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Abstract: The present work reports the development of a biologically inspired analytical system
known as Electronic Eye (EE), capable of qualitatively discriminating different tequila categories.
The reported system is a low-cost and portable instrumentation based on a Raspberry Pi single-board
computer and an 8 Megapixel CMOS image sensor, which allow the collection of images of Silver,
Aged, and Extra-aged tequila samples. Image processing is performed mimicking the trichromatic
theory of color vision using an analysis of Red, Green, and Blue components (RGB) for each image’s
pixel. Consequently, RGB absorbances of images were evaluated and preprocessed, employing
Principal Component Analysis (PCA) to visualize data clustering. The resulting PCA scores were
modeled with a Linear Discriminant Analysis (LDA) that accomplished the qualitative classification
of tequilas. A Leave-One-Out Cross-Validation (LOOCV) procedure was performed to evaluate
classifiers’ performance. The proposed system allowed the identification of real tequila samples
achieving an overall classification rate of 90.02%, average sensitivity, and specificity of 0.90 and
0.96, respectively, while Cohen’s kappa coefficient was 0.87. In this case, the EE has demonstrated a
favorable capability to correctly discriminated and classified the different tequila samples according
to their categories.

Keywords: biologically inspired; electronic eye; optical methods; RGB analysis; tequila

1. Introduction

Tequila is the traditional Mexican spirit made with agave tequilana weber (blue variety),
which is grown in five states of Mexico, namely: Guanajuato, Michoacán, Nayarit, Tamauli-
pas, and Jalisco. Those geographical regions are established in the Protected Designation
of Origin (PDO) [1], which guarantees both the manufacturing procedures and the quality
necessary to comply with the strict export specifications from the United States [2] and the
European Union [3].

Three main categories of tequila are recognized. The first category is Silver tequila.
It is obtained directly from the distillation process without additives; it has a transparent
appearance, not necessarily colorless proper to an unaged tequila. The second category is
called Aged tequila, which means that the tequila has been aged at least two months using
oak casks. This process produces a mellowed product with rich color and flavor. Finally,
the third category is known as Extra-aged. This tequila is considered more sophisticated
because it has been aged for at least one year in wood or oak recipients with V ≤ 600 L,
which has enhanced its flavor with predominant woody notes in its color and aroma [1].

These spirits, whose world consumption ranks fourth after whiskey, vodka, and rum,
have a significant presence in more than 120 countries, representing sales of more than
200 million liters per year [4]. Hence, quality control is increasingly important to know,
characterize, and monitor its aging process, alcoholic content, and volatile composition
that define each kind of tequila’s flavor, color, and characteristic aroma.

Nowadays, several tests are carried out in the laboratory to analyze tequila, most of
them performing conventional analytical methods such as UV–Vis spectrophotometry [5],
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Raman spectroscopy [6], Gas Chromatography-Mass Spectrometry (GC-MS) [7], High-
Performance Liquid Chromatography (HPLC) [8], Surface Plasmon Resonance (SPR) [9],
and electrochemical analysis [10]. Nonetheless, despite their reliability and accuracy, they
have several flaws related to long protocols demanding an analysis period from hours to
days to carry out the tests, expensive equipment, and the need for technically qualified
personnel, without forgetting that their use is confined to special installations with no
online quality control possibilities.

Hence, there is an urgent need for fast, inexpensive, portable, and effective alterna-
tives that achieve reliable, non-destructive analytical measurements. Today, biologically
inspired analytical systems are beginning to play an important role in the food indus-
try [11,12]. These technologies, sometimes defined as artificial senses, have the perspective
of evaluating complex composition samples by emulating the human senses to deter-
mine their relevant characteristics. Essentially, the electronic eye has been designed to
mimic human eyesight to analyze color and some other attributes related to the sample’s
appearance [13,14]. This task can be performed using computer vision, colorimetric, or
spectrophotometric methods [15–17].

Usually, an electronic eye is built of technology capable of converting optical images
into digital images, subsequently analyzed to identify particularities that allow the charac-
terization of what is being observed, avoiding the subjective interpretation of a person [18].
In this sense, image sensors based on a Charge Coupled Device (CCD) or a Complementary
Metal Oxide Semiconductor (CMOS) technology are commonly used. Both types of sensors
are essentially made up of metal oxide semiconductors (MOS) distributed in a matrix form,
and that each independently constitutes a pixel [19]. Once the images are collected, they are
subjected to an image processing phase to improve their quality and extract characteristics
requiring specific computational algorithms for their interpretation [20].

