Glycated Hemoglobin and Methods for Its Point of Care Testing
Abstract
:1. Introduction
2. Glycated Hemoglobin and Other Advanced Glycation End-Products
3. Standard Methods for Glycated Hemoglobin Assay
4. Biosensors and Bioassays Measuring HbA1c
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, T.; Hasan, M.M.; Awal, A.; Nurunnabi, M.; Ahammad, A.J.S. Metal nanoparticles for electrochemical sensing: Progress and challenges in the clinical transition of point-of-care testing. Molecules 2020, 25, 5787. [Google Scholar] [CrossRef]
- Masumi, L.; Fakhim, H.; Vaezi, A.; Pourhassan-Moghaddam, M.; Ebrahimi-Kalan, A.; Zarghami, N. Strategies for isothermal amplification of nucleic acids: Are they ready to be applied in point of care diagnosis of mycosis? Biointerface Res. Appl. Chem. 2021, 11, 10559–10571. [Google Scholar]
- Ernst, E.; Wolfe, P.; Stahura, C.; Edwards, K.A. Technical considerations to development of serological tests for sars-cov-2. Talanta 2021, 224, 121883. [Google Scholar] [CrossRef]
- Chaouch, M. Loop-mediated isothermal amplification (lamp): An effective molecular point-of-care technique for the rapid diagnosis of coronavirus sars-cov-2. Rev. Med. Virol. 2021, e2215. [Google Scholar] [CrossRef]
- Lingervelder, D.; Koffijberg, H.; Kusters, R.; Ijzerman, M.J. Health economic evidence of point-of-care testing: A systematic review. PharmacoEcon. Open 2021. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Bazaz, S.R.; Zhand, S.; Sayyadi, N.; Jin, D.; Stewart, M.P.; Warkiani, M.E. Point of care diagnostics in the age of covid-19. Diagnostics 2021, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Apple, F.S.; Fantz, C.R.; Collinson, P.O.; Car, I.C.C.A. Implementation of high-sensitivity and point-of-care cardiac troponin assays into practice: Some different thoughts. Clin. Chem. 2021, 67, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P.; Fay, M.; Hopstaken, R.M. Point-of-care testing for d-dimer in the diagnosis of venous thromboembolism in primary care: A narrative review. Cardiol. Ther. 2021. [Google Scholar] [CrossRef]
- Bomholt, T.; Adrian, T.; Norgaard, K.; Ranjan, A.G.; Almdal, T.; Larsson, A.; Vadstrup, M.; Rix, M.; Feldt-Rasmussen, B.; Hornum, M. The use of hba1c, glycated albumin and continuous glucose monitoring to assess glucose control in the chronic kidney disease population including dialysis. Nephron 2021, 145, 14–19. [Google Scholar] [CrossRef]
- Kaur, G.; Lakshmi, P.V.M.; Rastogi, A.; Bhansali, A.; Jain, S.; Teerawattananon, Y.; Bano, H.; Prinja, S. Diagnostic accuracy of tests for type 2 diabetes and prediabetes: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0242415. [Google Scholar] [CrossRef]
- Amaefule, C.E.; Sasitharan, A.; Kalra, P.; Iliodromoti, S.; Huda, M.S.B.; Rogozinska, E.; Zamora, J.; Thangaratinam, S. The accuracy of haemoglobin a1c as a screening and diagnostic test for gestational diabetes: A systematic review and meta-analysis of test accuracy studies. Curr. Opin. Obstet. Gynecol. 2020, 32, 322–334. [Google Scholar] [CrossRef]
- Sølvik, U.; Røraas, T.; Christensen, N.G.; Sandberg, S. Diagnosing diabetes mellitus: Performance of hemoglobin a1c point-of-care instruments in general practice offices. Clin. Chem. 2013, 59, 1790–1801. [Google Scholar] [CrossRef] [Green Version]
- Hirst, J.A.; McLellan, J.H.; Price, C.P.; English, E.; Feakins, B.G.; Stevens, R.J.; Farmer, A.J. Performance of point-of-care hba1c test devices: Implications for use in clinical practice—A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2017, 55, 167–180. [Google Scholar] [CrossRef]
