Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices
Abstract
:1. Enzymatic Biofuel Cells (EBFCs)
2. Enzymatic Cascades
3. New Trends in EBFCs: Hybrid Cascades for Ethanol Electrooxidation Pathways
4. Complete Ethanol Oxidation by Systems Based on Hybrid Enzymatic Electrodes and Organic Catalysts
5. Analytical Techniques Employed with Ethanol EBFCs
6. Applications of Ethanol EBFCs for Biosensing
6.1. Enzymatic Biosensors
6.1.1. Electrochemical Biosensors
6.1.2. Ethanol Self-Powered Biosensors (ESPBs)
6.2. Approaches to Improve the ESPB Technology: Supercapacitor/Biofuel Cell Hybrid Device
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Potter, M.C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Yahiro, A.; Lee, S.; Kimble, D. Bioelectrochemistry. Biochim. Biophys. Acta BBA Spéc. Sect. Biophys. Subj. 1964, 88, 375–383. [Google Scholar] [CrossRef]
- Minteer, S.D.; Liaw, B.Y.; Cooney, M.J. Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 2007, 18, 228–234. [Google Scholar] [CrossRef]
- Durand, F.; Kjaergaard, C.H.; Suraniti, E.; Gounel, S.; Hadt, R.G.; Solomon, E.I.; Mano, N. Bilirubin oxidase from Bacillus pumilus: A promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens. Bioelectron. 2012, 35, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Willner, I.; Yan, Y.-M.; Tel-Vered, R.; Willner, B. Integrated Enzyme-Based Biofuel Cells—A Review. Fuel Cells 2009, 9, 7–24. [Google Scholar] [CrossRef]
- Higgins, S.R.; Lau, C.; Atanassov, P.; Minteer, S.D.; Cooney, M.J. Hybrid Biofuel Cell: Microbial Fuel Cell with an Enzymatic Air-Breathing Cathode. ACS Catal. 2011, 1, 994–997. [Google Scholar] [CrossRef]
- Neto, S.A.; De Andrade, A.R. New Energy Sources: The Enzymatic Biofuel Cell. J. Braz. Chem. Soc. 2013, 24, 1891–1912. [Google Scholar] [CrossRef]
- Moehlenbrock, M.J.; Minteer, S.D. Extended lifetime biofuel cells. Chem. Soc. Rev. 2008, 37, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Barton, S.C.; Gallaway, J.; Atanassov, P. Enzymatic Biofuel Cells for Implantable and Microscale Devices. Chem. Rev. 2004, 104, 4867–4886. [Google Scholar] [CrossRef] [PubMed]
- Bullen, R.; Arnot, T.; Lakeman, J.; Walsh, F.C. Biofuel cells and their development. Biosens. Bioelectron. 2006, 21, 2015–2045. [Google Scholar] [CrossRef] [Green Version]
- Falk, M.; Villarrubia, C.W.N.; Babanova, S.; Atanassov, P.; Shleev, S. Biofuel Cells for Biomedical Applications: Colonizing the Animal Kingdom. ChemPhysChem 2013, 14, 2045–2058. [Google Scholar] [CrossRef]
- Sokic-Lazic, D.; Minteer, S.D. Citric acid cycle biomimic on a carbon electrode. Biosens. Bioelectron. 2008, 24, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Zebda, A.; Alcaraz, J.-P.; Vadgama, P.; Shleev, S.; Minteer, S.D.; Boucher, F.; Cinquin, P.; Martin, D.K. Challenges for successful implantation of biofuel cells. Bioelectrochemistry 2018, 124, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Gamella, M.; Koushanpour, A.; Katz, E. Biofuel cells Activation of micro and macro Electronic devices. Bioelectrochemistry 2018, 119, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gellett, W.; Kesmez, M.; Schumacher, J.; Akers, N.; Minteer, S.D. Biofuel Cells for Portable Power. Electroanal. Int. J. Dev. Fundam. Pract. Asp. Electroanal. 2010, 22, 727–731. [Google Scholar] [CrossRef]
- Yu, E.H.; Scott, K. Enzymatic Biofuel Cells—Fabrication of Enzyme Electrodes. Energies 2010, 3, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Tam, T.K.; Pita, M.; Ornatska, M.; Katz, E. Biofuel cell controlled by enzyme logic network—Approaching physiologically regulated devices. Bioelectrochemistry 2009, 76, 4–9. [Google Scholar] [CrossRef]