Electronic eyes have been proven to have an advantage in foodstuff analysis; their ap-
plications cover different food industry areas such as quality control, freshness assessment,
shelf-life determination, process monitoring, and authenticity assessment [14]. Although
the use of electronic eyes in the analysis of some liquids have widely described during the
last two decades, these works were focused on samples such as orange juice [21], coffee [22],
virgin olive oils [23], milk [24] and some semi-liquids like honey [25], and yogurt [26]. Only
a few studies reported the analysis of alcoholic beverages mainly related to wine [27,28],
beer, and vodka [29]. Comparatively, the tequila study still continues using conventional
techniques instead of an electronic eye. Most tequila analyses have been focused on the
determination of quality characteristics [30], sensory properties related to the distillation
process [31], evaluation of volatile compounds [32], the relevance of the aging process [33],
authenticity [34,35], and adulterations [36].

This work aims to establish the foundations for using an electronic eye in the qualita-
tive identification of different kinds of tequila. The developed analytical system comprises
an acquisition image platform that captures and digitalized images directly from tequila,
coupled with a biomimetic processing stage based on the trichromatic theory of color vi-
sion [37]. In this context, RGB absorbances of images were evaluated and subsequently dis-
criminated against using a Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA), with was possible to correctly classify the three main tequila categories
coming from the Jalisco state region.

The paper is divided into five sections as follows: Section 1 introduction and state of
art, Section 2 describes the materials and methods, including details of tequilas set under
study, the electronic eye hardware design, experimental setup, image analysis, and data
modeling of the proposed biomimetic vision system; Section 3 reports the experimental
results obtained from the proposed RGB component analysis, followed by Section 4 where
it discusses and compares the key results achieved with our work compared to those
reported with conventional analytical techniques. Finally, Section 5 contains the conclusion
together with some directions for future work.
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2. Materials and Methods
2.1. Tequilas under Study

A total of 25 samples of different brands were acquired at the local supermarket, all of
them with POD, made with 100% agave and certified by Consejo Regulador del Tequila
(CRT, for its acronym in Spanish) to ensure their authenticity. These samples were chosen
according to the main described categories and considering that they were made in the
state of Jalisco. In this way, the formed set includes 8 Silver, 12 Aged, and 5 Extra-aged
tequilas. Table 1 summarizes detailed information about the tequila samples used.

Table 1. Tequila samples under study grouped by category.

Type Brand Tag Alcoholic Strength (vol %)

Silver Hornitos S1 38
Orendain S2 38

Don Nacho S3 38
Corralejo S4 38

Dos Coronas S5 38
Sombrero Negro S6 35

Antigua Cruz S7 40
Herradura S8 46

Aged Hornitos A1 38
Jimador A2 35
Jarana A3 35

Don Nacho A4 38
Cabrito A5 38

Antigua Cruz A6 40
Don Julio A7 40

Dos coronas A8 38
Sombrero Negro A9 38

Reserva del Señor A10 35
Cazadores A11 38

Jose Cuervo A12 38

Extra-aged Corralejo EA1 38
Don Nacho EA2 38

Antigua Cruz EA3 40
Cazadores EA4 38
Hornitos EA5 35

2.2. Electronic Eye System

A single-board computer Raspberry Pi (Model 3B+, Pencoed, Wales, UK) with a
Raspbian operating system was chosen as a core for developing the Electronic Eye (EE)
prototype. The light source was a white Light-Emitting Diode (LED) 2xLED (Flash Module
Huawei LYA-L09, Shenzhen, Guangdong, China), and a camera module (Raspberry Pi
Camera V2, Pencoed, Wales, UK) with an 8 Megapixels image sensor (Sony IMX219,
Minato, Tokyo, Japan) to perform the image acquisition. It also has a 7-inch Liquid Crystal
Display (LCD) (Hilitand hfpq73zx89, Shenzhen, Guangdong, China) that allows interaction
with the equipment through a Graphical User Interface (GUI) created in MATLAB®2020a
(MathWorks, Natick, MA, USA). The complete system is managed via Python IDLE 2.7
software, using specific routines programmed by the authors. Figure 1 shows a schematic
diagram of the developed EE.

Different EE electronics parts are placed in an enclosure designed in SolidWorks 2019
and printed with a Da Vinci 3D 1.1 printer (Xyzprinting, New Taipei City, Taiwan) to
operate as a PC peripheric. The design allows the light source location, camera module,
and a disposable plastic UV-cuvette (BRAND, Wertheim, Germany) within a dark chamber.
The cuvettes’ filling volume has a range of 1.5 to 3.0 mL, with external dimensions of
4.5 mm × 23 mm that fits into an internal holder of the chamber, allowing it to be located at
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a fixed distance of 30 mm from the focal plane of the image sensor of the camera. The white
LED was positioned in a centered zenith plane to improve accuracy and image acquisition
(this position is widely used for samples with flat surfaces) [16]. In this way, white light can
propagate from the source, passes from the chamber through the sample held in a cuvette,
and reaches the image sensor avoiding possible external interference. At this point, it is
possible to acquire the sample’s corresponding digital image. The set of images captured
by the EE system were saved automatically in a USB (Universal Serial Bus) device and
processed offline employing the GUI designed for this purpose.
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2.3. Experimental Procedure

