+ to Ag | 0.09 ng/mL for IgG and 0.006 ng/mL for PSA | Human serum samples | Enzyme-induced Ag growth on the surface of SERS nanotag to produce the amplification of the SERS signal | 2020, [180] |
Carcinoembryonic antigen (CEA) | Silver shell magnetic nanoparticles Fe3O4@Ag MNPs/anti-CEA monoclonal antibody | SERRS-based sandwich immunoassay | Silver-coated gold nanorods (Au@AgNRs) modified with diethylthiatricarbocyanineiodide (DTTC), coated with mPEG-SH and conjugated with anti-CEA antibodies | 4.75 fg/mL | Human serum samples | Au@AgNRs were in resonance with the resonant Raman dye DTTC at 785 nm excitation laser | 2016, [181] |
Mannose-capped lipoarabinomannan (ManLAM) | Resonance Raman-enhanced adlayer of cyanine 5 on a smooth gold surface/polyclonal rabbit antibody for Mycobacterium tuberculosis | SERRS-based sandwich immunoassay | AuNPs modified with 5,5′-dithiobis (succinimidyl-2-nitrobenzoate; DSNB) and MAb to ManLAM | 1.1 ng/mL | Human serum samples | Cy5 modified gold substrates were characterized; the SERRS performance was compared with SERS and revealed a ≈9.3 gain in sensitivity of immunoassay | 2019, [182] |
3.1. Microfluidic SERS-Based Biosensors
3.2. Integration of SERS with Different Methods
3.3. SERS-Based Lateral Flow Immunoassay
4. Toward Portable Raman Spectrometers
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tanwar, S.; Paidi, S.K.; Prasad, R.; Pandey, R.; Barman, I. Advancing Raman spectroscopy from research to clinic: Translational potential and challenges. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119957. [Google Scholar] [CrossRef]
- Li, Y.-S.; Church, J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Andrews, D.L. Rayleigh Scattering and Raman Effect, Theory. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 924–930. [Google Scholar]
- Porto, S.P.S.; Wood, D.L. Ruby optical maser as a Raman source. J. Opt. Soc. Am. 1962, 52, 251–252. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Raman Spectroscopy. In Laser Spectroscopy: Basic Concepts and Instrumentation; Demtröder, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 499–530. [Google Scholar]
- Wetzel, H.; Gerischer, H. Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles. Chem. Phys. Lett. 1980, 76, 460–464. [Google Scholar] [CrossRef]
- Moskovits, M.; DiLella, D.P. Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. J. Chem. Phys. 1980, 73, 6068–6075. [Google Scholar] [CrossRef]
- Almehmadi, L.M.; Curley, S.M.; Tokranova, N.A.; Tenenbaum, S.A.; Lednev, I.K. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep. 2019, 9, 12356. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-N.; Register, J.K.; Fales, A.M.; Gandra, N.; Cho, E.H.; Boico, A.; Palmer, G.M.; Klitzman, B.; Vo-Dinh, T. Surface-enhanced Raman scattering nanosensors for in vivo detection of nucleic acid targets in a large animal model. Nano Res. 2018, 11, 4005–4016. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef]
- Robert, B. Resonance Raman spectroscopy. Photosynth. Res. 2009, 101, 147–155. [Google Scholar] [CrossRef]
- Efremov, E.V.; Ariese, F.; Gooijer, C. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 2008, 606, 119–134. [Google Scholar] [CrossRef]
- Cheng, J.-X.; Xie, X.S. Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J. Phys. Chem. B 2004, 108, 827–840. [Google Scholar] [CrossRef]
- Djaker, N.; Lenne, P.-F.; Marguet, D.; Colonna, A.; Hadjur, C.; Rigneault, H. Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 571, 177–181. [Google Scholar] [CrossRef]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338A–346A. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.A.; Dina, N.E.; Cheng, H.; Valev, V.K.; Zhang, L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale 2021, 13, 11593–11634. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Mignuzzi, S.; Su, W.; Roy, D. Tip-enhanced Raman spectroscopy: Principles and applications. EPJ Tech. Instrum. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, S.; Li, L.; Schultz, J.F.; Jiang, N. Tip-enhanced Raman spectroscopy: Chemical analysis with nanoscale to angstrom scale resolution. J. Chem. Phys. 2020, 153, 010902. [Google Scholar] [CrossRef]
- Shipp, D.; Sinjab, F.; Notingher, I. Raman spectroscopy: Techniques and applications in the life sciences. Adv. Opt. Photonics 2017, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Ruban, A.V.; Horton, P.; Robert, B. Resonance Raman spectroscopy of the photosystem II light-harvesting complex of green plants: A comparison of trimeric and aggregated states. Biochemistry 1995, 34, 2333–2337. [Google Scholar] [CrossRef]
- Gall, A.; Pascal, A.A.; Robert, B. Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing. Biochim. Biophys. Acta 2015, 1847, 12–18. [Google Scholar] [CrossRef]
- Kuhar, N.; Sil, S.; Umapathy, S. Potential of Raman spectroscopic techniques to study proteins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 258, 119712. [Google Scholar] [CrossRef]
- Nahmad-Rohen, A.; Regan, D.; Masia, F.; McPhee, C.; Pope, I.; Langbein, W.; Borri, P. Quantitative label-free imaging of lipid domains in single bilayers by hyperspectral coherent Raman scattering. Anal. Chem. 2020, 92, 14657–14666. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.-d.; Ho, S.-H.; Shimada, R.; Ren, N.-Q.; Ozawa, T. Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift. Biotechnol. Biofuels 2017, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Peña-Rodríguez, O.; Pal, U. Geometrical Tunability of linear optical response of silica−gold double concentric nanoshells. J. Phys. Chem. C 2010, 114, 4414–4417. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Zhu, X.; Jiao, S.; Chang, Y.; Wang, S.; Dai, S.; Xu, R.; Dou, M.; Li, Q.; et al. A novel multiplex mycotoxin surface-enhanced Raman Spectroscopy immunoassay using functional gold nanotags on a silica photonic crystal microsphere biochip. J. Agric. Food Chem. 2021, 69, 11494–11501. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.M.; Park, S.H.; Kim, G.; Kim, D.-H.; Ahn, D.; Kim, Y.M.; Kwon, S.J.; Yoon, S.-Y.; Kang, H.J.; Chung, S.J. Metal-induced redshift of optical spectra of gold nanoparticles: An instant, sensitive, and selective visual detection of lead ions. Int. Biodeterior. Biodegrad. 2019, 144, 104740. [Google Scholar] [CrossRef]
