Space Biology Research and Biosensor Technologies: Past, Present, and Future †
Abstract
:1. Introduction
2. Past and Current Technologies
3. Biological CubeSat Missions
4. Future Technologies and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furukawa, S.; Nagamatsu, A.; Nenoi, M.; Fujimori, A.; Kakinuma, S.; Katsube, T.; Wang, B.; Tsuruoka, C.; Shirai, T.; Nakamura, A.J.; et al. Space Radiation Biology for “Living in Space”. BioMed Res. Int. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Bizzarri, M.; Monici, M.; van Loon, J.J.W.A. How Microgravity Affects the Biology of Living Systems. BioMed Res. Int. 2015, 2015, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ferl, R.J.; Paul, A.-L. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. NPJ Microgravity 2016, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.W. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect. Drug Resist. 2015, 8, 249–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro Tieze, S.; Liddell, L.C.; Santa Maria, S.R.; Bhattacharya, S. BioSentinel: A Biological CubeSat for Deep Space Exploration. Astrobiology 2020, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NASA Research Announcement for Appendix A: Orion Exploration Mission-1 Research Pathfinder for Beyond Low Earth Orbit Space Biology Investigations. Available online: https://www.nasa.gov/feature/small-samples-with-big-mission-on-first-orion-flight-around-the-moon (accessed on 29 December 2020).
- Ricco, A.J.; Santa Maria, S.R.; Hanel, R.P.; Bhattacharya, S. BioSentinel: A 6U Nanosatellite for Deep-Space Biological Science. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 6–18. [Google Scholar] [CrossRef]
- Padgen, M.R.; Chinn, T.N.; Friedericks, C.R.; Lera, M.P.; Chin, M.; Parra, M.P.; Piccini, M.E.; Ricco, A.J.; Spremo, S.M. The EcAMSat fluidic system to study antibiotic resistance in low earth orbit: Development and lessons learned from space flight. Acta Astronaut. 2020, 173, 449–459. [Google Scholar] [CrossRef]
- Diaz-Aguado, M.F.; Ghassemieh, S.; Van Outryve, C.; Beasley, C.; Schooley, A. Small Class-D spacecraft thermal design, test and analysis—PharmaSat biological experiment. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009. [Google Scholar] [CrossRef]
- Souza, K.A.; Hogan, R.; Ballard, R. Life into Space: Space Life Sciences Experiments, NASA Ames Research Center 1965–1990; National Aeronautics and Space Administration, Ames Research Center: Moffett Field, CA, USA, 1995.
- Skylab: A chronology. Available online: https://ntrs.nasa.gov/citations/19780017172 (accessed on 14 October 2020).
- MSFC Skylab Student Project Report. Available online: https://ntrs.nasa.gov/citations/19740025164 (accessed on 14 October 2020).
- Life and Microgravity Spacelab (LMS). Available online: https://ntrs.nasa.gov/citations/19980206462 (accessed on 14 October 2020).
- Neigut, J.S.; Tate-Brown, J.M. International Space Station Facilities Research in Space 2017 and Beyond; NASA ISS Program Science Office: Houston, TX, USA, 2017.
- Mobile SpaceLab. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=7692 (accessed on 14 October 2020).
- BioChip SpaceLab. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=7666 (accessed on 14 October 2020).
- Cell Culturing. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=377 (accessed on 14 October 2020).
- Mains, R.; Reynolds, S.; Baker, T.; Sato, K. A Researcher’s Guide to: International Space Station Cellular Biology; NASA ISS Program Science Office: Houston, TX, USA, 2015.
- Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M. Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res. 2016, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Advanced Space Experiment Processor. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=369 (accessed on 29 December 2020).
- CASIS (Center for the Advancement of Science in Space) and the International Space Station National Laboratory: Research in Space for Earth Benefits. Available online: https://iee.ucsb.edu/sites/default/files/docs/ucsb_presentation_nov6_16b.pdf (accessed on 28 January 2021).
- Barker, D.C.; Costello, K.A.; Ruttley, T.M.; Ham, D.L. International Space Station Facilities Research in Space 2013 and Beyond; NASA ISS Program Science Office: Houston, TX, USA, 2013.
- Cell Biology Experiment Facility. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=333 (accessed on 29 December 2020).
- Commercial Generic Bioprocessing Apparatus. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=329 (accessed on 29 December 2020).
- Fluid Processing Cassette. Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=378 (accessed on 29 December 2020).
