Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Agents
2.2. Synthesis of MoS2
2.3. Fabrication of FET Devices
2.4. Atomic Layer Deposition (ALD) of Aluminum Oxide Layer
2.5. Materials Characterization
2.6. Biofunctionalization and Biosensing of HIgG
3. Results and Discussion
- Water altered the chemical properties of MoS2 during the incubation via -O or -OH bonding;
- Water intercalated between gold electrodes and MoS2 and increased the contact resistance;
- Water intercalated between MoS2 and the substrate and decreased the gating effect on the MoS2 channel.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, L.; Chen, K.; Chen, Z.; Chen, W.; Gui, X.; Chen, H.; Li, X.; Xu, J. Bin Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS2 Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Appl. Mater. Interfaces 2017, 9, 12073–12081. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.K.; Kataria, S.; Kuo, C.C.; Ganguly, A.; Wang, B.Y.; Hwang, J.Y.; Huang, K.J.; Yang, W.H.; Wang, S.B.; Chuang, C.H.; et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 2013, 7, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xie, P.; De Corato, M.; Ruini, A.; Zhao, S.; Meggendorfer, F.; Straasø, L.A.; Rondin, L.; Simon, P.; Li, J.; et al. Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. J. Am. Chem. Soc. 2018, 140, 7803–7809. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Hatada, M.; Tran, T.T.; Tsugawa, W.; Sode, K.; Mulchandani, A. Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein. Biosens. Bioelectron. 2019, 129, 254–259. [Google Scholar] [CrossRef]
- Pham, T.; Ramnani, P.; Villarreal, C.C.; Lopez, J.; Das, P.; Lee, I.; Neupane, M.R.; Rheem, Y.; Mulchandani, A. MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon N. Y. 2019, 142, 504–512. [Google Scholar] [CrossRef]
- Shen, Y.; Tran, T.T.; Modha, S.; Tsutsui, H.; Mulchandani, A. A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosens. Bioelectron. 2019, 130, 367–373. [Google Scholar] [CrossRef]
- Terse-Thakoor, T.; Ramnani, P.; Villarreal, C.; Yan, D.; Tran, T.T.; Pham, T.; Mulchandani, A. Graphene nanogap electrodes in electrical biosensing. Biosens. Bioelectron. 2019, 126, 838–844. [Google Scholar] [CrossRef]
- Hossain, M.; Sanaullah, M.; Yousuf, A.H.B.; Es-Saki, A.; Chowdhury, M.H. Analytical analysis of the contact resistance (Rc) of metal-MoS2 interface. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems, Fort Collins, CO, USA, 2–5 August 2015; pp. 3–6. [Google Scholar]
- Kim, G.S.; Kim, S.H.; Park, J.; Han, K.H.; Kim, J.; Yu, H.Y. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States. ACS Nano 2018, 12, 6292–6300. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Lee, J.; Sohn, I.Y.; Kim, B.-Y.; Son, Y.M.; Bark, H.; Jung, J.; Choi, M.; Kim, T.H.; Lee, C. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res. 2015, 8, 2340–2350. [Google Scholar] [CrossRef]
- Nam, H.; Oh, B.R.; Chen, P.; Chen, M.; Wi, S.; Wan, W.; Kurabayashi, K.; Liang, X. Multiple MoS2 transistors for sensing molecule interaction kinetics. Sci. Rep. 2015, 5, 10546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, D.M.; Kim, M.; Yim, S.; Choi, M.J.; Choi, J.; Yoo, S.; Jung, Y.S. Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano 2015, 9, 12115–12123. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Jahangir, I.; Koley, G.; Chandrashekhar, M.V.S. Back gated FETs fabricated by large-area, transfer-free growth of a few layer MoS2 with high electron mobility. Appl. Phys. Lett. 2017, 110, 182108. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Shu, J.; Liu, B.; Yin, J.; Guan, C.; Han, Y.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 2015, 106, 103109. [Google Scholar] [CrossRef]
- Illarionov, Y.Y.; Waltl, M.; Di Bartolomeo, A.; Genovese, L.; Illarionov, Y.Y.; Rzepa, G.; Waltl, M.; Knobloch, T.; Grill, A. The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors “The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors”. 2D Mater. 2016, 3, 035004. [Google Scholar]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Shan, J.; Li, J.; Chu, X.; Xu, M.; Jin, F.; Wang, X.; Ma, L.; Fang, X.; Wei, Z.; Wang, X. High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018, 8, 7942–7948. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Parkin, W.M.; Naylor, C.H.; Johnson, A.T.C.; Drndić, M. Ambient effects on electrical characteristics of CVD-grown monolayer MoS2 field-effect transistors. Sci. Rep. 2017, 7, 4075. [Google Scholar] [CrossRef]