- Henry, A.-I.; Sharma, B.; Cardinal, M.F.; Kurouski, D.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy biosensing: In vivo diagnostics and multimodal imaging. Anal. Chem. 2016, 88, 6638–6647. [Google Scholar] [CrossRef]
- Laing, S.; Jamieson, L.E.; Faulds, K.; Graham, D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017, 1, 0060. [Google Scholar] [CrossRef]
- Huang, L.-S.; Lin, K.-C. Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 123–128. [Google Scholar] [CrossRef]
- Wei, C.; Xu, M.-M.; Fang, C.-W.; Jin, Q.; Yuan, Y.-X.; Yao, J.-L. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 175, 262–268. [Google Scholar] [CrossRef]
- Machtoub, L.; Pfeiffer, R.; Backovic, A.; Frischauf, S.; Wick, M.C. Molecular imaging cellular SPIO uptake with nonlinear optical microscopy. J. Med. Imaging Radiat. Sci. 2010, 41, 159–164. [Google Scholar] [CrossRef]
- Schlücker, S.; Salehi, M.; Bergner, G.; Schütz, M.; Ströbel, P.; Marx, A.; Petersen, I.; Dietzek, B.; Popp, J. Immuno-surface-enhanced coherent anti-Stokes Raman scattering microscopy: Immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy. Anal. Chem. 2011, 83, 7081–7085. [Google Scholar] [CrossRef]
- Kenison, J.P.; Fast, A.; Guo, F.; LeBon, A.; Jiang, W.; Potma, E.O. Imaging properties of surface-enhanced coherent anti-Stokes Raman scattering microscopy on thin gold films. J. Opt. Soc. Am. B 2017, 34, 2104–2114. [Google Scholar] [CrossRef]
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A. Resonance Raman and resonance hyper-Raman intensities: Structure and dynamics of molecular excited states in solution. J. Phys. Chem. A 2008, 112, 11975–11991. [Google Scholar] [CrossRef] [PubMed]
- Finnie, P.; Ouyang, J.; Lefebvre, J. Full Spectrum Raman Excitation Mapping Spectroscopy. Sci. Rep. 2020, 10, 9172. [Google Scholar] [CrossRef]
- Czernuszewicz, R.; Zaczek, M. Resonance Raman Spectroscopy. In Encyclopedia of Inorganic Chemistry; Wiley: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Andreeva, A.; Velitchkova, M. Resonance Raman studies of carotenoid molecules within Photosystem I particles. Biotechnol. Biotechnol. Equip. 2009, 23, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Tracewell, C.A.; Cua, A.; Bocian, D.F.; Brudvig, G.W. Resonance Raman spectroscopy of carotenoids in Photosystem II core complexes. Photosynth. Res. 2005, 83, 45–52. [Google Scholar] [CrossRef]
- Ioannou, A.; Pinakoulaki, E. Resonance Raman detection of the heme Fe(II)-NO/2-nitrovinyl species in myoglobin. J. Mol. Struct. 2018, 1152, 257. [Google Scholar] [CrossRef]
- Smulevich, G. Solution and crystal phase resonance Raman spectroscopy: Valuable tools to unveil the structure and function of heme proteins. J. Porphyr. Phthalocyanines 2019, 23, 691–700. [Google Scholar] [CrossRef]
- Liu, Y.; Kincaid, J.R. Resonance Raman studies of gas sensing heme proteins. J. Raman Spectrosc. Reson. 2021, 1. [Google Scholar] [CrossRef]
- Ashton, L.; Xu, Y.; Brewster, V.L.; Cowcher, D.P.; Sellick, C.A.; Dickson, A.J.; Stephens, G.M.; Goodacre, R. The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst 2013, 138, 6977–6985. [Google Scholar] [CrossRef] [PubMed]
- Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical principles of Raman spectroscopy. Phys. Sci. Rev. 2019, 4. [Google Scholar] [CrossRef]
- Bai, S.; Sugioka, K. Recent Advances in the fabrication of highly sensitive surface-enhanced Raman scattering substrates: Nanomolar to attomolar level sensing. Light Adv. Manuf. 2021, 2, 13. [Google Scholar] [CrossRef]
- Ouyang, L.; Ren, W.; Zhu, L.; Irudayaraj, J. Prosperity to challenges: Recent approaches in SERS substrate fabrication. Rev. Anal. Chem. 2017, 36, 20160027. [Google Scholar] [CrossRef]
- Moura, C.C.; Tare, R.S.; Oreffo, R.O.; Mahajan, S. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: Prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 2016, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, R.; Potma, E. Coherent Raman scattering microscopy: Capable solution in search of a larger audience. J. Biomed. Opt. 2021, 26, 060601. [Google Scholar] [CrossRef]
- Arora, R.; Petrov, G.I.; Yakovlev, V.V. Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy. J. Mod. Opt. 2008, 55, 3237–3254. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.D.; Reintjes, J.; Manuccia, T.J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 1982, 7, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Zumbusch, A.; Holtom, G.R.; Xie, X.S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 1999, 82, 4142–4145. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, J.; Beaurepaire, E.; Alexandrou, A.; Joffre, M. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 2006, 31, 480–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinegawa, R.; Hiramatsu, K.; Hashimoto, K.; Badarla, V.R.; Ideguchi, T.; Goda, K. High-speed broadband Fourier-transform coherent anti-stokes Raman scattering spectral microscopy. J. Raman Spectrosc. 2019, 50, 1141–1146. [Google Scholar] [CrossRef]
- Littleton, B.; Shah, P.; Kavanagh, T.; Richards, D. Three-color coherent anti-Stokes Raman scattering with optical nonresonant background removal. J. Raman Spectrosc. 2019, 50, 1303–1310. [Google Scholar] [CrossRef]
- Schie, I.W.; Weeks, T.; McNerney, G.P.; Fore, S.; Sampson, J.K.; Wachsmann-Hogiu, S.; Rutledge, J.C.; Huser, T. Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting. Opt. Express 2008, 16, 2168–2175. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, S.-H.; Moon, D.W.; Lee, E.S. Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region. Opt. Express 2009, 17, 22281–22295. [Google Scholar] [CrossRef]
