Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biological Procedures
2.2.1. Bacterial Strains and Growth Conditions
2.2.2. Phage Endolysins Expression and Purification
2.2.3. Preparation and Characterization of the Cell-Wall Binding Domain (CBD) Biointerface for Specific Bacteria Capture
2.3. Parallel-Plate Setup
2.3.1. Impedance Sensing
2.3.2. Sensor Modelling
2.4. Interdigital Electrodes (IDE) Setup
2.4.1. Interdigital Electrode Design and Fabrication on Nitrocellulose (NC) Membranes
2.4.2. IDE Impedance Sensing
2.4.3. IDE Sensor Modelling
2.5. Sensing of Saline Solutions as Models for Real Water Samples
2.6. Bacteria Detection in Physiological Buffers
3. Results
3.1. Characterization of the CBD-Biofonctionalized Nitrocellulose Membrane
3.1.1. Optical Characterization of the CBD Biointerface
3.1.2. Electrical Characterization of Dry and Biofunctionalized Nitrocellulose Membranes
3.2. Impact of the Electrolyte Conductivity on the Parallel-Plate Sensor Response
3.3. Detection of B. thuringiensis Cells with the Parallel-Plate Setup
3.4. Comparison with Another System: B. thuringiensis Detection with the IDE Setup
3.4.1. Gold IDE Deposited on Nitrocellulose Membranes
3.4.2. Detection of B. thuringiensis with the IDE Setup
3.4.3. Sensitivities towards B. thuringiensis Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Report. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 25 September 2020).
- Váradi, L. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef] [PubMed]
- Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Mao, K.; Zhang, H. Can a paper-based device trace covid-19 sources with wastewater-based epidemiology. Environ. Sci. Technol. 2020, 54, 3733–3735. [Google Scholar]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with wastewater. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef]
- Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Whitesides, G.M. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef]
- Busa, L.S.A.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. Micromachines 2016, 7, 86. [Google Scholar] [CrossRef]
- Merkoçi, A. Paper Based Sensors. Compr. Anal. Chem. 2020, 89, 2–464. [Google Scholar]
- EMD Millipore. Rapid Lateral Flow Test Strips-Considerations for Product Development; EMD Millipore Corporation: Billerica, MA, USA, 2013; Volume 29, pp. 702–707. [Google Scholar]
- Rajapaksha, R.D.A.A.; Afnan Uda, M.N.; Hashim, U.; Gopinath, S.C.B.; Fernando, C.A.N. Impedance based Aluminium Interdigitated Electrode (Al-IDE) Biosensor on Silicon Substrate for Salmonella Detection. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17 August 2018. [Google Scholar]
- Thivina, V.; Hashim, U.; Arshad, M.K.M.; Ruslinda, A.R.; Ayoib, A.; Nordin, N.K.S. Design and fabrication of Interdigitated Electrode (IDE) for detection of Ganoderma boninense. In Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 17–19 August 2016. [Google Scholar]
- Bollella, P.; Katz, E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. Sensors 2020, 20, 3517. [Google Scholar] [CrossRef] [PubMed]