- González-Guerrero, M.J.; Esquivel, J.P.; Molas, D.S.; Godignon, P.; Del Campo, F.J.; Giroud, F.; Minteer, S.D.; Sabaté, N. Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes. Lab Chip 2013, 13, 2972. [Google Scholar] [CrossRef]
- Sokic-Lazic, D.; De Andrade, A.R.; Minteer, S.D. Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell. Electrochim. Acta 2011, 56, 10772–10775. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, F.; Zhang, X.; Zhang, Y.-H.P. Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens. Bioelectron. 2012, 36, 110–115. [Google Scholar] [CrossRef]
- Franco, J.H.; Minteer, S.D.; De Andrade, A.R. Product Analysis of Operating an Ethanol/O2 Biofuel Cell Shows the Synergy between Enzymes within an Enzymatic Cascade. J. Electrochem. Soc. 2018, 165, H575–H579. [Google Scholar] [CrossRef]
- Neto, S.A.; Minteer, S.D.; De Andrade, A.R. Developing ethanol bioanodes using a hydrophobically modified linear polyethylenimine hydrogel for immobilizing an enzyme cascade. J. Electroanal. Chem. 2018, 812, 153–158. [Google Scholar] [CrossRef]
- Rasmussen, M.; Abdellaoui, S.; Minteer, S.D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.; Gonçalves, A.; Pagnoncelli, K.; Crespilho, F.N.; De Souza, J.C.P. Bioelectrooxidation of Ethanol Using NAD-Dependent Alcohol Dehydrogenase on Oxidized Flexible Carbon Fiber Arrays. J. Braz. Chem. Soc. 2017, 28, 1698–1707. [Google Scholar] [CrossRef]
- Pagnoncelli, K.C.; Pereira, A.R.; Sedenho, G.C.; Bertaglia, T.; Crespilho, F.N. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system. Bioelectrochemistry 2018, 122, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Neto, S.A.; Almeida, T.D.S.; Palma, L.; Minteer, S.D.; De Andrade, A.R. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell. J. Power Sour. 2014, 259, 25–32. [Google Scholar] [CrossRef]
- Ribeiro, J.; Dos Anjos, D.M.; Leger, J.-M.; Hahn, F.; Olivi, P.; De Andrade, A.R.; Tremiliosi-Filho, G.; Kokoh, K.B. Effect of W on PtSn/C catalysts for ethanol electrooxidation. J. Appl. Electrochem. 2008, 38, 653–662. [Google Scholar] [CrossRef]
- Purgato, F.L.S.; Olivi, P.; Leger, J.-M.; De Andrade, A.R.; Tremiliosi-Filho, G.; Gonzalez, E.R.; Lamy, C.; Kokoh, K.B. Activity of platinum–tin catalysts prepared by the Pechini–Adams method for the electrooxidation of ethanol. J. Electroanal. Chem. 2009, 628, 81–89. [Google Scholar] [CrossRef]
- Ivanov, I.; Vidaković, T.; Sundmacher, K. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling. Energies 2010, 3, 803–846. [Google Scholar] [CrossRef] [Green Version]
- Lia, X.; Lia, D.; Zhanga, Y.; Lvd, P.; Fengc, Q.; Weiab, Q. Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy 2020, 68, 104308. [Google Scholar] [CrossRef]
- Ruff, A.; Pinyou, P.; Nolten, M.; Conzuelo, F.; Schuhmann, W. A Self-Powered Ethanol Biosensor. ChemElectroChem 2017, 4, 890–897. [Google Scholar] [CrossRef]
- Franco, J.H.; Neto, S.A.; Hickey, D.P.; Minteer, S.D.; De Andrade, A.R. Hybrid catalyst cascade architecture enhancement for complete ethanol electrochemical oxidation. Biosens. Bioelectron. 2018, 121, 281–286. [Google Scholar] [CrossRef]
- Franco, J.H.; De Almeida, P.Z.; Abdellaoui, S.; Hickey, D.P.; Ciancaglini, P.; Polizeli, M.D.L.T.M.; Minteer, S.D.; De Andrade, A.R. Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation. Bioelectrochemistry 2019, 130, 107331. [Google Scholar] [CrossRef]