After opening each tequila bottle, the spirit was immediately taken. A sample volume
of 1 mL of spirit was used directly without pretreatment to fill different UV-cuvettes free of
dust and dirt to obtain trustworthy images. Additionally, a cuvette containing the same
volume of deionized water was used as a blank solution. All experiments were carried
out at room temperature (25 ◦C). The first measured sample with the EE corresponded to
the blank solution to establish a system’s reference signal. Subsequently, the UV-cuvettes
containing different samples of tequila were measured one by one. The captured digitized
images were recorded and stored using the programmed control software. During the
entire experimental stage, it was ensured that the chamber remains closed during the image
capture process to avoid the entry of external light and obtain good quality images.

Meanwhile, the white light source stayed on, waiting for the camera module to acquire
the image and send it to the Raspberry Pi computer. Each sample was analyzed in triplicate,
performing 10 repetitions each time to observe the repeatability and reproducibility of
measures. The time to complete the measurement process by the EE system is 10 s.

2.4. Image Analysis

Digital images were obtained after placing a UV-cuvette with tequila sample in the lab-
made EE system described above. In all cases, the camera settings used in our experiments
were fixed (exposure time of 1/16 s, an aperture of f/2, and ISO 100). From the images
captured by the EE of each tequila sample and the three categories involved, separate files
were saved as a jpeg format on the Raspberry Pi memory; the average size per image is
2.7 MB (8 Megapixels resolution, 2592 × 1944 pixels). Although using compressed jpeg
image format implies a loss of information regarding the raw format, some works have
reported that the RGB obtained from them contained comparable information to those
in large raw files [38,39]. Likewise, jpeg files retained the residing color information and
allowed ease of handling due to the smaller file size, mainly when some multivariate
calibration techniques were used to interpret them [39,40]. In our case, using the jpeg
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format also allowed efficient use of hardware resources (in terms of data storage and
computational power requirements), as well as, this image format is closest to the images
obtained by the human visual system since they are transformed using color-matching
functions [41].

For the image analysis process, it is necessary to perform a preprocessing task that
consists of selecting and clipping a region of interest (ROI). The ROI was chosen considering
the viewing window of the UV-cuvette. This cropped area of the image and its relative
position concerning the sample support is always constant. In this way, the complete
set of images were cropped and saved as a separate file with a new dimension size of
1244 × 231 pixels.

Taking into account that digital images are a numeric representation of a two-dimensional
collection of data, a digital image contains a fixed number of rows and columns of pixels
where each pixel is specified for the red, blue, and green coordinates of a pixel array. This
conceptualization of the image is related to the trichromatic theory of color vision based on
the work of Maxwell, Young, and Helmholtz [37]. This theory states that there are three
types of photoreceptors in the human eye, approximately sensitive to the red, green, and
blue region of the spectrum, which are related to the three types of cone cells, generally
referred to as L, M, and S (long, medium, and short wavelength sensitivity). These cells are
responsible for the perception of colors; analogously, in the RGB color model, the image
can be represented by the color’s intensity, which indicates how much red, green, and
blue is present in the image [42]. Hence, each component varies from zero to 255 [43]. If
all the components are zero, the result is black color. In the opposite case, the result is a
white color.

In the same way, considering that the obtained images are true-color images, it is
possible to represent them as 3D matrices associated with RGB components. Making it pos-
sible to observe its tonal distribution through a histogram and evaluate its corresponding
absorbance [44]. The critical steps followed for the EE acquisition and elaboration of RGB
images’ regions are illustrated in Figure 2.
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The corresponding absorbances associated with the RGB components for the available
image set were evaluated using the Lambert–Beer law. This law expresses the proportional
relationship between the absorbance and the concentration of certain compounds present
in the sample under analysis. The equation representing this law is a crucial element in
evaluating the absorbance of a sample [45].

Aλ = −log
(

I1

I0

)
= εbC (1)

where Aλ is the absorbance defined via the incident intensity I0 (incident light over the
sample) and transmitted intensity I1 (transmitted light that comes out of the sample), λ is



Biosensors 2021, 11, 68 6 of 16

the wavelength of the source light, C is the concentration of the absorbent sample expressed
in moles * L−1, b is the optical path (thickness of the cell), and ε is the molar absorptivity
coefficient.