- Jung, C.; Yang, H.I.; Choi, W. Effect of Ultraviolet-Ozone Treatment on MoS2 Monolayers: Comparison of Chemical-Vapor-Deposited Polycrystalline Thin Films and Mechanically Exfoliated Single Crystal Flakes. Nanoscale Res. Lett. 2019, 14, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurarslan, A.; Yu, Y.; Su, L.; Yu, Y.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522–11528. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yang, R.; Nguyen, A.E.; Alvillar, S.N.; Empante, T.; Bartels, L.; Feng, P.X.L. Large-scale arrays of single- and few-layer MoS2 nanomechanical resonators. Nanoscale 2016, 8, 10677–10685. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Pankratov, V.; Huttula, M.; Shi, X.; Saukko, S.; Huang, Z.; Zhang, M. Gold nanoparticles on MoS2 layered crystal flakes. Mater. Chem. Phys. 2015, 158, 89–95. [Google Scholar] [CrossRef]
- Sun, L.; Zheng, J. Optical visualization of MoS2 grain boundaries by gold deposition. Sci. China Mater. 2018, 61, 1154–1158. [Google Scholar] [CrossRef] [Green Version]
- Zuo, P.; Jiang, L.; Li, X.; Li, B.; Xu, Y.; Shi, X.; Ran, P.; Ma, T.; Li, D.; Qu, L.; et al. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses. ACS Appl. Mater. Interfaces 2017, 9, 7447–7455. [Google Scholar] [CrossRef]
- Kufer, D.; Konstantatos, G. Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 2015, 15, 7307–7313. [Google Scholar] [CrossRef] [PubMed]
- Song, J.G.; Kim, S.J.; Woo, W.J.; Kim, Y.; Oh, I.K.; Ryu, G.H.; Lee, Z.; Lim, J.H.; Park, J.; Kim, H. Effect of Al2O3 Deposition on Performance of Top-Gated Monolayer MoS2-Based Field Effect Transistor. ACS Appl. Mater. Interfaces 2016, 8, 28130–28135. [Google Scholar] [CrossRef]
- Boryło, P.; Lukaszkowicz, K.; Szindler, M.; Kubacki, J.; Balin, K.; Basiaga, M.; Szewczenko, J. Structure and properties of Al2O3 thin films deposited by ALD process. Vacuum 2016, 131, 319–326. [Google Scholar] [CrossRef]
- Woo, W.J.; Seo, S.; Nam, T.; Kim, Y.; Kim, D.; Song, J.G.; Oh, I.K.; Lim, J.H.; Kim, H.J.; Kim, H. MoS2 doping by atomic layer deposition of high-k dielectrics using alcohol as process oxidants. Appl. Surf. Sci. 2021, 541, 148504. [Google Scholar] [CrossRef]
- Valsaraj, A.; Chang, J.; Rai, A.; Register, L.F.; Banerjee, S.K. Theoretical and experimental investigation of vacancy-based doping of monolayer MoS2 on oxide. 2D Mater. 2015, 2, 045009. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Long, R.; Bertolini, T.; Prezhdo, O.V. Sulfur Adatom and Vacancy Accelerate Charge Recombination in MoS2 but by Different Mechanisms: Time-Domain Ab Initio Analysis. Nano Lett. 2017, 17, 7962–7967. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Q.; Li, T.; He, C.; Ma, B.; Tang, Y.; Lu, Z.; Yang, Z. Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules. J. Mater. Chem. C 2016, 4, 7093–7101. [Google Scholar] [CrossRef]
- Lu, H.; Kummel, A.; Robertson, J. Passivating the sulfur vacancy in monolayer MoS2. APL Mater. 2018, 6, 066104. [Google Scholar] [CrossRef] [Green Version]
- Brooks, T.; Keevil, C.W. A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbiol. 1997, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.; Chen, Y.; Lopez, J.; Yang, M.; Tran, T.-T.; Mulchandani, A. Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors. Biosensors 2021, 11, 514. https://doi.org/10.3390/bios11120514
Pham T, Chen Y, Lopez J, Yang M, Tran T-T, Mulchandani A. Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors. Biosensors. 2021; 11(12):514. https://doi.org/10.3390/bios11120514
Chicago/Turabian StylePham, Tung, Ying Chen, Jhoann Lopez, Mei Yang, Thien-Toan Tran, and Ashok Mulchandani. 2021. "Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors" Biosensors 11, no. 12: 514. https://doi.org/10.3390/bios11120514
APA StylePham, T., Chen, Y., Lopez, J., Yang, M., Tran, T. -T., & Mulchandani, A. (2021). Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors. Biosensors, 11(12), 514. https://doi.org/10.3390/bios11120514