- Spaeth, B.A.; Shephard, M.D.S.; Schatz, S. Point-of-care testing for haemoglobin a1c in remote australian indigenous communities improves timeliness of diabetes care. Rural Remote Health 2014, 14, 2849. [Google Scholar] [PubMed]
- Bergmann, K.; Sypniewska, G. The influence of sample freezing at −80 °C for 2–12 weeks on glycated haemoglobin (hba(1c)) concentration assayed by hplc method on bio-rad d-10® auto analyzer. Biochem. Med. 2016, 26, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.R.; Baynes, J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids 2003, 25, 275–281. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Uchino, H.; Shimizu, T.; Kanazawa, A.; Tamura, Y.; Sakai, K.; Watada, H.; Hirose, T.; Kawamori, R.; Tanaka, Y. Comparison of glycated albumin (ga) and glycated hemoglobin (hba1c) in type 2 diabetic patients: Usefulness of ga for evaluation of short-term changes in glycemic control. Endocr. J. 2007, 54, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Buffarini, R.; Restrepo-Méndez, M.C.; Silveira, V.M.; Miranda, J.J.; Gonçalves, H.D.; Oliveira, I.O.; Horta, B.L.; Gigante, D.P.; Menezes, A.M.; Assunção, M.C.F. Distribution of glycated haemoglobin according to early-life and contemporary characteristics in adolescents and adults without diabetes: The 1982 and 1993 pelotas birth cohorts. PLoS ONE 2016, 11, e0162614. [Google Scholar] [CrossRef] [Green Version]
- Winston, A.P. Eating disorders and diabetes. Curr. Diabetes Rep. 2020, 20, 32. [Google Scholar] [CrossRef]
- Katwal, P.C.; Jirjees, S.; Htun, Z.M.; Aldawudi, I.; Khan, S. The effect of anemia and the goal of optimal hba1c control in diabetes and non-diabetes. Cureus 2020, 12, e8431. [Google Scholar]
- Kohzuma, T.; Yamamoto, T.; Uematsu, Y.; Shihabi, Z.K.; Freedman, B.I. Basic performance of an enzymatic method for glycated albumin and reference range determination. J. Diabetes Sci. Technol. 2011, 5, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Yoshiuchi, K.; Matsuhisa, M.; Katakami, N.; Nakatani, Y.; Sakamoto, K.; Matsuoka, T.; Umayahara, Y.; Kosugi, K.; Kaneto, H.; Yamasaki, Y.; et al. Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr. J. 2008, 55, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, H.; Shi, X.; Luo, Z.; Lin, D.; Huang, M. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J. Biol. Chem. 2013, 288, 15980–15987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouzuma, T.; Usami, T.; Yamakoshi, M.; Takahashi, M.; Imamura, S. An enzymatic method for the measurement of glycated albumin in biological samples. Clin. Chim. Acta 2002, 324, 61–71. [Google Scholar] [CrossRef]
- Roohk, H.V.; Zaidi, A.R. A review of glycated albumin as an intermediate glycation index for controlling diabetes. J. Diabetes Sci. Technol. 2008, 2, 1114–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, M.; Kasayama, S. Clinical impact of glycated albumin as another glycemic control marker. Endocr. J. 2010, 57, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watala, C.; Gwoȧdzinski, K.; Małek, M. Direct evidence for the alterations in protein structure and conformation upon in vitro nonenzymatic glycosylation. Int. J. Biochem. 1992, 24, 1295–1302. [Google Scholar] [CrossRef]
- Syamala Kiran, M.; Itoh, T.; Yoshida, K.-I.; Kawashima, N.; Biju, V.; Ishikawa, M. Selective detection of hba1c using surface enhanced resonance raman spectroscopy. Anal. Chem. 2010, 82, 1342–1348. [Google Scholar] [CrossRef]