Similarly, it is possible to establish that (1) expresses the proportional relationship
between the absorbance and the concentration of certain compounds present in the sample
under analysis. Consequently, it was part of the implemented algorithms.

Experimentally, when light continues its path from the sample, passes through the
camera lens, and reaches the image sensor, some light intensity is lost. This effect is
because once a beam of light passes through the UV-cuvette made of transparent material
containing the sample, its intensity varies due to the phenomena of absorbance, reflection,
and transmission [46]. Therefore, it is possible to compare the light intensity transmitted
by a standard (in our case, obtained by a blank solution) and the interest sample’s light
intensity. This procedure allows to obtain an experimental absorbance, as shown below
in (2):

Aλexperimental = log

(
Isolvent

Ianalyte solution

)
(2)

where the experimental absorbance Aλexperimental is evaluated by Isolvent related to the blank
solution (in this work it was used deionized water) considered a standard sample, and
Ianalyte solution corresponding to each tequila sample to be analyzed.

2.5. Data Processing and Modelling

Data image processing and modeling were done using the specific routines written
in MATLAB®2020a by the authors, based on already preprogrammed standard functions
using Statistics and Machine Learning Toolbox (v11.7). Before carrying out any data
processing and modeling task, it was decided to obtain information on the brightness
and tonality characteristics of the acquired images to corroborate the equipment’s optical
adjustment. For this purpose, histograms of each RGB component were obtained for each
available image. Subsequently, the experimental RGB absorbances were calculated (as
described in Section 2.4). These calculated values were used as input for two different
analysis methods: Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). Considering that LDA is a supervised classification method, classification accuracy
was evaluated using a Leave-One-Out Cross-Validation (LOOCV) procedure. This iterative
method starts using as a training set all the available observations except one, which is
excluded for use as validation.

As is known, PCA is an analysis method that depends on an orthogonal linear trans-
formation, which allows summarizing almost all variance contained in a dataset on a
fewer number of directions (PCs) with newer coordinates (scores) [47]. In most cases,
PCA analysis allows showing clustering data according to their similarities, so it is pos-
sible to build a preliminary recognition model that shows the different classes involved
according to the measurements made. Nevertheless, to perform a proper classification
task, it is necessary to use a supervised learning approach. In this regard, LDA is one of
the most used classification procedures with proved successful in many applications [48].
The idea behind LDA is to find a linear transformation that best discriminates among
classes. This method operates maximizing between-class variability relative to within-class
variability. In this manner, the classification is performed in the transformed space based
on some metrics such as Euclidean distance. However, one of the most typical methods to
implement is computing a scattering matrix, which must be non-singular. Nonetheless,
this criterion cannot be applied when the matrix is singular. A situation that frequently
occurs in applications using image databases for pattern recognition, where the number
of measurements of each sample exceeds the number of samples in each class. To tackle
this problem, it is possible to implement a two-stage approach based on PCA plus LDA.
Considering that both methods project the data into a smaller subspace, PCA focused on
finding the PCs that maximize the variance in the data set (without considering the class
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labels), while LDA finds the components that maximize between-class separation. Detailed
information about this improved LDA method can be found in [49,50].

3. Results
3.1. RGB Image Processing

The experimental phase with the EE allowed capturing a total of 750 tequila images
(10 photos for each sample of the 25 tequilas in triplicate). The selected ROI is automatically
defined and fixed for all analyzed sample images from these data, as was described in
Section 2.4. Figure 3 shows four representative samples and their corresponding captured
images for one tequila sample per class plus the blank solution. The black dotted lines
within the UV-cuvette image denote ROI selected image area. The histogram visualization
shows the presence of reddish, greenish, and blueish pixels in association with the corre-
sponding RGB components of the images. It is possible to show that both the distribution
of these color components and their intensity is clearly different for each tequila type.
Similarly, it can be assumed that the information captured in the images using fixed camera
parameters (exposure time, aperture, and ISO) and under the same lighting conditions is
representative to build a classifier model to identify different categories of tequila.
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As a reference, color has been one of the important factors in food quality measure-
ment [39]. For this purpose, it is possible to use the RGB model because it is one of the
best for detecting color variations of digital images. In this way, the acquired images
were organized as a matrix of dimension 30 × 75, where the rows correspond to the total
number of repetitions (3 tests with 10 repetitions for each test), and the columns represent
the 25 tequila samples analyzed by triplicate. The intensities of RGB components are
summarized in Table 2. It also integrated each RGB component’s absorbance and samples’
total absorbance, obtained through Equation (2).

Table 2. Electronic Eye RGB component’s intensities and absorbances values for tequila samples. Furthermore, total
absorbance values are reported.