- Van Overstraeten-Schlögel, N.; Lefèvre, O.; Couniot, N.; Flandre, D. Assessment of different functionalization methods for grafting a protein to an alumina-covered biosensor. Biofabrication 2014, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Amini, K.; Ebralidze, I.I.; Chanb, N.W.C.; Kraatz, H.-B. Characterization of TLR4/MD-2-modified Au sensor surfaces towards the detection of molecular signatures of bacteria. Anal. Methods 2016, 8, 7623–7631. [Google Scholar] [CrossRef]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Bolletti Censi, S.; Borriello, G.; Velotta, R.; Della Ventura, B. Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vericat, C.; Vela, M.E.; Benitez, G.; Carrob, P.; Salvarezza, R.C. Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chem. Soc. Rev. 2010, 39, 1805–1834. [Google Scholar] [CrossRef]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.N.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Sim, J.; Kang, T.; Nguyen, H.H.; Park, H.K.; Chung, B.H.; Ryu, S. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur. Biophys. J. 2015, 44, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Kim, Y.-T.; Ryu, S.; Lee, J.-H. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins. Front. Microbiol. 2016, 7, 474. [Google Scholar] [CrossRef]
- Jenkins, G.; Wang, Y.; Xie, Y.L.; Wu, Q.; Huang, W.; Wang, L.; Yang, X. Printed electronics integrated with paper-based microfluidics: New methodologies for next-generation health care. Microfluid. Nanofluid 2015, 19, 251–261. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Land, K.; Joubert, T.-H. Printed Functionality for Point-of-Need Diagnostics in Resource-Limited Settings. In Proceedings of the 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 29–31 July 2020. Virtual Conference. [Google Scholar]
- Joubert, T.-H.; Bezuidenhout, P.H.; Chen, H.; Smith, S.; Land, K.J. Inkjet-printed Silver Tracks on Different Paper Substrates. Mater. Today Proc. 2015, 2, 3891–3900. [Google Scholar] [CrossRef]
- Couniot, N.; Vanzieleghem, T.; Rasson, J.; Van Oversrtraeten-Schlögel, N.; Poncelet, O.; Mahillon, J.; Francis, L.A.; Flandre, D. Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes. Biosens. Bioelec. 2015, 67, 154–161. [Google Scholar] [CrossRef]
- Pal, S.; Alocilja, E.C.; Downes, F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelec. 2007, 22, 2329–2336. [Google Scholar] [CrossRef]
- Luo, Y.; Nartker, S.; Wiederoder, M.; Miller, H.; Hochhalter, D.; Drzal, L.T.; Alocilja, E.C. Novel Biosensor Based on Electrospun Nanofiber and Magnetic Nanoparticles for the Detection of E. coli O157:H7. IEEE Trans. Nanotechnol. 2012, 11, 676–681. [Google Scholar] [CrossRef]
- Leprince, A.; Nuytten, M.; Gillis, A.; Mahillon, J. Characterization of PlyB221 and PlyP32, Two Novel Endolysins Encoded by Phages Preying on the Bacillus cereus Group. Viruses 2020, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Le Brun, G.; Hauwaert, M.; Leprince, A.; Glinel, K.; Mahillon, J.; Raskin, J.-P. Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. Proceedings 2020, 60, 61. [Google Scholar]
- Chuang, C.H.; Shaikh, M. Label-free impedance biosensors for Point-of-Care diagnostics. Point Care Diagn. New Prog. Perspect. 2017, 3, 171–201. [Google Scholar]
- Liang, T.; Zou, X.; Mazzeo, A.D. A Flexible Future for Paper-based Electronics. Proc. SPIE 2016, 9836, 98361D. [Google Scholar]
- Mamishev, A.V.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital Sensors and Transducers. Proc. IEEE 2004, 92, 808–845. [Google Scholar] [CrossRef] [Green Version]
- Igreja, R.; Dias, C.J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A 2004, 112, 291–301. [Google Scholar] [CrossRef]
- ITU-R. Electrical Characteristics of the Surface of the Earth; Recommendation ITU-R: Geneva, Switzerland, 2017. [Google Scholar]
- Vlaamse Milieumaatschappij. Kwaliteit Van Het Drinkwater; Vlaamse Milieumaatschappij: Aalst, Belgium, 2015.