- Franco, J.H.; Klunder, K.J.; Lee, J.; Russell, V.; De Andrade, A.R.; Minteer, S.D. Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. Biosens. Bioelectron. 2020, 154, 112077. [Google Scholar] [CrossRef] [PubMed]
- Abdellaoui, S.; Hickey, D.P.; Stephens, A.R.; Minteer, S.D. Recombinant oxalate decarboxylase: Enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. Chem. Commun. 2015, 51, 14330–14333. [Google Scholar] [CrossRef] [PubMed]
- Macazo, F.C.; Hickey, D.P.; Abdellaoui, S.; Sigman, M.S.; Minteer, S.D. Polymer-immobilized, hybrid multi-catalyst architecture for enhanced electrochemical oxidation of glycerol. Chem. Commun. 2017, 53, 10310–10313. [Google Scholar] [CrossRef] [PubMed]
- Hickey, D.P.; McCammant, M.S.; Giroud, F.; Sigman, M.S.; Minteer, S.D. Hybrid Enzymatic and Organic Electrocatalytic Cascade for the Complete Oxidation of Glycerol. J. Am. Chem. Soc. 2014, 136, 15917–15920. [Google Scholar] [CrossRef]
- Lauber, M.B.; Stahl, S.S. Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NOx Catalyst System. ACS Catal. 2013, 3, 2612–2616. [Google Scholar] [CrossRef]
- Campbell, A.S.; Jeong, Y.J.; Geier, S.M.; Koepsel, R.R.; Russell, A.J.; Islam, M.F. Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes. ACS Appl. Mat. Interfaces 2015, 7, 4056–4065. [Google Scholar] [CrossRef]
- Vincent, K.A.; Li, X.; Blanford, C.F.; Belsey, N.A.; Weiner, J.H.; Armstrong, F.A. Enzymatic catalysis on conducting graphite particles. Nat. Chem. Biol. 2007, 3, 761–762. [Google Scholar] [CrossRef]
- Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; Del Valle, M.; Alegret, S. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends Anal. Chem. 2005, 24, 826–838. [Google Scholar] [CrossRef]
- Ogawa, Y.; Yoshino, S.; Miyake, T.; Nishizawa, M. Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes. Phys. Chem. Chem. Phys. 2014, 16, 13059–13062. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I. Biomolecule–Functionalized Carbon Nanotubes: Applications in Nanobioelectronics. ChemPhysChem 2004, 5, 1084–1104. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.-M.; Sarawathi, R. Membraneless Enzymatic Biofuel Cells Based on Multi–Walled Carbon Nanotubes. Int. J. Electrochem. Sci. 2011, 6, 3776–3788. [Google Scholar]
- Neto, S.A.; Forti, J.; Zucolotto, V.; Ciancaglini, P.; De Andrade, A.; De Andrade, A.R. Development of nanostructured bioanodes containing dendrimers and dehydrogenases enzymes for application in ethanol biofuel cells. Biosens. Bioelectron. 2011, 26, 2922–2926. [Google Scholar] [CrossRef]
- Franco, J.H.; Klunder, K.J.; Russell, V.; De Andrade, A.R.; Minteer, S.D. Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. Electrochim. Acta 2020, 331, 135254. [Google Scholar] [CrossRef]
- Sokic-Lazic, D.; Arechederra, R.L.; Treu, B.L.; Minteer, S.D. Oxidation of Biofuels: Fuel Diversity and Effectiveness of Fuel Oxidation through Multiple Enzyme Cascades. Electroanal. Int. J. Dev. Fundam. Pract. Asp. Electroanal. 2010, 22, 757–764. [Google Scholar] [CrossRef]
- Llano, T.; Quijorna, N.; Andrés, A.; Coz, A. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID. Biotechnol. Rep. 2017, 15, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Wade, J.H.; Bailey, R.C. Refractive Index-Based Detection of Gradient Elution Liquid Chromatography using Chip-Integrated Microring Resonator Arrays. Anal. Chem. 2014, 86, 913–919. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, G.; Cavazzini, M.; Quici, S.; Benaglia, M.; Dell’Anna, G. Poly (ethylene glycol)-Supported TEMPO: An Efficient, Recoverable Metal-Free Catalyst for the Selective Oxidation of Alcohols. Org. Lett. 2004, 6, 441–443. [Google Scholar] [CrossRef]