Average Components of RGB Pixel Absorbance by Component
Absorbanceλ

Tag R G B R G B

Blank 255 251 ± 4.0970 253 ± 3.4674 0 0.0026 ± 0.0040 0.0012 ± 0.0027 0.0016 ± 0.0038

S1 215 ± 0.6915 215 ± 1.1861 215 ± 1.0148 0.0729 ± 0.0014 0.0720 ± 0.0024 0.0729 ± 0.0021 0.0726 ± 0.0020
S2 216 ± 1.1059 216 ± 0.8137 216 ± 0.9248 0.0706 ± 0.0023 0.0696 ± 0.0017 0.0708 ± 0.0019 0.0703 ± 0.0019
S3 217 ± 1.7991 216 ± 1.7340 216 ± 1.6046 0.0685 ± 0.0036 0.0696 ± 0.0035 0.0711 ± 0.0033 0.0697 ± 0.0035
S4 225 ± 3.0820 227 ± 3.5519 227 ± 2.8720 0.0529 ± 0.0061 0.0487 ± 0.0070 0.0496 ± 0.0056 0.0504 ± 0.0062
S5 216 ± 1.1427 216 ± 1.1427 216 ± 1.1427 0.0705 ± 0.0023 0.0705 ± 0.0023 0.0705 ± 0.0023 0.0705 ± 0.0023
S6 215 ± 1.0417 215 ± 2.4542 215 ± 1.3113 0.0727 ± 0.0021 0.0717 ± 0.0050 0.0723 ± 0.0027 0.0722 ± 0.0033
S7 223 ± 1.4794 224 ± 2.2733 225 ± 2.8816 0.0556 ± 0.0029 0.0545 ± 0.0045 0.0530 ± 0.0056 0.0544 ± 0.0044
S8 223 ± 3.1220 224 ± 1.8144 224 ± 1.8144 0.0559 ± 0.0062 0.0543 ± 0.0035 0.0543 ± 0.0035 0.0549 ± 0.0044

A1 196 ± 1.3730 199 ± 1.2972 199 ± 1.3730 0.1118 ± 0.0031 0.1055 ± 0.0029 0.1053 ± 0.0030 0.1076 ± 0.0030
A2 211 ± 1.7682 213 ± 1.4794 208 ± 0.8193 0.0812 ± 0.0037 0.0755 ± 0.0031 0.0870 ± 0.0017 0.0813 ± 0.0028
A3 209 ± 0.6215 212 ± 0.7849 209 ± 3.6928 0.0855 ± 0.0013 0.0784 ± 0.0016 0.0850 ± 0.0076 0.0830 ± 0.0036
A4 219 ± 1.2243 222 ± 1.0417 211 ± 1.7207 0.0635 ± 0.0025 0.0576 ± 0.0021 0.0811 ± 0.0036 0.0674 ± 0.0027
A5 204 ± 0.7303 207 ± 0.4498 206 ± 0.6433 0.0955 ± 0.0016 0.0887 ± 0.0010 0.0910 ± 0.0014 0.0917 ± 0.0013
A6 207 ± 0.6915 210 ± 0.6288 206 ± 0.7849 0.0887 ± 0.0015 0.0817 ± 0.0013 0.0908 ± 0.0017 0.0871 ± 0.0015
A7 229 ± 0.6288 234 ± 0.5252 231 ± 0.6065 0.0459 ± 0.0012 0.0356 ± 0.0010 0.0406 ± 0.0012 0.0407 ± 0.0011
A8 212 ± 1.0807 217 ± 0.9965 204 ± 0.8023 0.0784 ± 0.0023 0.0680 ± 0.0020 0.0945 ± 0.0017 0.0803 ± 0.0020
A9 200 ± 1.8889 204 ± 1.2794 197 ± 2.4011 0.1048 ± 0.0042 0.0955 ± 0.0028 0.1113 ± 0.0054 0.1039 ± 0.0041

A10 223 ± 0.8996 224 ± 0.8996 211 ± 3.1397 0.0574 ± 0.0018 0.0537 ± 0.0018 0.0811 ± 0.0067 0.0641 ± 0.0033
A11 214 ± 1.3493 220 ± 0.8137 218 ± 1.3322 0.0748 ± 0.0028 0.0616 ± 0.0016 0.0654 ± 0.0027 0.0673 ± 0.0024
A12 217 ± 0.6288 222 ± 1.2576 213 ± 0.8841 0.0681 ± 0.0013 0.0590 ± 0.0025 0.0771 ± 0.0018 0.0681 ± 0.0019

