An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Device Fabrication
2.3. Potentiometric Measurements Using the ePAD
2.4. Inorganic Ions Potentiometric Measurement
2.5. Measurement of H2O2 and Glucose
2.6. Measurement of Glucose
2.7. Real Sample
3. Results and Discussion
3.1. Sensor Design
3.2. Selection of Suitable Pencil for Pseudo-Reference Electrode
3.3. Inorganic Ions Determination
3.3.1. Unmodified Carbon Paste Electrode for Measurement of Cu2+, Ag+, Cr3+ and Hg2+ Ions
3.3.2. Benzo15-Crown-5 Modified Carbon Paste Electrode for Measurement of Cd2+ Ion
3.4. Bio-Sensing by ePAD
3.4.1. Measurement of H2O2 with MnO2 Modified Carbon Paste Electrode (MnO2-MCPE)
3.4.2. Using ePAD As a Biosensor for Glucose
3.4.3. Real Sample Analysis
3.5. Comparison with Other Microfluidics Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thapliyal, N.; Chiwunze, T.E.; Karpoormath, R.; Goyal, R.N.; Patel, H.; Cherukupalli, S. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples. RSC Adv. 2016, 6, 57580–57602. [Google Scholar] [CrossRef]
- Umezawa, Y.; Sofue, S.; Takamoto, Y. Thin-layer ion-selective electrode detection of anticardiolipin antibodies in syphilis serology. Talanta 1984, 31, 375–378. [Google Scholar] [CrossRef]
- Zou, X.U.; Cheong, J.H.; Taitt, B.J.; Bühlmann, P. Solid contact ion-selective electrodes with a well-controlled Co (II)/Co (III) redox buffer layer. Anal. Chem. 2013, 85, 9350–9355. [Google Scholar] [CrossRef]
- Santhiago, M.; Nery, E.W.; Santos, G.P.; Kubota, L.T. Microfluidic paper-based devices for bioanalytical applications. Bioanalysis 2014, 6, 89–106. [Google Scholar] [CrossRef]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2014, 87, 19–41. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [Green Version]
- Siegel, A.C.; Phillips, S.T.; Dickey, M.D.; Lu, N.; Suo, Z.; Whitesides, G.M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35. [Google Scholar] [CrossRef]
- Feng, L.; Li, H.; Niu, L.Y.; Guan, Y.S.; Duan, C.F.; Guan, Y.F.; Tung, C.-H.; Yang, Q.-Z. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta 2013, 108, 103–108. [Google Scholar] [CrossRef]
- Gharaghani, F.M.; Akhond, M.; Hemmateenejad, B. A three-dimensional origami microfluidic device for paper chromatography: Application to quantification of Tartrazine and Indigo carmine in food samples. J Chromatogr. A 2020, 1621, 461049–461052. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, H.; Tashkhourian, J.; Hemmateenejad, B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu (II) in water samples. Anal. Chim. Acta 2020, 1126, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Li, B.; Chen, L.; Qin, W. A three-dimensional Origami paper-based device for potentiometric biosensing. Angew. Chem. Int. Ed. 2016, 55, 13033–13037. [Google Scholar] [CrossRef] [PubMed]
- Shariati, S.; Khayatian, G. The colorimetric and microfluidic paper-based detection of cysteine and homocysteine using 1, 5-diphenylcarbazide-capped silver nanoparticles. RSC Adv. 2021, 11, 3295–3303. [Google Scholar] [CrossRef]
- Hidayat, M.A.; Maharani, D.A.; Purwanto, D.A.; Kuswandi, B.; Yuwono, M. Simple and sensitive paper-based colorimetric biosensor for determining total polyphenol content of the green tea beverages. Biotechnol. Bioprocess Eng. 2020, 25, 255–263. [Google Scholar] [CrossRef]
- Taghizadeh-Behbahani, M.; Hemmateenejad, B.; Shamsipur, M. Colorimetric determination of acidity constant using a paper-based microfluidic analytical device. Chem. Pap. 2018, 72, 1239–1247. [Google Scholar] [CrossRef]