- Bakhti, M.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.; Khazaei, M. Consequential alterations in haemoglobin structure upon glycation with fructose: Prevention by acetylsalicylic acid. J. Biochem. 2007, 141, 827–833. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.J.; Bleichman, M.; Bunn, H.; Noble, R.W. Functional properties of the glycosylated minor components of human adult hemoglobin. J. Biol. Chem. 1979, 254, 702–707. [Google Scholar] [CrossRef]
- Zhang, X.; Medzihradszky, K.F.; Cunningham, J.; Lee, P.D.K.; Rognerud, C.L.; Ou, C.-N.; Harmatz, P.; Witkowska, H.E. Characterization of glycated hemoglobin in diabetic patients: Usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J. Chromatogr. B Biomed. Sci. Appl. 2001, 759, 1–15. [Google Scholar] [CrossRef]
- Ali, S.; Rao, N.I.L. Correlation of serum fluorescence of advanced glycation end products with diabetes duration and glycemic control in type 2 diabetic patients. Biomed. Res. Ther. 2020, 7, 3933–3938. [Google Scholar] [CrossRef]
- Gonzalez-Viveros, N.; Castro-Ramos, J.; Gomez-Gil, P.; Cerecedo-Nunez, H.H. Characterization of glycated hemoglobin based on raman spectroscopy and artificial neural networks. Spectroc. Acta Part. A Mol. Biomol. Spectr. 2021, 247, 119077. [Google Scholar] [CrossRef]
- Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 152, 645–653. [Google Scholar] [CrossRef]
- Keith, N.; Parodi, A.J.; Caramelo, J.J. Glycoprotein tertiary and quaternary structures are monitored by the same quality control mechanism. J. Biol. Chem. 2005, 280, 18138–18141. [Google Scholar] [CrossRef] [Green Version]
- Shanbhag, V.P.; Axelsson, C.-G. Hydrophobic interaction determined by partition in aqueous two-phase systems. Eur. J. Biochem. 1975, 60, 17–22. [Google Scholar] [CrossRef]
- Zaslavsky, B.Y.; Uversky, V.N.; Chait, A. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2016, 1864, 622–644. [Google Scholar] [CrossRef]
- Chait, A.; Zaslavsky, B.Y. Method for Evaluation of the Ratio of Amounts of Biomolecules or Their Sub-Populations in a Mixture. U.S. Patent No. 6,136,960, 24 October 2000. [Google Scholar]
- Bancks, M.P.; Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Gross, M.D.; Pereira, M.A. Glycated hemoglobin and incident type 2 diabetes in singaporean chinese adults: The singapore chinese health study. PLoS ONE 2015, 10, e0119884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, E.V.R.; Moltke, I.; Jorgensen, M.E.; Bjerregaard, P.; Linneberg, A.; Pedersen, O.; Albrechtsen, A.; Hansen, T.; Grarup, N. Genetic determinants of glycated hemoglobin levels in the greenlandic inuit population. Eur. J. Hum. Genet. 2018, 26, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Bryśkiewicz, M.E.; Majkowska, L. Glycated hemoglobin (hba1c) as a standard diagnostic criterium for diabetes? Pol. Merkur Lek. 2011, 30, 150–154. [Google Scholar]
- Ito, M.; Sano, K.; Koga, M. 3 cases of variant hemoglobin hb a2-niigata detected by falsely high hba1c values. Clin. Chim. Acta 2020, 510, 656–658. [Google Scholar] [CrossRef]
- Okamoto, T.; Shima, H.; Noma, Y.; Komatsu, M.; Azuma, H.; Miya, K.; Tashiro, M.; Inoue, T.; Masaki, C.; Tada, H.; et al. Hereditary spherocytosis diagnosed with extremely low glycated hemoglobin compared to plasma glucose levels. Diabetol. Int. 2021. [Google Scholar] [CrossRef]
- Kulkarni, J.D.; Shivashanker, S. Incidental detection of hemoglobin variants during evaluation of hba1c. Indian J. Clin. Biochem. 2021. [Google Scholar] [CrossRef]
- Tran, T.T.H.; Jeong, J.S. Optimization of microwave-assisted method for accelerated glycated hemoglobin quantification from amino acids to proteins. Mass Spectrom. Lett. 2017, 8, 53–58. [Google Scholar]