- Guerenne-Del Ben, T.; Rajaofara, Z.; Couderc, V.; Sol, V.; Kano, H.; Leproux, P.; Petit, J.-M. Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH region. Sci. Rep. 2019, 9, 13862. [Google Scholar] [CrossRef] [Green Version]
- Valensise, C.M.; Giuseppi, A.; Vernuccio, F.; De la Cadena, A.; Cerullo, G.; Polli, D. Removing non-resonant background from CARS spectra via deep learning. APL Photonics 2020, 5, 061305. [Google Scholar] [CrossRef]
- Le, T.T.; Yue, S.; Cheng, J.X. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 2010, 51, 3091–3102. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Gu, W.; Jiang, L.; Zhu, Y.; Gong, A. Study on the visualization of pigment in haematococcus pluvialis by Raman spectroscopy technique. Sci. Rep. 2019, 9, 12097. [Google Scholar] [CrossRef]
- Egawa, M. Raman microscopy for skin evaluation. Analyst 2021, 146, 1142–1150. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, S.; Yue, S. Raman spectroscopy and imaging for cancer diagnosis. J. Healthc. Eng. 2018, 2018, 8619342. [Google Scholar] [CrossRef] [PubMed]
- Guerenne-Del Ben, T.; Couderc, V.; Duponchel, L.; Sol, V.; Leproux, P.; Petit, J.M. Multiplex coherent anti-Stokes Raman scattering microspectroscopy detection of lipid droplets in cancer cells expressing TrkB. Sci. Rep. 2020, 10, 16749. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, E.-S.; Lee, J.Y.; Lee, E.S.; Lee, B.-S.; Park, J.E.; Moon, D.W. Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ. Res. 2010, 106, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Owyoung, A.; Jones, E.D. Stimulated Raman spectroscopy using low-power cw lasers. Opt. Lett. 1977, 1, 152–154. [Google Scholar] [CrossRef]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lin, P.; Tan, Y.; Cheng, J.X. Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology. Biomed. Opt. Express 2019, 10, 4329–4339. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Lewis, S.; Camelo-Piragua, S.; Ramkissoon, S.H.; Snuderl, M.; Venneti, S.; Fisher-Hubbard, A.; Garrard, M.; Fu, D.; Wang, A.C.; et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 2015, 7, 309ra163. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.S.; Francis, A.T.; Hill, A.H.; Laohajaratsang, M.; Cimino, P.J.; Latimer, C.S.; Gonzalez-Cuyar, L.F.; Sekhar, L.N.; Juric-Sekhar, G.; Fu, D. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy. Sci. Rep. 2019, 9, 20392. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfac. Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Yamamoto, Y.S.; Ozaki, Y.; Itoh, T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 81–104. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Zong, C.; Premasiri, R.; Lin, H.; Huang, Y.; Zhang, C.; Yang, C.; Ren, B.; Ziegler, L.D.; Cheng, J.-X. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nat. Commun. 2019, 10, 5318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, D.; Cheng, J.-X. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 2015, 17, 415–445. [Google Scholar] [CrossRef] [Green Version]
- Kitahama, Y.; Ozaki, Y. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems. Analyst 2016, 141, 5020–5036. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef]
- Hamm, L.; Gee, A.; De Silva Indrasekara, A.S. Recent advancement in the surface-enhanced Raman spectroscopy-based biosensors for infectious disease diagnosis. Appl. Sci. 2019, 9, 1448. [Google Scholar] [CrossRef] [Green Version]
- Israelsen, N.D.; Hanson, C. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef] [Green Version]
- Tu, D.; Holderby, A.; Coté, G.L. Aptamer-based surface-enhanced resonance Raman scattering assay on a paper fluidic platform for detection of cardiac troponin I. J. Biomed. Opt. 2020, 25, 097001. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Pazos-Perez, N.; Garcia-Rico, E.; Alvarez-Puebla, R. Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnol. 2017, 8, 5. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Li, Y.; Wang, B.; Yang, S.; Chen, W.; Wu, X.; Guo, J.; Ma, X. SERS substrate fabrication for biochemical sensing: Towards point-of-care diagnostics. J. Mater. Chem. B 2021, 9, 8378–8388. [Google Scholar] [CrossRef]
- Ghahremani, M.; Habil, M.K.; Zapata-Rodriguez, C.J. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy. Sci. Rep. 2021, 11, 10639. [Google Scholar] [CrossRef]
- Steuwe, C.; Kaminski, C.F.; Baumberg, J.J.; Mahajan, S. Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructured Gold Surfaces. Nano Lett. 2011, 11, 5339–5343. [Google Scholar] [CrossRef]
- Harmsen, S.; Huang, R.; Wall, M.A.; Karabeber, H.; Samii, J.M.; Spaliviero, M.; White, J.R.; Monette, S.; O’Connor, R.; Pitter, K.L.; et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 2015, 7, 271ra7. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.J.; de Almeida, M.P.; Nunes, D.; Fortunato, E.; Martins, R.; Pereira, E.; Byrne, H.J.; Águas, H.; Franco, R. Design and simple assembly of gold nanostar bioconjugates for surface-enhanced Raman spectroscopy immunoassays. Nanomaterials 2019, 9, 1561. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Hu, M.; Zhang, Y.; Zhou, J.; Wang, Z. Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting. Appl. Surf. Sci. 2020, 505, 144520. [Google Scholar] [CrossRef]
- Das, G.M.; Managò, S.; Mangini, M.; De Luca, A.C. Biosensing using SERS active gold nanostructures. Nanomaterials 2021, 11, 2679. [Google Scholar] [CrossRef]
- Zhu, M.; Li, M.; Su, M.; Liu, J.; Liu, B.; Ge, Y.; Liu, H.; Hu, J. Can “hot spots” be stable enough for surface-enhanced Raman scattering? J. Phys. Chem. C 2021, 125, 13443–13448. [Google Scholar] [CrossRef]
- Wang, H.N.; Fales, A.M.; Zaas, A.K.; Woods, C.W.; Burke, T.; Ginsburg, G.S.; Vo-Dinh, T. Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal. Chim. Acta 2013, 786, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Hasi, W.; Bao, L.; Liu, Y.; Han, S.; Lin, D. A silver self-assembled monolayer-decorated polydimethylsiloxane flexible substrate for in situ SERS detection of low-abundance molecules. J. Raman Spectrosc. 2018, 49, 1469–1477. [Google Scholar] [CrossRef]