- Chen, H.; Hu, O.; Fan, Y.; Xu, L.; Zhang, L.; Lan, W. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP. Food Chem. 2020, 327, 127075. [Google Scholar] [CrossRef]
- Mesgari, F.; Beigi, S.M.; Fakhri, N.; Hosseini, M.; Aghazadeh, M.; Ganjali, M.R. based chemiluminescence and colorimetric detection of cytochrome c by cobalt hydroxide decorated mesoporous carbon. Microchem. J. 2020, 157, 104991. [Google Scholar] [CrossRef]
- Cao, L.; Han, C.; Xiao, H.; Chen, Z.; Fang, C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta 2020, 1096, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Novell, M.; Guinovart, T.; Blondeau, P.; Rius, F.X.; Andrade, F.J. A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. Lab Chip 2014, 14, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Yakoh, A.; Siangproh, W.; Chailapakul, O.; Ngamrojanavanich, N. Optical bioelectronic device based on a screen-printed electroluminescent transducer. ACS Appl. Mater. Interfaces 2020, 12, 22543–22551. [Google Scholar] [CrossRef] [PubMed]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Kar, S.; Joshi, S.; Maiti, T.K.; Chakraborty, S. Ultra-low-cost ‘paper-and-pencil’device for electrically controlled mi-cromixing of analytes. Microfluid. Nanofluid. 2015, 19, 375–383. [Google Scholar] [CrossRef]
- Shamsipur, M.; Tashkhourian, J.; Hemmateenejad, B.; Sharghi, H. Application of artificial neural network to simultaneous potentiometric determination of silver (I), mercury (II) and copper (II) ions by an unmodified carbon paste electrode. Talanta 2004, 64, 590–596. [Google Scholar] [CrossRef]
- Stanic, Z.; Girousi, S. Carbon paste electrodes in potentiometry: The state of the art and applications in modern electroa-nalysis (A review). Sens. Electroanal. 2011, 6, 89–128. [Google Scholar]
- Hu, X.; Leng, Z. Highly sensitive potentiometry for determination of chromium (VI) with carbon paste electrode. Anal. Proc. Incl. Anal. Commun. RSC 1995, 32, 521–522. [Google Scholar] [CrossRef]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Yin, Q.; Zhong, J. Potentiometric determination of trace silver based on the use of a carbon paste electrode. Talanta 1991, 38, 1185–1189. [Google Scholar] [CrossRef]
- Hu, X.; Leng, Z. Highly selective and super-Nernstian potentiometry for determination of Cu2+ using carbon paste electrode. Anal. Lett. 1995, 28, 979–989. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Ostler, E. Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J. Biol. Eng. 2009, 3, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Santhiago, M.; Henry, C.S.; Kubota, L.T. Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim. Acta 2014, 130, 771–777. [Google Scholar] [CrossRef]
- Kurra, N.; Kulkarni, G.U. Pencil-on-paper: Electronic devices. Lab Chip 2013, 13, 2866–2873. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Fayose, T.; Mendecki, L.; Ullah, S. Single strip solid contact ion selective electrodes on pencil-drawn electrode substrate. Anal. Methods 2017, 9, 1213–1220. [Google Scholar]
- Kawahara, R.; Sahatiya, P.; Badhulika, S.; Uno, S. Based potentiometric pH sensor using carbon electrode drawn by pencil. Jpn. J. Appl. Phys. 2018, 57, 04FM08. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Gupta, V.K.; Jain, S. A PVC-based benzo-15-crown-5 membrane sensor for cadmium. Electroanalysis 1996, 8, 938–940. [Google Scholar] [CrossRef]
- Weber, E. New Developments in Crown Ether Chemistry: Lariat, Spherand and Second-Sphere Complexes, Crown Ethers and Analogs; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1989; pp. 305–357. [Google Scholar]