- Chen, H.J.C.; Teng, Y.C. Stability of glyoxal- and methylglyoxal-modified hemoglobin on dried blood spot cards as analyzed by nanoflow liquid chromatography tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.H.; Lim, J.; Kim, J.; Kwon, H.J.; Kwon, G.C.; Jeong, J.S. Fully international system of units-traceable glycated hemoglobin quantification using two stages of isotope-dilution high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2017, 1513, 183–193. [Google Scholar] [CrossRef]
- Xu, A.P.; Wang, Y.J.; Li, J.; Xie, W.J.; Chen, W.D.; Ji, L. Detection of hb phnom penh by matrix-assisted laser desorption/ionization time-of-flight (maldi-tof) mass spectrometry during the measurement of glycated hemoglobin. Clin. Chem. Lab. Med. 2020, 58, E233–E235. [Google Scholar] [CrossRef] [PubMed]
- Gilani, M.; Aamir, M.; Akram, A.; Haroon, Z.H.; Ijaz, A.; Khadim, M.T. Comparison of turbidimetric inhibition immunoassay, high-performance liquid chromatography, and capillary electrophoresis methods for glycated hemoglobin determination. Lab. Med. 2020, 51, 579–584. [Google Scholar] [CrossRef]
- Xu, A.P.; Chen, W.D.; Xie, W.J.; Wang, Y.J.; Ji, L. Hemoglobin variants in southern china: Results obtained during the measurement of glycated hemoglobin in a large population. Clin. Chem. Lab. Med. 2021, 59, 227–232. [Google Scholar] [CrossRef]
- Stolz, A.; Hedeland, Y.; Salzer, L.; Romer, J.; Heiene, R.; Leclercq, L.; Cottet, H.; Bergquist, J.; Neususs, C. Capillary zone electrophoresis-top-down tandem mass spectrometry for in-depth characterization of hemoglobin proteoforms in clinical and veterinary samples. Anal. Chem. 2020, 92, 10531–10539. [Google Scholar] [CrossRef]
- Pullon, B.M. An evaluation of glycated haemoglobin eluting in zone 10 on capillary zone electrophoresis. J. Lab. Med. 2020, 44, 55–58. [Google Scholar] [CrossRef]
- Vargas, M.G.; Gomez, B.J.P.; Lorenti, F.E.V.; Condo, G.M.A.; Neira, E.I.R.; Veron, D.; Veron, M.F.; Cercado, A.G.; Bahar, B.; Tufro, A. Assessment of two glycated hemoglobin immunoassays. Endocrinol. Diabetes Nutr. 2020, 67, 297–303. [Google Scholar] [CrossRef]
- Edriss, H.; Molehin, A.J.; Selvan, K.; Gavidia, R.; Patel, P.U.; Nugent, K. Advanced glycation end products and glycosaminoglycans in patients with diabetic ketoacidosis. J. Investig. Med. 2020, 68, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Yasun, E.; Trusty, T.; Abolhosn, R.W.; Clarke, N.J.; Mezic, I. Electrokinetic mixing for improving the kinetics of an hba1c immunoassay. Sci. Rep. 2019, 9, 19885. [Google Scholar] [CrossRef] [PubMed]
- Movsas, T.Z.; Muthusamy, A. Feasibility of neonatal haemoglobin a1c as a biomarker for retinopathy of prematurity. Biomarkers 2020, 25, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Chang, S.J.; Chen, C.J.; Liu, J.T. Non-invasive blood glucose monitoring technology: A review. Sensors 2020, 20, 6925. [Google Scholar] [CrossRef] [PubMed]
- Juska, V.B.; Pemble, M.E. A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef] [PubMed]
- Thatikayala, D.; Ponnamma, D.; Sadasivuni, K.K.; Cabibihan, J.J.; Al-Ali, A.K.; Malik, R.A.; Min, B. Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and h2o2. Biosensors 2020, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.; Zhang, Y.; Wu, J. Review of non-invasive continuous glucose monitoring based on impedance spectroscopy. Sens. Actuator A Phys. 2020, 311, 112103. [Google Scholar] [CrossRef]
- Mandpe, P.; Prabhakar, B.; Gupta, H.; Shende, P. Glucose oxidase-based biosensor for glucose detection from biological fluids. Sens. Rev. 2020, 40, 497–511. [Google Scholar] [CrossRef]