EA1 207 ± 0.7611 207 ± 1.2015 180 ± 0.4983 0.0884 ± 0.0016 0.0887 ± 0.0026 0.1486 ± 0.0012 0.1086 ± 0.0018
EA2 206 ± 0.7240 210 ± 0.8193 191 ± 0.8683 0.0918 ± 0.0016 0.0836 ± 0.0017 0.1236 ± 0.0020 0.0997 ± 0.0018
EA3 221 ± 0.9248 224 ± 0.7303 208 ± 0.8469 0.0600 ± 0.0019 0.0537 ± 0.0014 0.0872 ± 0.0018 0.0670 ± 0.0086
EA4 215 ± 1.0283 220 ± 0.5509 209 ± 0.8137 0.0731 ± 0.0021 0.0628 ± 0.0011 0.0855 ± 0.0017 0.0738 ± 0.0016
EA5 211 ± 1.2576 206 ± 1.1059 169 ± 0.9685 0.0807 ± 0.0026 0.0912 ± 0.0024 0.1780 ± 0.0025 0.1166±0.0025

It is possible to establish a relationship between the absorbance and the sample’s
content of each image provided by the Electronic Eye. According to the RGB model, an
image’s absorbance was calculated about each color component’s average. As shown
in Table 2, the average and standard deviation of each color intensity component were
obtained together with their related absorbance from different tequila samples’ images.

The Silver tequila sample’s absorbance is 0.0644 ± 0.0034, while for Aged and Extra-
aged tequila samples, the average absorbance is 0.0785 ± 0.0024 and 0.0931 ± 0.0019,
respectively. The variability presented in the samples can be attributed to the characteristics
of each brand’s product, as well as to their particular aging process. Thus, the lowest
absorbance values in Silver tequila are associated with its colorless and pure tone.

Depending on the tequila aging process, the tone can be yellowish for Aged tequilas
or amber for Extra-aged tequilas. In this manner, while the intensity in the tequila tone
increases, the absorbance values also increase.

Related to the RGB components’ intensity, Silver tequila samples showed a prevalence
of the three components. However, the Aged tequila samples predominate the red and blue
components, whereas the blue component is more present and has the greatest intensity
in the Extra-aged tequila samples. These differences have been associated with shades
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present in samples, despite being the same type of tequila, and these differences depend
on the brand.

It is possible to observe that the similarity among obtained measurements for each
tequila sample within the same class is minimal since the deviations are in the order of
0.0001–0.0005, demonstrating repeatability in the operativity of the designed EE.

To visualize the behavior of the RGB absorbances of the different tequila samples,
radar plots were constructed. Figure 4 shows the RGB average absorbance of the complete
set of tequilas grouped in each of the three categories under study. Here it is possible to
observe some characteristic fingerprints for each type of tequila related to their optical
properties. This evident pattern for each tequila class (i.e., Silver, Aged, and Extra-aged) will
help interpret this information by the planned classifier models. The idea behind a pattern
recognition process is to recognize the regularities present in data by a computational
model that uses machine learning algorithms.
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3.2. EE Preliminary Recognition Model

Before modeling, RGB average absorbances were normalized to an interval of 0 to 1 to
reduce illumination effects and for data treatment convenience. Afterward, a PCA analysis
was done to build a preliminary recognition model, expecting to observe some sample
clustering caused by the own absorbances and tequila class-related. The PCA plot with
the three significant PCs is shown in Figure 5. Here the accumulated explained variance
was ca. 99.96% with characteristic clusters that partially discriminate the different tequila
kinds. That is, most of the Silver tequilas seem to be grouped in the upper right region of
the plot, while the Aged tequilas are concentrated in the center, and the Extra-aged ones
appear grouped in the left region. However, apart from the marked dispersion of these last
two categories of tequilas, there is a clear overlap between some of their samples.

Although the aging mechanisms have been widely studied for different alcoholic
beverages such as wine and spirits [51,52], there is still no scientific report that addresses
it for tequila. Thus, considering that one of the physicochemical characteristics that are
impacted during this process is the color, it is then possible to assume that the absorbances
obtained with the electronic eye are also related to the aging of the analyzed tequila samples.

In this sense, the clustering regions observed in the PCA make sense when identifying
that samples were grouped within the proper class. On the other hand, each cluster has
a relationship with a different aging period. As a result, the dispersion present in the
Aged and Extra-aged tequila cluster is clearly related to the aging times that each producer
stipulates for their product. On the contrary, in the Silver tequilas cluster, the dispersion is
minimal because these tequila samples do not have an aging process.
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Thus, it is highly probable that there are tequilas with different aging times within the
set of tequila samples analyzed despite belonging to the same category. This may be because
each tequila producer must comply with Mexican regulations to respect the minimum
aging time. However, they can also establish longer aging periods without violating
the standard’s provisions to offer a product with better organoleptic characteristics than
their competitions.

For this reason, to confirm these initial identifications seen by PCA, the next step was
the use of LDA as a supervised pattern recognition method.