- Jamali, S.B.; Khaskheli, M.A.; Abro, M.I.; Chand, R.; Rekik, N.; Affan, H.; Ikram, R. Confirming the SERS enhancement at large mapping area using self-assembly of silver nanocube at liquid-liquid cyclohexane/water interface. J. Mol. Liquids 2021, 326, 115365. [Google Scholar] [CrossRef]
- Fahes, A.; En Naciri, A.; Navvabpour, M.; Jradi, S.; Akil, S. Self-assembled Ag nanocomposites into ultra-sensitive and reproducible large-area SERS-Active opaque substrates. Nanomaterials 2021, 11, 2055. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.F.; Gutierrez-Rivera, L.; Dew, S.K.; Stepanova, M. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. J. Vis. Exp. 2015, 97, e52712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruzas, I.; Lum, W.; Gorunmez, Z.; Sagle, L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: Sensing and beyond. Analyst 2018, 143, 3990–4008. [Google Scholar] [CrossRef]
- Zou, Q.; Mo, S.; Pei, X.; Wang, Y.; Xue, T.; Mayilamu, M.; Qin, G. Fabrication of novel biological substrate based on photolithographic process for surface enhanced Raman spectroscopy. AIP Adv. 2018, 8, 085302. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-H.; Pan, M.-J.; Jargalsaikhan, Z.; Ishdorj, T.-O.; Tseng, F.-G. Development of surface-enhanced Raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer. Biosensors 2020, 10, 163. [Google Scholar] [CrossRef]
- Cui, S.; Tian, C.; Mao, J.; Wu, W.; Fu, Y. Nanopillar array-based plasmonic metasurface for switchable multifunctional biosensing. Opt. Commun. 2022, 506, 127548. [Google Scholar] [CrossRef]
- Karadan, P.; Aggarwal, S.; Anappara, A.A.; Narayana, C.; Barshilia, H.C. Tailored periodic Si nanopillar based architectures as highly sensitive universal SERS biosensing platform. Sens. Actuators B Chem. 2018, 254, 264–271. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Z.; Wang, M.; Zhang, D. Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Appl. Surf. Sci. 2021, 541, 148374. [Google Scholar] [CrossRef]
- Pal, A.K.; Pagal, S.; Prashanth, K.; Chandra, G.K.; Umapathy, S.; Mohan, B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens. Actuators B Chem. 2019, 279, 157–169. [Google Scholar] [CrossRef]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, J.; Zeng, C.; Wang, M.; Qi, W.; He, Z. AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Adv. 2021, 11, 22744–22750. [Google Scholar] [CrossRef]
- Er, E.; Sánchez-Iglesias, A.; Silvestri, A.; Arnaiz, B.; Liz-Marzán, L.M.; Prato, M.; Criado, A. Metal nanoparticles/MoS2 surface-enhanced Raman scattering-based sandwich immunoassay for α-fetoprotein detection. ACS Appl. Mater. Interfaces 2021, 13, 8823–8831. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent development of SERS technology: Semiconductor-based study. ACS Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R.L.; Dede, Y.; Tamer, U.; Schatz, G.C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–924. [Google Scholar] [CrossRef]
- Perumal, J.; Lim, H.Q.; Attia, A.B.E.; Raziq, R.; Leavesley, D.I.; Upton, Z.; Dinish, U.S.; Olivo, M. novel cellulose fibre-based flexible plasmonic membrane for point-of-care SERS biomarker detection in chronic wound healing. Int. J. Nanomed. 2021, 16, 5869–5878. [Google Scholar] [CrossRef]
- Harmsen, S.; Wall, M.A.; Huang, R.; Kircher, M.F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wu, T.; Fu, C.; Chen, G.; Xu, S.; Xu, W. SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Adv. 2016, 6, 90120–90125. [Google Scholar] [CrossRef]
- Barcelo, S.J.; Wu, W.; Li, X.; Li, Z.; Williams, R.S. Nanoimprint lithography of plasmonic platforms for SERS applications. Appl. Phys. A 2015, 121, 443–449. [Google Scholar] [CrossRef]
- Fang, Y. Label-free receptor assays. Drug Discov. Today Technol. 2010, 7, e5–e11. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Tang, X.; Liu, Y.; Han, X.X. Surface-enhanced Raman scattering for direct protein function investigation: Controlled immobilization and orientation. Anal. Chem. 2019, 91, 8767–8771. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Thomas, M.R.; Bergholt, M.S.; Pence, I.J.; Seong, H.; Charchar, P.; Todorova, N.; Nagelkerke, A.; Belessiotis-Richards, A.; Payne, D.J.; et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat. Commun. 2020, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Z.; Wan, M.; Wang, Z.; Zhao, Y.; Sun, L. Highly sensitive surface-enhanced Raman spectroscopy substrates of Ag@PAN electrospinning nanofibrous membranes for direct detection of bacteria. ACS Omega 2020, 5, 19834–19843. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Z.; Lee, Y.; Wang, X.; Zhao, B.; Jung, Y.M. Quantitative evaluation of proteins with bicinchoninic acid (BCA): Resonance Raman and surface-enhanced resonance Raman scattering-based methods. Analyst 2012, 137, 5834–5838. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Zhang, Y.; Kou, Q.; Zhang, Y.; Wang, Y.; Chen, L.; Sun, Y.; Zhang, H.; MeeJung, Y. Detection and identification of estrogen based on surface-enhanced resonance Raman scattering (SERRS). Molecules 2018, 23, 1330. [Google Scholar] [CrossRef] [Green Version]
- Negru, B.; McAnally, M.O.; Mayhew, H.E.; Ueltschi, T.W.; Peng, L.; Sprague-Klein, E.A.; Schatz, G.C.; Van Duyne, R.P. Fabrication of gold nanosphere oligomers for surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. C 2017, 121, 27004–27008. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, C.; Long, L.; Masaki, T.; Tang, M.; Yang, L.; Liu, J.; Huang, Z.; Li, Z.; Luo, X.; et al. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.E.; Jaramillo, S.A.; Settles, E.; Salazar, J.J.V.; Lehr, A.; Gonzalez, J.; Rodríguez Aranda, C.; Navarro-Contreras, H.R.; Raniere, M.O.; Harvey, M.; et al. Detection of SARS-CoV-2 and its S and N proteins using surface enhanced Raman spectroscopy. RSC Adv. 2021, 11, 25788–25794. [Google Scholar] [CrossRef]