- Zwolinski, K.M.; Chmielewski, M.J. TEMPO–Appended Metal–Organic Frameworks as Highly Active, Selective, and Reusable Catalysts for Mild Aerobic Oxidation of Alcohols. ACS Appl. Mat. Interfaces 2017, 9, 33956–33967. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.L. A Complete Introduction to Modern NMR Spectroscopy (Macomber, Rodger S.). J. Chem. Educ. 1999, 76, 473. [Google Scholar] [CrossRef] [Green Version]
- Weljie, A.M.; Newton, J.; Jirik, F.R.; Vogel, H.J. Evaluating Low-Intensity Unknown Signals in Quantitative Proton NMR Mixture Analysis. Anal. Chem. 2008, 80, 8956–8965. [Google Scholar] [CrossRef] [PubMed]
- Valverde, J.; This, H.; Vignolle, M. Quantitative Determination of Photosynthetic Pigments in Green Beans Using Thin-Layer Chromatography and a Flatbed Scanner as Densitometer. J. Chem. Educ. 2007, 84, 1505. [Google Scholar] [CrossRef]
- Abdellaoui, S.; Chavez, M.S.; Matanovic, I.; Stephens, A.R.; Atanassov, P.; Minteer, S.D. Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Chem. Commun. 2017, 53, 5368–5371. [Google Scholar] [CrossRef]
- Kay, J.; Thomas, R.; Gruenhagen, J.; Venkatramani, C. Simultaneous quantitation of water and residual solvents in pharmaceuticals by rapid headspace gas chromatography with thermal conductivity detection (GC-TCD). J. Pharm. Biomed. Anal. 2021, 194, 113796. [Google Scholar] [CrossRef]
- O’Keefe, W.; Ng, F.; Rempel, G. Validation of a gas chromatography/thermal conductivity detection method for the determination of the water content of oxygenated solvents. J. Chromatogr. A 2008, 1182, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Bückmann, A.F.; Willner, I. Self-Powered Enzyme-Based Biosensors. J. Am. Chem. Soc. 2001, 123, 10752–10753. [Google Scholar] [CrossRef]
- Karube, I.; Nomura, Y. Enzyme sensors for environmental analysis. J. Mol. Catal. B Enzym. 2000, 10, 177–181. [Google Scholar] [CrossRef]
- Boujtita, M. Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer. Biosens. Bioelectron. 2000, 15, 257–263. [Google Scholar] [CrossRef]
- Wen, G.; Zhang, Y.; Shuang, S.; Dong, C.; Choi, M.M. Application of a biosensor for monitoring of ethanol. Biosens. Bioelectron. 2007, 23, 121–129. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Huang, J.-D.; Chiu, C.-C. Amperometric ethanol biosensor based on poly (vinyl alcohol)–Multiwalled carbon nanotube–Alcohol dehydrogenase biocomposite. Biosens. Bioelectron. 2007, 22, 3051–3056. [Google Scholar] [CrossRef]
- Li, L.; Lu, H.; Deng, L. A sensitive NADH and ethanol biosensor based on graphene—Au nanorods nanocomposites. Talanta 2013, 113, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Xiao, X.; Xia, H.-Q.; Wu, R.; Bai, L.; Yan, L.; Magner, E.; Cosnier, S.; Lojou, E.; Zhu, Z.; Liu, A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem. Rev. 2019, 119, 9509–9558. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Kong, X.; Liu, X.; Gai, P.; Li, F. Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism. Anal. Chem. 2019, 91, 8697–8704. [Google Scholar] [CrossRef]
- Conzuelo, F.; Ruff, A.; Schuhmann, W. Self-Powered bioelectrochemical devices. Curr. Opin. Electrochem. 2018, 12, 156–163. [Google Scholar] [CrossRef]
- Fu, L.; Liu, J.; Hu, Z.; Zhou, M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. Electroanalysis 2018, 30, 2535–2550. [Google Scholar] [CrossRef]