- Zheng, X.; Guo, Z. Potentiometric determination of hydrogen peroxide at MnO2-doped carbon paste electrode. Talanta 2000, 50, 1157–1162. [Google Scholar] [CrossRef]
- Cánovas, R.; Parrilla, M.; Blondeau, P.; Andrade, F.J. A novel wireless paper-based potentiometric platform for monitoring glucose in blood. Lab Chip 2017, 17, 2500–2507. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.U.; Nur, O.; Willander, M.; Danielsson, B. Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans. Nanotechnol. 2009, 8, 678–683. [Google Scholar]
- Guadarrama-Fernández, L.; Novell, M.; Blondeau, P.; Andrade, F.J. A disposable, simple, fast and low-cost paper-based biosensor and its application to the determination of glucose in commercial orange juices. Food Chem. 2018, 265, 64–69. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Wu, F.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A.N.; Amer, M.R.; Zhou, C. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Chutipongtanate, S.; Thongboonkerd, V. Systematic comparisons of artificial urine formulas for in vitro cellular study. Anal. Biochem. 2010, 402, 110–112. [Google Scholar] [CrossRef]
- Parrilla, M.; Cánovas, R.; Andrade, F.J. Based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids. Biosens. Bioelectron. 2017, 90, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Rafatmah, E.; Hemmateenejad, B. Dendrite gold nanostructures electrodeposited on paper fibers: Application to electrochemical non-enzymatic determination of glucose. Sens. Actuators B Chem. 2020, 304, 127335. [Google Scholar] [CrossRef]
Commercial Glucometer (mmol·L−1) | ePAD Biosensor (mmol·L−1) | %Relative Error |
7.5 | 6.7 | −10.7 |
5.8 | 5.4 | −6.9 |
7.4 | 7.5 | +1.4 |
5.0 | 4.8 | −4.0 |
Sample | Added (μmol·L−1) | Found (μmol·L−1) | %Recovery | %Relative Error |
---|---|---|---|---|
Artificial urine | 0.0010 | 0.0011 | 110 | 10.0 |
1.00 | 1.07 | 107 | 7.0 | |
10.00 | 8.64 | 86.4 | −13.6 | |
Artificial tear | 0.0010 | 0.00098 | 97.7 | −2.0 |
0.010 | 0.0099 | 98.9 | −1.0 | |
10.00 | 11.20 | 112 | 12 |
Sensors | Linear Range (mol·L−1) | DL (mol·L−1) | Response Time (s) | Ref. |
---|---|---|---|---|
Nafion/GOx/platinized filter paper | 1.0 × 10−4–3.2 × 10−3 | 3.2 × 10−5 | 50 | [42] |
platinized filter paper/Nafion/GOx | 3 × 10−4–3 × 10−3 | 1 × 10−4 | 60 | [37] |
platinised paper/polyvinyl alcohol/chitosan/GOx | 3.0 × 10−5 to 1.0 × 10−3 | 2.0 × 10−5 | 20–30 | [39] |
Au dendrites/Whatman filter papers | 1.0 × 10−5–1.5 × 10−2 | 6 × 10−7 | 240 | [43] |
MnO2-doped CPE/GOx | 1.0 × 10−9–1.0 × 10−4 | 4.6 × 10−10 | 15–25 | In this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesaran, S.; Rafatmah, E.; Hemmateenejad, B. An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics. Biosensors 2021, 11, 44. https://doi.org/10.3390/bios11020044
Pesaran S, Rafatmah E, Hemmateenejad B. An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics. Biosensors. 2021; 11(2):44. https://doi.org/10.3390/bios11020044
Chicago/Turabian StylePesaran, Shiva, Elmira Rafatmah, and Bahram Hemmateenejad. 2021. "An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics" Biosensors 11, no. 2: 44. https://doi.org/10.3390/bios11020044
APA StylePesaran, S., Rafatmah, E., & Hemmateenejad, B. (2021). An All-in-One Solid State Thin-Layer Potentiometric Sensor and Biosensor Based on Three-Dimensional Origami Paper Microfluidics. Biosensors, 11(2), 44. https://doi.org/10.3390/bios11020044