- Ricco, A.J.; Hines, J.W.; Piccini, M.; Parra, M.; Timucin, L.; Barker, V.; Storment, C.; Friedericks, C.; Agasid, E.; Beasley, C.; et al. Autonomous genetic analysis system to study space effects on microorganisms: Results from orbit. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007. [Google Scholar] [CrossRef]
- Ricco, A.J.; Parra, M.; Niesel, D.; Piccini, M.; Ly, D.; McGinnis, M.; Kudlicki, A.; Hines, J.W.; Timucin, L.; Beasley, C.; et al. PharmaSat: Drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. In Proceedings of the SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, San Francisco, CA, USA, 23–25 January 2011. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Ricco, A.J.; Agasid, E.; Beasley, C.; Diaz-Aguado, M.; Ehrenfreund, P.; Friedericks, C.; Ghassemieh, S.; Henschke, M.; Hines, J.W.; et al. The O/OREOS mission: First science data from the Space Environment Survivability of Living Organisms (SESLO) payload. Astrobiology 2011, 11, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Salim, W.W.A.W.; Park, J.; Rickus, J.L.; Rademacher, A.; Ricco, A.J.; Schooley, A.; Benton, J.; Wickizer, B.; Martinez, A.; Mai, N.; et al. SporeSat: A nanosatellite platform lab-on-a-chip system for investigating gravity threshold of fern-spore single-cell calcium ion currents. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, USA, 8–12 June 2014. [Google Scholar] [CrossRef]
- SpacePharma. Available online: https://www.space4p.com/missions (accessed on 23 January 2021).
- Hegde, K.M.; Abhilash, C.R.; Anirudh, K.; Kashyap, P. Design and Development Of RVSAT-1, A Student Nano-satellite With Biological Payload. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar] [CrossRef]
- SatRevolution. Available online: https://satrevolution.com/missions/labsat/ (accessed on 23 January 2021).
- NASA Research Announcement for Solicitation of Proposals for Possible Inclusion in a Russian Bion-M2 Mission. Available online: https://www.nasa.gov/feature/nasa-selects-space-biology-experiments-to-study-living-organisms-on-russian-bion-m2-mission (accessed on 23 January 2021).
- Santa Maria, S.R.; Marina, D.B.; Massaro Tieze, S.; Liddell, L.C.; Bhattacharya, S. BioSentinel: Long-Term Saccharomyces cerevisiae Preservation for a Deep Space Biosensor Mission. Astrobiology 2020, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artemis Plan: NASA’s Lunar Exploration Program Overview (September 2020). Available online: https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan-20200921.pdf (accessed on 28 January 2021).
- Nickerson, C.A.; Ott, C.M.; Wilson, J.W.; Ramamurthy, R.; Pierson, D.L. Microbial Responses to Microgravity and Other Low-Shear Environments. Microbiol. Mol. Biol. Rev. 2004, 68, 345–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Ahmad, M.; Al Natour, Z.; Attoub, S.; Hassan, A.H. Monitoring of the Budding Yeast Cell Cycle Using Electrical Parameters. IEEE Access 2018, 6, 19231–19237. [Google Scholar] [CrossRef]
- Chin, W.H.; Barr, J.J. Phage research in ‘organ-on-chip’ devices. Microbiol. Aust. 2019, 40, 28–32. [Google Scholar] [CrossRef]
- Bein, A.; Shin, W.; Jalili-Firoozinezhad, S.; Park, M.H.; Sontheimer-Phelps, A.; Tovaglieri, A.; Chalkiadaki, A.; Kim, H.J.; Ingber, D.E. Microfluidic Organ-on-a-Chip Models of Human Intestine. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, L.A.; Giulianotti, M.A. Tissue Chips in Space: Modeling Human Diseases in Microgravity. Pharm. Res. 2019, 37, 8. [Google Scholar] [CrossRef] [PubMed]
- Chinn, T.N.; Lee, A.K.; Boone, T.D.; Tan, M.X.; Chin, M.M.; Mccutcheon, G.C.; Horne, M.F.; Padgen, M.R.; Blaich, J.T.; Forgione, J.B.; et al. Sample Processor for Life on Icy Worlds (SPLIce): Design and Test Results. In Proceedings of the International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2017), Savannah, GA, USA, 22–26 October 2017. [Google Scholar]
- Noell, A.C.; Jaramilllo, E.A.; Kounaves, S.P.; Hecht, M.H.; Harrison, D.J.; Quinn, R.C.; Forgione, J.; Koehne, J.; Ricco, A.J. MICA: Microfluidic Icy-World Chemistry Analyzer. In Proceedings of the AbSciCon, Bellevue, WA, USA, 24–28 June 2019. [Google Scholar]
- Fairén, A.G.; Gómez-Elvira, J.; Briones, C.; Prieto-Ballesteros, O.; Rodríguez-Manfredi, J.A.; López Heredero, R.; Belenguer, T.; Moral, A.G.; Moreno-Paz, M.; Parro, V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. Astrobiology 2020, 20, 1076–1096. [Google Scholar] [CrossRef] [PubMed]
- García-Descalzo, L.; Parro, V.; García-Villadangos, M.; Cockell, C.S.; Moissl-Eichinger, C.; Perras, A.; Rettberg, P.; Beblo-Vranesevic, K.; Bohmeier, M.; Rabbow, E.; et al. Microbial Markers Profile in Anaerobic Mars Analogue Environments Using the LDChip (Life Detector Chip) Antibody Microarray Core of the SOLID (Signs of Life Detector) Platform. Microorganisms 2019, 7, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, M.F.; Kehl, F.; Tavares da Costa, E.; Bramall, N.; Willis, P.A. Fully Automated Microchip Electrophoresis Analyzer for Potential Life Detection Missions. Anal. Chem. 2020, 92, 12959–12966. [Google Scholar] [CrossRef] [PubMed]