- McAughtrie, S.; Faulds, K.; Graham, D. Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, A.; Witkowska, E.; Kowalska, A.; Skoczyńska, A.; Ronkiewicz, P.; Szymborski, T.; Waluk, J. Rapid detection and identification of bacterial meningitis pathogens in ex vivo clinical samples by SERS method and principal component analysis. Anal. Methods 2016, 8, 4521–4529. [Google Scholar] [CrossRef] [Green Version]
- Machtoub, L.H.; Pfeiffer, R.; Bataveljic, D.; Andjus, P.R.; Jordi, H. Monitoring lipids uptake in neurodegenerative disorders by SECARS microscopy. E-J. Surf. Sci. Nanotechnol. 2010, 8, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Machtoub, L.; Bataveljic, D.; Andjus, P. Molecular imaging of brain lipid environment of lymphocytes in amyotrophic lateral sclerosis using magnetic resonance imaging and SECARS microscopy. Physiol. Res. Acad. Sci. Bohemoslov. 2011, 60 (Suppl. S1), S121–S127. [Google Scholar] [CrossRef]
- Sun, D.; Cao, F.; Tian, Y.; Li, A.; Xu, W.; Chen, Q.; Shi, W.; Xu, S. Label-free detection of multiplexed metabolites at Single-cell level via a SERS-microfluidic droplet platform. Anal. Chem. 2019, 91, 15484–15490. [Google Scholar] [CrossRef]
- García-Lojo, D.; Gómez-Graña, S.; Martín, V.F.; Solís, D.M.; Taboada, J.M.; Pérez-Juste, J.; Pastoriza-Santos, I. Integrating plasmonic supercrystals in microfluidics for ultrasensitive, label-free, and selective surface-enhanced Raman spectroscopy detection. ACS Appl. Mater. Interfaces 2020, 12, 46557–46564. [Google Scholar] [CrossRef]
- Nowicka, A.B.; Czaplicka, M.; Kowalska, A.A.; Szymborski, T. Flexible PET/ITO/Ag SERS platform for label-free detection of pesticides. Biosensors 2019, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.; Shin, M.-H.; Lee, E.; Cho, S.-H.; Hwang, H.; Cho, K.; Kim, J.K.; Hahn, S.K. Three-dimensional tungsten disulfide Raman biosensor for dopamine detection. ACS Appl. Bio Mater. 2020, 3, 7687–7695. [Google Scholar] [CrossRef]
- Cottat, M.; D’Andrea, C.; Yasukuni, R.; Malashikhina, N.; Grinyte, R.; Lidgi-Guigui, N.; Fazio, B.; Sutton, A.; Oudar, O.; Charnaux, N.; et al. High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J. Phys. Chem. C 2015, 119, 15532–15540. [Google Scholar] [CrossRef]
- Pan, X.; Li, L.; Lin, H.; Tan, J.; Wang, H.; Liao, M.; Chen, C.; Shan, B.; Chen, Y.; Li, M. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens. Bioelectron. 2019, 145, 111713. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, B.; Yao, R.; Li, Z.; Wang, X.; Dong, X.; Qu, H.; Li, Q.; Li, N.; Chi, H.; et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis. Anal. Chem. 2017, 89, 9836–9842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, C.; Kang, H.; Shao, L.; Hu, L.; Xiao, R.; Wang, S.; Gu, B. Label-free identification carbapenem-resistant Escherichia coli based on surface-enhanced resonance Raman scattering. RSC Adv. 2018, 8, 4761–4765. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, T.G.; Lee, S.H.; Kim, W.; Bang, A.; Moon, S.W.; Song, J.; Shin, J.-H.; Yu, J.S.; Choi, S. Label-Free Surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904. [Google Scholar] [CrossRef]
- Sánchez-Purrà, M.; Roig-Solvas, B.; Rodriguez-Quijada, C.; Leonardo, B.M.; Hamad-Schifferli, K. Reporter selection for nanotags in multiplexed surface enhanced Raman spectroscopy assays. ACS Omega 2018, 3, 10733–10742. [Google Scholar] [CrossRef]
- Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S.K.; Krasnoslobodtsev, A.V. Surface-enhanced Raman scattering-based immunoassay technologies for detection of disease biomarkers. Biosensors 2017, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Xiao, Y.; Onidas, D.; Iannazzo, L.; Ethève-Quelquejeu, M.; Lamouri, A.; Félidj, N.; Mahouche-Chergui, S.; Brulé, T.; Gagey-Eilstein, N.; et al. Raman reporters derived from aryl diazonium salts for SERS encoded-nanoparticles. Chem. Commun. 2020, 56, 6822–6825. [Google Scholar] [CrossRef] [PubMed]
- Javaid, R.; Sayyadi, N.; Mylvaganam, K.; Venkatesan, K.; Wang, Y.; Rodger, A. Design and synthesis of boron complexes as new Raman reporter molecules for sensitive SERS nanotags. J. Raman Spectrosc. 2020, 51, 2408–2415. [Google Scholar] [CrossRef]
- Liu, B.; Ni, H.; Zhang, D.; Wang, D.; Fu, D.; Chen, H.; Gu, Z.; Zhao, X. Ultrasensitive detection of protein with wide linear dynamic range based on core–shell SERS nanotags and photonic crystal beads. ACS Sens. 2017, 2, 1035–1043. [Google Scholar] [CrossRef]
- Andreiuk, B.; Nicolson, F.; Clark, L.M.; Panikkanvalappil, S.R.; Kenry; Rashidian, M.; Harmsen, S.; Kircher, M.F. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022, 6, 10–30. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Lin, L.; Khlebtsov, B.N.; Ye, J. Gap-enhanced Raman tags: Fabrication, optical properties, and theranostic applications. Theranostics 2020, 10, 2067–2094. [Google Scholar] [CrossRef]
- Kim, K.; Choi, N.; Jeon, J.H.; Rhie, G.E.; Choo, J. SERS-based immunoassays for the detection of botulinum toxins A and B using magnetic beads. Sensors 2019, 19, 4081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Jiang, L.; Piper, J.A.; Wang, Y. SERS nanotags and their applications in biosensing and bioimaging. J. Anal. Test. 2018, 2, 26–44. [Google Scholar] [CrossRef]
- Neng, J.; Li, Y.; Driscoll, A.J.; Wilson, W.C.; Johnson, P.A. Detection of multiple pathogens in serum using silica-encapsulated nanotags in a surface-enhanced Raman scattering-based immunoassay. J. Agric. Food Chem. 2018, 66, 5707–5712. [Google Scholar] [CrossRef]
- Duffield, C.; Lyu, N.; Wang, Y. Synthesis and characterization of reporter molecules embedded core-shell nanoparticles as SERS nanotags. J. Innov. Opt. Health Sci. 2021, 14, 2141007. [Google Scholar] [CrossRef]
- Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318. [Google Scholar] [CrossRef]
- Marks, H.; Schechinger, M.; Garza, J.; Locke, A.; Coté, G. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics 2017, 6, 681–701. [Google Scholar] [CrossRef]