3.3. Tequila Categories Discrimination

Transformed data obtained by PCA were used as input information to perform LDA.
Since this is a supervised method, classification success was evaluated using LOOCV. In
this scheme, each sample is classified by means of the analysis function derived from the
remaining samples (all cases except the case itself). This process was repeated as many
times as the number of samples in the data set (i.e., 25 times), leaving out one different
sample each time, considering it as a validation sample. With this approach, all samples
are used once for validation. As can be observed in Figure 6, clear discrimination between
the three categories of tequila was achieved. The clusters in the figure evidence that tequila
samples are grouped according to their associated aged process. Although Silver tequilas
are clearly grouped on the left region of the plot, the Aged and Extra-aged tequilas have
class centroids located in the middle and right regions.
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The average classification results obtained from the 25 LDA models built are reported
in Table 3. Predictably from the LDA plot, the tequila samples managed to be correctly clas-
sified as Silver and Aged, reaching high classification rates (100% and 91.67%, respectively).
In contrast, the Extra-aged class did not exceed 78.40% correct classification. The overall
classification rate for the three classes was 90.02%. In order to evaluate the efficiency of
the modeling, accuracy, precision, sensitivity, and specificity values were also calculated.
It is possible to notice that sensitivity averaged for the three classes considered was 0.90,
whereas specificity was 0.96.

Table 3. Average classification results of EE for the discrimination of different tequila samples
according to expected categories employing PCA-LDA.

Tequila
Category

Classification
Rate (%) Accuracy Precision Sensitivity Specificity

Silver 100.00 1.00 1.00 1.00 1.00
Aged 91.67 0.92 0.91 0.92 0.92

Extra-aged 78.40 0.92 0.80 0.78 0.95

Average 90.02 0.94 0.90 0.90 0.96

Many studies have established that the overall classification rate is not the best crite-
rion for measuring classifier performance where there is an imbalance in the number of
samples per class [53]. In this direction, to corroborate that the results obtained from the
LDA modeling are significant, it is necessary to use another criterion that reflects with more
certainty the performance of the classifier in contexts of this imbalance. A well-known
alternative measure to the accuracy is Cohen’s kappa coefficient [54]. The fundamental idea
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for its calculation involves analyzing the differences between the reference data and the
incoming data determined by the main diagonal of the confusion matrix, see definition (3).

κ =
N ∑n

i=1 mi,i − ∑n
i=1(GiCi)

N2 − ∑n
i=1(GiCi)

(3)

where i is the class number, N is the total number of classified values compared to truth
values, mi,i is the number of values belonging to the truth class i that have also been
classified as class i (i.e., values found along the main diagonal of the confusion matrix), Ci
is the total number of predicted values belonging to class i, and Gi is the total number of
truth values belonging to class i.

Thus, kappa is an indicator that acquires values between 0 and 1, the first representing
the absolute lack of agreement and the second, total agreement. According to their scheme,
a value <0 indicates no agreement, 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate,
0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement.

In this regard, kappa values were calculated for each of the 25 LDA models built
considering the LOOCV process, obtaining an overall mean kappa coefficient of 0.87,
which is defined as “perfect agreement”. This finding indicates that this high agreement is
related to reliable data. In other words, the RGB absorbances used to identify the tequila
samples are representative enough to be modeled. Likewise, although the tequila classes
are imbalanced, the LDA models do not privilege the Aged tequila class with the greatest
number of samples over the Extra-aged tequila class with the least number of samples.

Additionally, from the obtained results, it is possible to confirm that even using a
LOOCV does not produce an over-optimistic approach in the LDA classifiers performance.

4. Discussion

The results presented in Section 3 have provided some insight into the developed
electronic eye’s capabilities to authenticate the three categories of tequila: Silver (S), Aged
(A), and Extra-aged (EA). First, from the preliminary recognition model using PCA, it
is important to highlight the close relationship between tequilas’ aging time and their
clustering from the RGB absorbance analysis. This same aging effect in tequilas has been
observed using more complex analytical methods such as HPLC [8]. This method is
responsible for identifying and quantifying low molecular weight phenolic compounds
acquired by tequila during the oak barrels’ maturing process. Once characterized, they are
related to the mentioned age classifications using analysis of variance (ANOVA) combined
with discriminant analysis.