- He, W.J.; Huang, Y.X.; Wu, J. Enzyme-free glucose biosensors based on mos2 nanocomposites. Nanoscale Res. Lett. 2020, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Lisi, F.; Peterson, J.R.; Gooding, J.J. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens. Bioelectron. 2020, 148, 111835. [Google Scholar] [CrossRef] [PubMed]
- Dziergowska, K.; Labowska, M.B.; Gasior-Glogowska, M.; Kmiecik, B.; Detyna, J. Modern noninvasive methods for monitoring glucose levels in patients: A review. Bio-Algorithms Med. Syst. 2019, 15, 20190052. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Arduini, F. The technology tree in the design of glucose biosensors. Trac-Trends Anal. Chem. 2019, 120, 115642. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.B.; Zhong, Z.T.; Li, C.Q.; Chen, W.; Liu, B.; Zhao, Y.D. A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm. Microchem. J. 2020, 157, 105038. [Google Scholar] [CrossRef]
- Sathishkumar, N.; Toley, B.J. Development of an experimental method to overcome the hook effect in sandwich-type lateral flow immunoassays guided by computational modelling. Sens. Actuator B Chem. 2020, 324, 128756. [Google Scholar] [CrossRef]
- Kasetsirikul, S.; Shiddiky, M.J.A.; Nguyen, N.T. Challenges and perspectives in the development of paper-based lateral flow assays. Microfluid. Nanofluid. 2020, 24, 17. [Google Scholar] [CrossRef]
- Ang, S.H.; Rambeli, M.; Thevarajah, T.M.; Alias, Y.B.; Khor, S.M. Quantitative, single-step dual measurement of hemoglobin a1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine. Biosens. Bioelectron. 2016, 78, 187–193. [Google Scholar] [CrossRef]
- Khlebtsov, B.; Khlebtsov, N. Surface-enhanced raman scattering-based lateral-flow immunoassay. Nanomaterials 2020, 10, 2228. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Tang, X.Q.; Zhang, W.; Zhang, Q.; Li, P.W. Time-resolved fluorescence immunochromatography assay (trfica) for aflatoxin: Aiming at increasing strip method sensitivity. Front. Microbiol. 2020, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.C.; Beni, V.; Turner, A.P.F. Lateral-flow technology: From visual to instrumental. Trac-Trends Anal. Chem. 2016, 79, 297–305. [Google Scholar] [CrossRef]
- Hsieh, H.V.; Dantzler, J.L.; Weigl, B.H. Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics 2017, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urusov, A.E.; Zherdev, A.V.; Dzantiev, B.B. Towards lateral flow quantitative assays: Detection approaches. Biosensors 2019, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nehra, M.; Khurana, S.; Dilbaghi, N.; Kumar, V.; Kaushik, A.; Kim, K.H. Aspects of point-of-care diagnostics for personalized health wellness. Int. J. Nanomed. 2021, 16, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Sardini, E.; Serpelloni, M.; Tonello, S. Printed electrochemical biosensors: Opportunities and metrological challenges. Biosensors 2020, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Salazar, J.R.; Cruz, K.R.; Vasques, E.M.M.; de Oliveira, O.N. Microfluidic point-of-care devices: New trends and future prospects for ehealth diagnostics. Sensors 2020, 20, 1951. [Google Scholar] [CrossRef] [Green Version]
- Konwar, A.N.; Borse, V. Current status of point-of-care diagnostic devices in the indian healthcare system with an update on covid-19 pandemic. Sens. Intern. 2021. [Google Scholar] [CrossRef]
- Sharma, P.; Panchal, A.; Yadav, N.; Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol. 2020, 155, 685–696. [Google Scholar] [CrossRef]