- Bai, X.; Shen, A.; Hu, J. A sensitive SERS-based sandwich immunoassay platform for simultaneous multiple detection of foodborne pathogens without interference. Anal. Methods 2020, 12, 4885–4891. [Google Scholar] [CrossRef]
- Guven, B.; Basaran-Akgul, N.; Temur, E.; Tamer, U.; Boyacı, İ.H. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 2011, 136, 740–748. [Google Scholar] [CrossRef]
- Kunushpayeva, Z.; Rapikov, A.; Akhmetova, A.; Sultangaziyev, A.; Dossym, D.; Bukasov, R. Sandwich SERS immunoassay of human immunoglobulin on silicon wafer compared to traditional SERS substrate, gold film. Sens. Bio-Sens. Res. 2020, 29, 100355. [Google Scholar] [CrossRef]
- Karn-orachai, K.; Sakamoto, K.; Laocharoensuk, R.; Bamrungsap, S.; Dharakul, T.; Miki, K. SERS-based immunoassay on 2D-arrays of Au@Ag core–shell nanoparticles: Influence of the sizes of the SERS probe and sandwich immunocomplex on the sensitivity. RSC Adv. 2017, 7, 14099–14106. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Liu, H.; Tian, Y.; Chen, D.; Gu, C.; Wei, G.; Jiang, T.; Zhou, J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic-hydrophobic Ag-modified PMMA substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 262, 120092. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sadique, M.A.; Ranjan, P.; Kumar, N.; Singhal, A.; Srivastava, A.K.; Khan, R. SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. ACS Appl. Bio Mater. 2021, 4, 2974–2995. [Google Scholar] [CrossRef]
- Pyrak, E.; Krajczewski, J.; Kowalik, A.; Kudelski, A.; Jaworska, A. Surface enhanced Raman spectroscopy for DNA biosensors—How far are we? Molecules 2019, 24, 4423. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, H.; Chen, X.; Liu, W.; Xia, K.; Huang, J.; de la Chapelle, M.L.; Huang, G.; Zhang, Y.; Fu, W. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes. Microchim. Acta 2020, 187, 160. [Google Scholar] [CrossRef]
- Pu, H.; Xie, X.; Sun, D.W.; Wei, Q.; Jiang, Y. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta 2019, 195, 419–425. [Google Scholar] [CrossRef]
- Yu, J.; Jeon, J.; Choi, N.; Lee, J.O.; Kim, Y.-P.; Choo, J. SERS-based genetic assay for amplification-free detection of prostate cancer specific PCA3 mimic DNA. Sens. Actuators B Chem. 2017, 251, 302–309. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, X.; Duan, J.; Wu, X.; Wu, J.; Zhang, P.; Liang, W.; Guo, J.; Cai, H.; Sun, P.; et al. Aptamer-based novel Ag-coated magnetic recognition and SERS nanotags with interior nanogap biosensor for ultrasensitive detection of protein biomarker. Sens. Actuators B Chem. 2021, 334, 129640. [Google Scholar] [CrossRef]
- Xing, R.; Wen, Y.; Dong, Y.; Wang, Y.; Zhang, Q.; Liu, Z. Dual molecularly imprinted polymer-based plasmonic immunosandwich assay for the specific and sensitive detection of protein biomarkers. Anal. Chem. 2019, 91, 9993–10000. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, L.; Yan, H.; Lu, Z.; Yin, W.; Han, H. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Anal. Chim. Acta 2020, 1101, 111–119. [Google Scholar] [CrossRef]
- Żygieło, M.; Piotrowski, P.; Witkowski, M.; Cichowicz, G.; Szczytko, J.; Królikowska, A. Reduced Self-Aggregation and improved stability of silica-coated Fe3O4/Ag SERS-active nanotags functionalized with 2-mercaptoethanesulfonate. Front. Chem. 2021, 9, 697595. [Google Scholar] [CrossRef]
- Bozkurt, A.G.; Buyukgoz, G.G.; Soforoglu, M.; Tamer, U.; Suludere, Z.; Boyaci, I.H. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.J.; Jang, A.S.; Lim, D.-K. Comparative study of fluorescence and surface-enhanced Raman scattering with magnetic microparticle-based assay for target bacterial DNA detection. Sens. Actuators B Chem. 2021, 329, 129134. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Wang, Y.; Wang, X.; Song, W.; Ruan, W.; Zhao, B.; Cong, Q. A SERS-active enzymatic product used for the quantification of disease-related molecules. J. Raman Spectrosc. 2014, 45, 75–81. [Google Scholar] [CrossRef]
- Dong, J.; Li, Y.; Zhang, M.; Li, Z.; Yan, T.; Qian, W. Ultrasensitive surface-enhanced Raman scattering detection of alkaline phosphatase. Anal. Methods 2014, 6, 9168–9172. [Google Scholar] [CrossRef]
- Ingram, A.; Moore, B.D.; Graham, D. Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS. Bioorg. Med. Chem. Lett. 2009, 19, 1569–1571. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H.; Wang, P.; Han, H.; Li, G.; Wu, Y. Ratiometric surface enhanced raman scattering immunosorbent assay of allergenic proteins via covalent organic framework composite material based nanozyme tag triggered raman signal “turn-on” and amplification. Anal. Chem. 2019, 91, 11687–11695. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Wang, M.; Petti, L.; Jiang, T.; Jia, Z.; Xie, S.; Zhou, J. SERS-based multiplex immunoassay of tumor markers using double SiO2@Ag immune probes and gold-film hemisphere array immune substrate. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 48–58. [Google Scholar] [CrossRef]
- Chen, R.; Liu, B.; Ni, H.; Chang, N.; Luan, C.; Ge, Q.; Dong, J.; Zhao, X. Vertical flow assays based on core–shell SERS nanotags for multiplex prostate cancer biomarker detection. Analyst 2019, 144, 4051–4059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, S.; Jin, Y.; Yang, C.; He, L.; Wang, J.; Chen, Y. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines. J. Hazard. Mater. 2020, 393, 122348. [Google Scholar] [CrossRef] [PubMed]
- Baniukevic, J.; Boyaci, I.H.; Bozkurt, A.G.; Tamer, U.; Ramanavicius, A.; Ramanaviciene, A. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 2013, 43, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Meng, L.; Wang, L.; Huang, X.; Ali, S.; Chen, X.; Yu, M.; Yi, M.; Li, L.; Chen, X.; et al. SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags. Sens. Actuators B Chem. 2021, 348, 130706. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dai, E.; Xiao, R.; Zhou, Z.; Zhang, M.; Bai, Z.; Shao, Y.; Qi, K.; Tu, J.; Wang, C.; et al. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sens Actuators B Chem 2021, 329, 129196. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.; Chen, Y.; Gu, C.; Wei, G.; Jiang, T. Improved lateral flow strip based on hydrophilic–hydrophobic SERS substrate for ultra−sensitive and quantitative immunoassay. Appl. Surf. Sci. 2020, 529, 147121. [Google Scholar] [CrossRef]