- Mathies, R.A.; Razu, M.E.; Kim, J.; Stockton, A.M.; Turin, P.; Butterworth, A. Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. Astrobiology 2017, 17, 902–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ISS Facility | Description | Automated Technologies |
---|---|---|
Advanced Biological Research System (ABRS) | Single system with two independent growth chambers for plants, microorganisms, insects, and spiders [18,19] | Illumination via LEDs, temperature, CO2 level controls; green fluorescent protein imaging system; data downlinking [18,19] |
ADvanced Space Experiment Processor (ADSEP) | Single unit with thermal control for three independent experiments [18,20] | Programmable internal computer for temperature control in each cassette-based experiment; up to 44 individual experiments in each cassette [18,20] |
BioChip SpaceLab (subcomponent of Mobile SpaceLab) | Cell and tissue culture platform with imaging capabilities [21] | Microfluidics for delivery of media, reagents, fluorescent particles; bright field and fluorescence time-lapse imaging; 1× g centrifuge [16,21] |
BioCulture System | Cell, microbe, and tissue culture platform [18] | Hollow fiber bioreactor for medium delivery and waste removal; sample collection, protocol additions (i.e., growth factors); 10 independently controlled experiments [14,18] |
Cell Biology Experiment Facility (CBEF) | Incubator with microgravity compartment and 1× g compartment with centrifuge [22] | Telemetry-controlled or pre-programmed experimental parameters [23] |
Commercial Generic Bioprocessing Apparatus (CGBA) | Cold storage or incubation unit [14,22] | Programmable and accurate temperature control from −10 to 37 °C; can be fitted with bioprocessing inserts for automated sampling [14,24] |
European Modular Cultivation System (EMCS) | Incubator with controllable, multi-gravity environment (0.001–2× g); two independent rotors [19] | Autonomous run of pre-defined programs for event-triggered or time-based day/night cycles, imaging sessions, or gravity thresholds [19] |
Fluid Processing Cassette (FPC) | Insert placed into ADSEP; contains feeding and fixation bags for microbe cultivation [25] | Automated sampling and sample fixation [25] |
Multiple Orbital Bioreactor with Instrumentation and Automated Sampling (MOBIAS) | Bioprocessing insert for CGBA made of stackable trays and used for sample processing [18] | Automated sampling [18] |
CubeSat Mission (Size; Launch) | Biological Organism | Research Investigation | Technology Development |
---|---|---|---|
GeneSat-1 (3U; 2006) | Escherichia coli (bacterium) | Microgravity effects on gene expression | 12-well fluidic card with LED optical detection |
PharmaSat (3U; 2009) | Saccharomyces cerevisiae (yeast) | Microgravity effects on antifungal response | 48-well fluidic card with 3-LED optical sensors |
O/OREOS SESLO (3U; 2010) | Bacillus subtilis (bacterium) | Microgravity and LEO radiation effects | 3-LED optical sensor; multiple-time-point activation |
SporeSat (3U; 2014) | Ceratopteris richardii (fern spores) | Microgravity effects on calcium transport | Artificial gravity; lab-on-a-chip devices |
EcAMSat (6U; 2017) | Escherichiacoli (uropathogenic) | Microgravity effects on antibiotic response | 48-well card; 3-LED optical sensors; variable dose delivery |
BioSentinel (6U; 2021/2022) | Saccharomycescerevisiae | Deep space radiation effects | 18 fluidic cards (288 wells); LET spectrometer; ISS control experiment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanapskyte, A.; Hawkins, E.M.; Liddell, L.C.; Bhardwaj, S.R.; Gentry, D.; Santa Maria, S.R. Space Biology Research and Biosensor Technologies: Past, Present, and Future. Biosensors 2021, 11, 38. https://doi.org/10.3390/bios11020038
Kanapskyte A, Hawkins EM, Liddell LC, Bhardwaj SR, Gentry D, Santa Maria SR. Space Biology Research and Biosensor Technologies: Past, Present, and Future. Biosensors. 2021; 11(2):38. https://doi.org/10.3390/bios11020038
Chicago/Turabian StyleKanapskyte, Ada, Elizabeth M. Hawkins, Lauren C. Liddell, Shilpa R. Bhardwaj, Diana Gentry, and Sergio R. Santa Maria. 2021. "Space Biology Research and Biosensor Technologies: Past, Present, and Future" Biosensors 11, no. 2: 38. https://doi.org/10.3390/bios11020038
APA StyleKanapskyte, A., Hawkins, E. M., Liddell, L. C., Bhardwaj, S. R., Gentry, D., & Santa Maria, S. R. (2021). Space Biology Research and Biosensor Technologies: Past, Present, and Future. Biosensors, 11(2), 38. https://doi.org/10.3390/bios11020038