Other works instead deal the authentication of tequila recurring to methods of analysis
as GC-MS [34], and UV-Vis [35] coupling some chemometric methods commonly based on
LDA, Partial Least Squares Discriminant Analysis (PLS-DA), Multilayer Perceptron Artifi-
cial Neuronal Networks (MLP-ANN), and Support Vector Machines (SVM) to name a few.
However, although these contributions differ from our study in factors such as the nature
of analytical data obtained and the number of tequila samples analyzed, they represent
the most recent state-of-the-art in identifying certified tequilas’ three main categories of
interest. Added to this, they report performance parameters like sensitivity and specificity
of the classifier models they used, which allows direct comparisons with our results. In this
way, Table 4 summarizes these parameters’ comparison, including the analytical methods,
classification models, and kinds of tequila reported by each research group.
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Table 4. Comparison of the current study with representative publications dealing with tequila
identification (S = Silver, A = Aged and EA = Extra-aged tequilas).

Reference Analytical
Method

Classification
Model

Tequila
Category Sensitivity Specificity

Ceballos-
Magaña et al.

[34]
GC-MS

LDA
S 0.66 0.75
A 0.33 0.92

EA 0.66 0.73

MLP-ANN
S 1.00 1.00
A 0.83 1.00

EA 1.00 0.93

Pérez-
Caballero
et al. [35]

UV-Vis

PLS-DA
S 0.81 0.89
A 0.71 0.88

EA 1.00 0.93

SVM
S 1.00 1.00
A 1.00 0.99

EA 0.96 1.00

This work
Electronic

Eye PCA-LDA
S 1.00 1.00
A 0.92 0.92

EA 0.78 0.95

In this way, it is clear that the model adopted in our study using PCA-LDA achieved
superior performance in the individualized identification of classes (sensitivity for S = 1.00,
A = 0.92, EA = 0.78 and specificity for S = 1.00, A = 0.92, EA = 0.95) than the LDA model
(sensitivity for S = 0.66, A = 0.33, EA = 0.66 and specificity for S = 0.75, A = 0.92, EA = 0.73)
reported by Ceballos-Magaña et al. [34], and the PLS-DA (sensitivity for S = 0.81, A = 0.71,
EA = 1.00 and specificity for S = 0.89, A = 0.88, EA = 0.93) described by Pérez-Caballero
et al. [35]. These results are remarkable because, in our study, a linear model was enough
to identify tequilas from their RBG absorbances. In contrast, the authors mentioned above
needed the use of models with non-linear strategies (e.g., MLP-ANN and SVM) that
demand a high computational cost when performing their optimization process to tackle
the classification problem properly.

On the other hand, if we compare the results obtained from the non-linear modeling of
the PCA-LDA model described in the present work, the overall performance is competitive
for the Silver and Aged tequila classes and limited for the Extra-aged class. Finally, the
differentiation between non-aged tequilas and those with different maturity levels is closely
related to the task of identifying mixed, fake, and adulterated tequilas. Taking into account
that adulterations in tequila are also associated with practices such as dilution, the addition
of alcohol or some prohibited substances, forbidden aging methods, or blending with lower
quality tequila batches, these adulterations are closely related to changes in the UV-vis
absorbance and, therefore, in samples’ color [36,39]. Further work will attempt to include
these kinds of samples applying the reported image processing procedure in order to find
color variations (from RGB absorbances) to identify counterfeit tequilas.

5. Conclusions

An electronic eye based on lab-made instrumentation coupled with an image process-
ing stage was developed to build a biologically inspired system capable of distinguishing
between different tequila kinds, namely Silver, Aged, and Extra-aged. The system’s re-
peatability was demonstrated by statistical analysis of the captured images using RGB
information. Preliminary analysis employing PCA was relevant to observe data behavior
and tequila class clustering mainly related to the aging process. LDA classifiers were built
to recognize tequilas through the evaluated RGB absorbances using a LOOCV scheme to
identify samples correctly.

Successful discrimination between tequilas was achieved by LDA, obtaining an overall
classification rate of 90.02% for the three involved tequila classes mainly associated with



Biosensors 2021, 11, 68 14 of 16

their aging process. In the same way, the obtained sensitivity averaged was 0.90, whereas
specificity was 0.96. Considering that the analyzed tequila samples are grouped in imbal-
anced classes, the kappa coefficient was calculated to corroborate that the performance
measures were not over-optimistic. In this way, the kappa coefficient mean value was 0.87,
which implies that models interpret reliable data without privileging any tequila class
after adjustment.

These results show that the developed image analysis strategy based on obtained RGB
information of compressed jpeg images, together with the PCA-LDA modeling stage, did
not hamper the identification of tequilas by retaining enough color information of analyzed
samples. Another notable point is that the method presented here agrees with the results
reported by some previous studies that employ conventional analytical techniques such
as UV-Vis and GC-MS combined with non-linear classification methods. In this sense, the
developed electronic eye constitutes a reliable and easy-to-use tool that allows a quick
and non-destructive analysis of tequilas to authenticate them according to the three main
categories. Lastly, further research may be conducted to identifying fake or mixed tequilas
applying the currently reported methodology based on color analysis.
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