- Ahmadi, A.; Kabiri, S.; Omidfar, K. Advances in hba1c biosensor development based on field effect transistors: A review. IEEE Sens. J. 2020, 20, 8912–8921. [Google Scholar] [CrossRef]
- Mulder, D.W.; Phiri, M.M.; Vorster, B.C. Gold nanostar colorimetric detection of fructosyl valine as a potential future point of care biosensor candidate for glycated haemoglobin detection. Biosensors 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded n-doped graphene nanosheet. Biosens. Bioelectron. 2017, 89, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep. 2017, 7, 1016. [Google Scholar] [CrossRef] [Green Version]
- Jain, U.; Gupta, S.; Chauhan, N. Detection of glycated hemoglobin with voltammetric sensing amplified by 3d-structured nanocomposites. Int. J. Biol. Macromol. 2017, 101, 896–903. [Google Scholar] [CrossRef]
- Lin, H.; Yi, J. Current status of hba1c biosensors. Sensors 2017, 17, 1798. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, W.J.; Tian, L.L.; Li, H.F.; Fan, B. Fabrication of biosensor for selective electrochemical determination of glycated hemoglobin. Int. J. Electrochem. Sci. 2017, 12, 8411–8420. [Google Scholar] [CrossRef]
- Tsai, S.A.; Tang, J.Y.; Wang, M.H.; Jang, L.S. Impedance measurement system for automatic determination of glycated hemoglobin. Rev. Sci. Instrum. 2018, 89, 065003. [Google Scholar] [CrossRef]
- Yang, J.K.; Lee, H.R.; Hwang, I.J.; Kim, H.I.; Yim, D.; Kim, J.H. Fluorescent 2d ws2 nanosheets bearing chemical affinity elements for the recognition of glycated hemoglobin. Adv. Healthc. Mater. 2018, 7, 1701496. [Google Scholar] [CrossRef] [PubMed]
- Tavousi, A.; Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 2018, 429, 166–174. [Google Scholar] [CrossRef]
- Sun, D.P.; Wu, Y.; Chang, S.J.; Chen, C.J.; Liu, J.T. Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance. Talanta 2021, 222, 121466. [Google Scholar] [CrossRef]
- Zhang, C.G.; Chang, S.J.; Settu, K.; Chen, C.J.; Liu, J.T. High-sensitivity glycated hemoglobin (hba1c) aptasensor in rapid-prototyping surface plasmon resonance. Sens. Actuator B Chem. 2019, 279, 267–273. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, C.Y.; Chen, H.M.; Kuo, L.P.; Hsieh, C.E.; Wang, X.H.; Cheng, C.W.; Wu, C.Y.; Chen, Y.S. Direct and label-free determination of human glycated hemoglobin levels using bacteriorhodopsin as the biosensor transducer. Sensors 2020, 20, 7274. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Xiong, X.; Lu, Y.; Jia, N.Q. A sensitive electrochemiluminescence immunoassay for glycosylated hemoglobin based on ru(bpy)(3)(2+) encapsulated mesoporous polydopamine nanoparticles. Sens. Actuator B Chem. 2020, 321, 128626. [Google Scholar] [CrossRef]
- Mauriz, E. Clinical applications of visual plasmonic colorimetric sensing. Sensors 2020, 20, 6214. [Google Scholar] [CrossRef]
- Reinhard, I.; Miller, K.; Diepenheim, G.; Cantrell, K.; Hall, W.P. Nanoparticle design rules for colorimetric plasmonic sensors. ACS Appl. Nano Mater. 2020, 3, 4342–4350. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Oliveira, O.N., Jr. Plasmonic biosensing. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef] [PubMed]
- Shahbazmohammadi, H.; Sardari, S.; Omidinia, E. An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase. Int. J. Biol. Macromol. 2020, 142, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Qcm biosensor for measurement of glycated hemoglobin. Int. J. Electrochem. Sci. 2019, 14, 11340–11348. [Google Scholar] [CrossRef]