- Beyene, A.B.; Hwang, B.J.; Tegegne, W.A.; Wang, J.-S.; Tsai, H.-C.; Su, W.-N. Reliable and sensitive detection of pancreatic cancer marker by gold nanoflower-based SERS mapping immunoassay. Microchem. J. 2020, 158, 105099. [Google Scholar] [CrossRef]
- Pham, X.-H.; Hahm, E.; Kim, T.H.; Kim, H.-M.; Lee, S.H.; Lee, S.C.; Kang, H.; Lee, H.-Y.; Jeong, D.H.; Choi, H.S.; et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, C.; Wang, J.; Wang, D.; Xiao, R.; Wang, S. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens. Bioelectron. 2016, 84, 15–21. [Google Scholar] [CrossRef]
- Owens, N.A.; Pinter, A.; Porter, M.D. Surface-enhanced resonance Raman scattering for the sensitive detection of a tuberculosis biomarker in human serum. J. Raman Spectrosc. 2019, 50, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-T.; Lee, Y.-C.; Lai, Y.-H.; Lim, J.-C.; Huang, N.-T.; Lin, C.-T.; Huang, J.-J. Review of integrated optical biosensors for point-of-care applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- Gao, R.; Lv, Z.; Mao, Y.; Yu, L.; Bi, X.; Xu, S.; Cui, J.; Wu, Y. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers. ACS Sens. 2019, 4, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-S.; Wang, Y.-N.; Wang, Y.; Xu, Z.-R. Highly reproducible and fast detection of 6-thioguanine in human serum using a droplet-based microfluidic SERS system. Sens. Actuators B Chem. 2019, 283, 532–537. [Google Scholar] [CrossRef]
- Kant, K.; Abalde-Cela, S. Surface-enhanced Raman scattering spectroscopy and microfluidics: Towards ultrasensitive label-free sensing. Biosensors 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, K.R.; Henkel, T.; Popp, J. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. Chemphyschem 2007, 8, 2665–2670. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.; Seong, G.H.; Choo, J.; Lee, E.K.; Gweon, D.G.; Lee, S. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2006, 60, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, S.H.; White, I.M. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 2013, 138, 100–103. [Google Scholar] [CrossRef]
- Ahi, E.E.; Torul, H.; Zengin, A.; Sucularlı, F.; Yıldırım, E.; Selbes, Y.; Suludere, Z.; Tamer, U. A capillary driven microfluidic chip for SERS based hCG detection. Biosens. Bioelectron. 2022, 195, 113660. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, G.; Guan, X.-l.; Zhao, L. Rapid preparation of surface-enhanced Raman substrate in microfluidic channel for trace detection of amoxicillin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118262. [Google Scholar] [CrossRef]
- Chen, R.; Du, X.; Cui, Y.; Zhang, X.; Ge, Q.; Dong, J.; Zhao, X. Vertical Flow Assay for Inflammatory Biomarkers Based on Nanofluidic Channel Array and SERS Nanotags. Small 2020, 16, 2002801. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, L.; Li, L.; Zong, S.; Wang, Z.; Cui, Y. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. Talanta 2018, 188, 507–515. [Google Scholar] [CrossRef]
- Gao, R.; Cheng, Z.; Wang, X.; Yu, L.; Guo, Z.; Zhao, G.; Choo, J. Simultaneous immunoassays of dual prostate cancer markers using a SERS-based microdroplet channel. Biosens. Bioelectron. 2018, 119, 126–133. [Google Scholar] [CrossRef]
- Nie, Y.; Jin, C.; Zhang, J.X.J. Microfluidic In situ patterning of silver nanoparticles for surface-enhanced Raman spectroscopic sensing of biomolecules. ACS Sens. 2021, 6, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Madiyar, F.; Yu, C.; Li, J. Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor. J. Biol. Eng. 2017, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, S.; Zheng, J.; He, L. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC Trends Anal. Chem. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Castaño-Guerrero, Y.; Moreira, F.T.; Sousa-Castillo, A.; Correa-Duarte, M.A.; Sales, M.G.F. SERS and electrochemical impedance spectroscopy immunoassay for carcinoembryonic antigen. Electrochim. Acta 2021, 366, 137377. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Ji, X.; Wang, P.; Ding, C. SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Anal. Chim. Acta 2021, 1141, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Choi, W.; Yang, S.Y.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y.; Jung, H.S. PCR-coupled paper-based surface-enhanced Raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sens. Actuators B Chem. 2021, 326, 128802. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Zhu, A.; Li, H.; Chen, Q. Dual-Mode of Magnetic Assisted Au@ Ag SERS Tags and Cationic Conjugated UCNPs for qualitative and quantitative analysis of multiple foodborne pathogens. Sens. Actuators B Chem. 2021, 344, 130305. [Google Scholar] [CrossRef]
- Kim, K.; Kashefi-Kheyrabadi, L.; Joung, Y.; Kim, K.; Dang, H.; Chavan, S.G.; Lee, M.-H.; Choo, J. Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases. Sens. Actuators B Chem. 2021, 329, 129214. [Google Scholar] [CrossRef]
- Khlebtsov, B.; Khlebtsov, N. Surface-enhanced Raman scattering-based lateral-flow immunoassay. Nanomaterials 2020, 10, 2228. [Google Scholar] [CrossRef]
- Sánchez-Purrà, M.; Roig-Solvas, B.; Versiani, A.; Rodriguez-Quijada, C.; de Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Design of SERS nanotags for multiplexed lateral flow immunoassays. Mol. Syst. Des. Eng. 2017, 2, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-K.; Stanciu, L. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay. Sens. Actuators B Chem. 2018, 276, 222–229. [Google Scholar] [CrossRef]