- Grattieri, M.; Minteer, S.D. Self-Powered Biosensors. ACS Sens. 2018, 3, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Pinyou, P.; Conzuelo, F.; Sliozberg, K.; Vivekananthan, J.; Contin, A.; Poller, S.; Plumeré, N.; Schuhmann, W. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochemistry 2015, 106, 22–27. [Google Scholar] [CrossRef]
- Hickey, D.P.; Reid, R.C.; Milton, R.D.; Minteer, S.D. A Self-Powered amperometric lactate biosensor based on lactate oxidase immobilized in Dimethylferrocene-Modified LPEI. Biosens. Bioelectron. 2016, 77, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Chabu, J.M.; Hu, S.; Deng, L.; Liu, Y.-N.; Guo, S. Rational Tuning of the Electrocatalytic Nanobiointerface for a “Turn-Off” Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein. Chem. A Eur. J. 2015, 21, 13045–13051. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, L.; Wang, P.; Yan, M.; Yu, J.; Ge, S. A Three-Dimensional origami based Immune-Biofuel cell for Self-Powered, Low-Cost, and sensitive point of care testing. Chem. Commun. 2014, 50, 1947–1949. [Google Scholar] [CrossRef] [PubMed]
- Conzuelo, F.; Vivekananthan, J.; Poller, S.; Pingarrón, J.M.; Schuhmann, W. Immunologically Controlled Biofuel Cell as a Self-Powered Biosensor for Antibiotic Residue Determination. ChemElectroChem 2014, 1, 1854–1858. [Google Scholar] [CrossRef]
- Lansdorp, B.; Ramsay, W.; Hamidand, R.; Strenk, E. Wearable Enzymatic Alcohol Biosensor. Sensors 2019, 19, 2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.S.; Kim, J.; Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin. Electrochem. 2018, 10, 126–135. [Google Scholar] [CrossRef]
- Hooda, V.; Gahlaut, A.; Hooda, V. A novel amperometric biosensor for rapid detection of ethanol utilizing gold nanoparticles and enzyme coupled PVC reaction cell. Environ. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Wu, G.; Yao, Z.; Fei, B.; Gao, F. An Enzymatic Ethanol Biosensor and Ethanol/Air Biofuel Cell Using Liquid-Crystalline Cubic Phases as Hosting Matrices to Co-Entrap Enzymes and Mediators. J. Electrochem. Soc. 2017, 164, G82–G86. [Google Scholar] [CrossRef]
- Bollella, P.; Gorton, L.; Antiochia, R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. Sensors 2018, 18, 1319. [Google Scholar] [CrossRef] [Green Version]
- Agnès, C.; Holzinger, M.; Le Goff, A.; Reuillard, B.; Elouarzaki, K.; Tingry, S.; Cosnier, S. Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: Autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy Environ. Sci. 2014, 7, 1884–1888. [Google Scholar] [CrossRef]
- Falk, M.; Shleev, S. Hybrid Dual-Functioning electrodes for combined ambient energy harvesting and charge storage: Towards Self-Powered systems. Biosens. Bioelectron. 2019, 126, 275–291. [Google Scholar] [CrossRef]
- Sode, K.; Yamazaki, T.; Lee, I.; Hanashi, T.; Tsugawa, W. BioCapacitor: A novel principle for biosensors. Biosens. Bioelectron. 2016, 76, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors. Adv. Mat. 2014, 26, 2219–2251. [Google Scholar] [CrossRef] [PubMed]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [Green Version]
- Skunik-Nuckowska, M.; Grzejszczyk, K.; Stolarczyk, K.; Bilewicz, R.; Kulesza, P.J. Integration of supercapacitors with enzymatic biobatteries toward more effective Pulse-Powered use in Small-Scale energy harvesting devices. J. Appl. Electrochem. 2014, 44, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells. Environ. Sci. Technol. 2012, 46, 3554–3560. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Pankratov, D.; Pankratova, G.; Toscano, M.D.; Zhang, J.; Ulstrup, J.; Chi, Q.; Gorton, L. Supercapacitor/biofuel cell hybrid device employing biomolecules for energy conversion and charge storage. Bioelectrochemistry 2019, 128, 94–99. [Google Scholar] [CrossRef]