- Le Brun, G.; Raskin, J.-P. Material and manufacturing process selection for electronics eco-design: Case study on paper-based water quality sensors. Procedia CIRP 2020, 90, 344–349. [Google Scholar] [CrossRef]
- Lagadic, L.; Caquet, T. Bacillus thuringiensis. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 355–359. ISBN 9780123864550. [Google Scholar]
- Dorken, G.; Ferguson, G.P.; French, C.E.; Poon, W.C.K. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J. R. Soc. Interface 2012, 9, 3490–3502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agilent Technologies. Agilent E4991A RF Impedance/Material Analyzer: Installation and Quick Start Guide, 10th ed.; Agilent Technologies: Santa Clara, CA, USA, 2012. [Google Scholar]
- Kumar, S.; Nehra, M.; Mehta, J.; Dilbaghi, N.; Marrazza, G.; Kaushik, A. Point-of-Care Strategies for Detection of Waterborne Pathogens. Sensors 2019, 19, 4476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa, T.H.; Song, E.; Tortorich, R.P.; Choi, J.-W. A Paper-Based Electrochemical Sensor Using Inkjet-Printed Carbon Nanotube Electrodes. ECS J. Solid State Sci. Technol. 2015, 4, 3044–3047. [Google Scholar] [CrossRef]
- Lombardi, J.; Poliks, M.D.; Zhao, W.; Yan, S.; Kang, N.; Li, J.; Luo, J.; Zhong, C.-J.; Pan, Z.; Almihdhar, M.; et al. Nanoparticle Based Printed Sensors on Paper for Detecting Chemical Species. In Proceedings of the IEEE 67th Electronic Components and Technology Conference, Orlando, FL, USA, 30 May–2 June 2017. [Google Scholar]
- Peterson, B.W.; Sharma, P.K.; van der Mei, H.C.; Bussche, H.J. Bacterial Cell Surface Damage Due to Centrifugal Compaction. Appl. Environ. Microbiol. 2012, 78, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7. Sens. Actuators B 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Hassan, A.-R.H.A.-A.; de la Escosura-Muñiz, A.; Merkoçi, A. Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens. Bioelectron. 2015, 67, 511–515. [Google Scholar] [CrossRef]
- Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J.H.; Qureshi, A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017, 91, 225–231. [Google Scholar] [CrossRef]
- Moreno-Hagelsieb, L.; Foultier, B.; Laurent, G.; Pampin, R.; Remacle, J.; Raskin, J.-P.; Flandre, D. Electrical detection of DNA hybridization: Three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 2007, 22, 2199–2207. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.H.; Kuo, L.S. Protein detection using a radio frequency biosensor with amplified gold nanoparticles. Appl. Phy. Lett. 2007, 91, 143901. [Google Scholar] [CrossRef]
- Yuan, M.; Alocilja, E.C. A Novel Biosensor Based on Silver-Enhanced Self-Assembled Radio-Frequency Antennas. IEEE Sens. J. 2014, 14, 4. [Google Scholar] [CrossRef]
Modelled Solutions | cNaCl [M] | εr,sol [/] | σsol [S/m] |
---|---|---|---|
PBS:1000 | 1.6 × 10−4 | ~80 | 1.8 × 10−3 |
Drinking/surface water | ~10−3 | ~80 | 10−1–10−2 |
PBS/highly saline water | 1–5 × 10−1 | ~70 | 1–5 |
10−4 M | 5 × 10−4 M | 10−3 M | 5 × 10−3 M | 10−2 M | 10−1 M | |
---|---|---|---|---|---|---|
ΔRNC | 1.9 × 104 Ω | −15% | −35% | −47% | −57% | −90% |
ΔCNC | 8.34 pF | +5% | +17% | +15% | +35% | +22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Brun, G.; Hauwaert, M.; Leprince, A.; Glinel, K.; Mahillon, J.; Raskin, J.-P. Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. Biosensors 2021, 11, 57. https://doi.org/10.3390/bios11020057
Le Brun G, Hauwaert M, Leprince A, Glinel K, Mahillon J, Raskin J-P. Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. Biosensors. 2021; 11(2):57. https://doi.org/10.3390/bios11020057
Chicago/Turabian StyleLe Brun, Grégoire, Margo Hauwaert, Audrey Leprince, Karine Glinel, Jacques Mahillon, and Jean-Pierre Raskin. 2021. "Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water" Biosensors 11, no. 2: 57. https://doi.org/10.3390/bios11020057
APA StyleLe Brun, G., Hauwaert, M., Leprince, A., Glinel, K., Mahillon, J., & Raskin, J. -P. (2021). Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. Biosensors, 11(2), 57. https://doi.org/10.3390/bios11020057