- Maneeprakorn, W.; Bamrungsap, S.; Apiwat, C.; Wiriyachaiporn, N. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016, 6, 112079–112085. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Bratashov, D.N.; Byzova, N.A.; Dzantiev, B.B.; Khlebtsov, N.G. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420. [Google Scholar] [CrossRef]
- Dégardin, K.; Guillemain, A.; Roggo, Y. Comprehensive study of a handheld raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J. Spectrosc. 2017, 2017, 3154035. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Verduin, J.; de Ridder, R.; Weesepoel, Y.; Alewijn, M.; Heerschop, M.; Keizers, P.H.J.; van Esch, A.; van Asten, A.C. Performance evaluation of handheld Raman spectroscopy for cocaine detection in forensic case samples. Drug Test. Anal. 2021, 13, 1054–1067. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Shoushan, W.; Minnan, Z.; Qun, J.; Qing, W. Portable handheld Raman spectrometer for the identification of new psychoactive substances. Infrared Laser Eng. 2020, 49, 20200101. [Google Scholar] [CrossRef]
- Pilot, R. SERS detection of food contaminants by means of portable Raman instruments. J. Raman Spectrosc. 2018, 49, 954–981. [Google Scholar] [CrossRef]
- Tu, H.; Boppart, S.A. Coherent anti-Stokes Raman scattering microscopy: Overcoming technical barriers for clinical translation. J Biophotonics 2014, 7, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugkar, S.; Smith, B.; Srivastava, P.; Moica, A.; Naji, M.; Brideau, C.; Stys, P.K.; Anis, H. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Opt. Express 2010, 18, 23796–23804. [Google Scholar] [CrossRef]
- Brinkmann, M.; Fast, A.; Hellwig, T.; Pence, I.; Evans, C.L.; Fallnich, C. Portable all-fiber dual-output widely tunable light source for coherent Raman imaging. Biomed. Opt. Express 2019, 10, 4437–4449. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-S.; Wang, P.; Huang, C.Y.; Lin, P.; Eakins, G.; Bentley, R.T.; Liang, R.; Cheng, J.-X. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope. ACS Photonics 2018, 5, 947–954. [Google Scholar] [CrossRef]
- Tran, V.; Walkenfort, B.; König, M.; Salehi, M.; Schlücker, S. Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry. Angew. Chem. 2019, 58, 442–446. [Google Scholar] [CrossRef]
- Xiao, R.; Lu, L.; Rong, Z.; Wang, C.; Peng, Y.; Wang, F.; Wang, J.; Sun, M.; Dong, J.; Wang, D.; et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens. Bioelectron. 2020, 168, 112524. [Google Scholar] [CrossRef]
- Sivanesan, A.; Izake, E.L.; Agoston, R.; Ayoko, G.A.; Sillence, M. Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids. J. Nanobiotechnol. 2015, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Chen, S.; Jiang, Z.; Shi, Z.; Wang, J.; Du, L. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 29222–29229. [Google Scholar] [CrossRef] [PubMed]
- Indrasekara, A.S.D.S. Design criteria to fabricate plasmonic gold nanomaterials for surface-enhanced Raman scattering (SERS)-based biosensing. J. Appl. Phys. 2021, 129, 231102. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A comprehensive review on Raman spectroscopy applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
Analyte | Substrate | LOD | Laser Wavelength, Laser Power | Features | Year, Ref. |
---|---|---|---|---|---|
Solid-dosage form medicines (62 formulations) | Direct measurement without SERS substrate | ND | 785 nm, 270 mW | Positive identification of some generics and one placebo in comparison with instrumental method | 2017, [208] |
Cocaine mixtures (90 cocaine samples) | - | between 10 wt% and 40 wt% | 785-nm, ≈250-mW | Direct identification in the mixtures with different content of cocaine, spectral identification by handled Raman spectrometer (comparison of results with GC–MS) | 2021, [209] |
In vivo imaging of the rat spinal cord, 20 µm and 4.5 µm polystyrene beads | Cover slip | - | ≈800 nm, 300 mW | CARS microscope application for different assays including bioimaging | 2010, [213] |
Dermal structures in human and animal skin | Microscope cover slide without cover slip | - | tunable from 780 to 980 nm, 400 mW | Human skin tissues and mouse ear tissues were analyzed with lipid contrast by CARS microscopy | 2019, [214] |
Sample of mixed dried microspheres of PS and PMMA | Piece of paper | - | 887 nm, 40 mW | Spectroscopic SRS microscopy, real-time hyperspectral SRS imaging | 2018, [215] |
Pesticide residue (thiabendazol) in spinach leaves | In situ label-free imaging | - | 1040 nm, a tunable 80 MHz pulsed laser | SRS microscope in which a fiber delivered two laser pulses for imaging | 2018, [215] |
Human chorionic gonadotropin (hCG) | Au/Au core/satellite nanoparticles, Raman reporter molecule thio-2-napthol and the linker molecule (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide | 1.6 mIU mL−1 | 785 nm diode laser, up to 450 mW | Anti-hCG detection antibody was conjugated to the SERS nanotags | 2018, [216] |
Cancer markers (AFP, CEA, and PSA) | Gold nanorod nanotags functionalized with the Raman reporter molecule DTNB | 0.01 ng/mL | 785 nm diode laser, laser power range: 0–500 mW | SERS-based lateral flow immunoassay (LFIA) reader integrated with a multichannel LFIA reaction column, detection in human serum samples | 2020, [217] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serebrennikova, K.V.; Berlina, A.N.; Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosensors 2021, 11, 512. https://doi.org/10.3390/bios11120512
Serebrennikova KV, Berlina AN, Sotnikov DV, Zherdev AV, Dzantiev BB. Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosensors. 2021; 11(12):512. https://doi.org/10.3390/bios11120512
Chicago/Turabian StyleSerebrennikova, Kseniya V., Anna N. Berlina, Dmitriy V. Sotnikov, Anatoly V. Zherdev, and Boris B. Dzantiev. 2021. "Raman Scattering-Based Biosensing: New Prospects and Opportunities" Biosensors 11, no. 12: 512. https://doi.org/10.3390/bios11120512
APA StyleSerebrennikova, K. V., Berlina, A. N., Sotnikov, D. V., Zherdev, A. V., & Dzantiev, B. B. (2021). Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosensors, 11(12), 512. https://doi.org/10.3390/bios11120512