- Alsaoub, S.; Conzuelo, F.; Gounel, S.; Mano, N.; Schuhmann, W.; Ruff, A. Introducing Pseudocapacitive Bioelectrodes into a Biofuel Cell/Biosupercapacitor Hybrid Device for Optimized Open Circuit Voltage. ChemElectroChem 2019, 6, 2080–2087. [Google Scholar] [CrossRef]
- Shleev, S.; González-Arribas, E.; Falk, M. Biosupercapacitors. Curr. Opin. Electrochem. 2017, 5, 226–233. [Google Scholar] [CrossRef]
- Pankratov, D.; Blum, Z.; Suyatin, D.B.; Popov, V.O.; Shleev, S. Self-Charging Electrochemical Biocapacitor. ChemElectroChem 2013, 1, 343–346. [Google Scholar] [CrossRef]
- Knoche, K.L.; Hickey, D.P.; Milton, R.D.; Curchoe, C.L.; Minteer, S.D. Hybrid Glucose/O2 Biobattery and Supercapacitor Utilizing a Pseudocapacitive Dimethylferrocene Redox Polymer at the Bioanode. ACS Energy Lett. 2016, 1, 380–385. [Google Scholar] [CrossRef]
- Pankratov, D.; Blum, Z.; Shleev, S. Hybrid Electric Power Biodevices. ChemElectroChem 2014, 1, 1798–1807. [Google Scholar] [CrossRef]
Bioeletrode | Fuel Conc/mM | OCP (V) | Power Density (µW/cm2) | Literature |
---|---|---|---|---|
MWCNT-COOH/Pyrene-TEMPO/OxDc | EtOH | 0.598 | 388.0 | Franco et al. Biosens. Bioelectron. 154 (2020) 112077 |
MG + Nafion+ADH/AldDH/NAD+ | EtOH | 0.510 | 340.0 | Topcagic and Minteer, Electrochim. Acta 51 (2006) 2168–2172 |
MWCNT-COOH/TEMPO-LPEI/OxOx | EtOH | 0.492 | 302.5 | Franco et al. Bioelectrochemistry 130 (2019) 107331 |
ADH/TiO2NTs–TCPP | EtOH | 1.13 | 270.0 | Zhang et al. Nano Energy 11 (2015) 48–55 |
poly-(MG-PYR) + MWCNTs + Nafion + ADH/AldDH/NAD+ | EtOH | 0.503 | 275.2 | Bonfin et al. J. Electroanal. Chem. 844 (2019) 43–48 |
MG + MWCNTs + Nafion + ADH/AldDH/NAD+ | EtOH | 0.540 | 186.0 | Franco et al. J. Electrochem. Soc 165 (2018) H575–H579 |
MG + MWCNTs + PAMAM + ADH/NAD+ | EtOH | 0.356 | 189.0 | Fenga et al. Electrochim. Acta 106 (2013) 109–113 |
MG + ADH/NAD+ | EtOH | 0.340 | 53.0 | Moore et al. Lab Chip 5 (2005) 218–225 |
MWCNTs + PAMAM + PQQ-ADH/PQQ-AldDH | EtOH | Not reported | 38.4 | Neto et al. Electrochim. Acta 87 (2013) 323–329 |
MG + MWCNTs + LPEI + ADH/AldDH/NAD+ | EtOH | 0.530 | 35.5 | Lau et al. Int. J. Hydrog. Energy 40 (2015) 14661–14666 |
MG + MWCNTs + Nafion + ADH/NAD+ | EtOH | 0.149 | 32.0 | Fenga et al. Electrochim. Acta 106 (2013) 109–113 |
ADH + Saccharomyces cerevisiae | EtOH | 0.350 | 7.07 | Pagnoncelli et al. Bioelectrochemistry 122 (2018) 11–25 |
QH-ADH | EtOH | 0.130 | 1.50 | Ramanavicius et al. Biosens. Bioelectron. 24 (2008) 761–766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, J.H.; Minteer, S.D.; De Andrade, A.R. Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors 2021, 11, 41. https://doi.org/10.3390/bios11020041
Franco JH, Minteer SD, De Andrade AR. Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors. 2021; 11(2):41. https://doi.org/10.3390/bios11020041
Chicago/Turabian StyleFranco, Jefferson Honorio, Shelley D. Minteer, and Adalgisa R. De Andrade. 2021. "Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices" Biosensors 11, no. 2: 41. https://doi.org/10.3390/bios11020041
APA StyleFranco, J. H., Minteer, S. D., & De Andrade, A. R. (2021). Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors, 11(2), 41. https://doi.org/10.3390/bios11020041