- Jaberi, S.Y.S.; Ghaffarinejad, A.; Omidinia, E. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal. Chim. Acta 2019, 1078, 42–52. [Google Scholar] [CrossRef]
- Hatamvand, R.; Shams, A.; Mohammadifar, E.; Yari, A.; Adeli, M. Synthesis of boronic acid-functionalized poly(glycerol-oligo gamma-butyrolactone): Nano-networks for efficient electrochemical sensing of biosystems. J. Polym. Sci. Pol. Chem. 2019, 57, 1430–1439. [Google Scholar] [CrossRef]
- Li, H.; Huo, W.S.; He, M.L.; Lian, J.; Zhang, S.H.; Gao, Y.H. On-chip determination of glycated hemoglobin with a novel boronic acid copolymer. Sens. Actuator B Chem. 2017, 253, 542–551. [Google Scholar] [CrossRef]
- Han, Y.D.; Kim, K.R.; Park, Y.M.; Song, S.Y.; Yang, Y.J.; Lee, K.; Ku, Y.; Yoon, H.C. Boronate-functionalized hydrogel as a novel biosensing interface for the glycated hemoglobin a1c (hba(1c)) based on the competitive binding with signaling glycoprotein. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bai, Z.M.; Mao, Y.J.; Sun, Q.Q.; Ning, X.H.; Zheng, J.B. Disposable sandwich-type electrochemical sensor for selective detection of glucose based on boronate affinity. Electroanalysis 2017, 29, 2307–2315. [Google Scholar] [CrossRef]
- Wang, X.; Su, J.; Zeng, D.D.; Liu, G.; Liu, L.Z.; Xu, Y.; Wang, C.G.; Liu, X.X.; Wang, L.; Mi, X.Q. Gold nano-flowers (au nfs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019, 201, 119–125. [Google Scholar] [CrossRef]
- Pandey, I.; Tiwari, J.D. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients. Sens. Actuator B Chem. 2019, 285, 470–478. [Google Scholar] [CrossRef]
Specification | Non-Glycated Hemoglobin | HbA1c | References |
---|---|---|---|
Number of glycated sites/molecular weight | 1/64.5 kDa | 15/68 kDa | [31,32] |
Florescence intensity | 34% | 45% | [30] |
Hydrophobicity | high | low | [38,39] |
Percentage in blood of health people | above 94% | under 6.0% | [40,41] |
Percentage in blood of people with prediabetes | 94.0–93.5% | 6.0–6.5% | [40,41] |
Percentage in blood of people with diabetes mellitus | under 93.5% | above 6.5% | [40,41] |
Principle of Assay | Recognition Parts in the Assay | Specifications | Limit of Detection | References |
---|---|---|---|---|
Surface plasmon resonance | aptamer | sensitivity 1.06 × 10−3 RU/nmol/L | limit of detection 2.55 nmol/L | [91] |
Surface plasmon resonance | aptamer | linear dynamic range 18–147 nmol/L | limit of detection 1 nmol/L | [92] |
Measuring of photocurrent using bacteriorhodopsin and aptamer embedded membrane, interaction with analyte causes reduction of photocurrent | aptamer | dynamic range 0.1–100 μg/mL in a 15 min measuring cycle | limit of detection under 0.1 μg/mL | [93] |
Quenching of ruthenium complex containing nanoparticles electrochemiluminescence in the presence of HbA1c | aptamer | linear range 0.1–18.5% | limit of detection 0.015% HbA1c from the total hemoglobin | [94] |
Enzyme catalyzed oxidation of fructosyl valyl histidine as a mimetic of HbA1c, amperometric detection followed | fructosyl peptide oxidase | calibration range 0.1 to 2 mmol/L | limit of detection 0.3 μmol/L | [98] |
Quartz crystal microbalance biosensor with immobilized antibody directly interacted with HbA1c, drop in oscillation frequency followed | polyclonal antibody | - | limit of detection 0.045 mg/mL | [99] |
Voltametric biosensor with immobilized aptamer, interaction with HbA1c caused change in sensitivity to Prussian blue in ambient solution | aptamer | linear range 1 nmol/L–13.8 μmol/L, sensitivity 269 μA/cm2 | limit of detection 1 nmol/L | [100] |
HbA1c was caught by boronic acid and then catalyzed reduction of hydrogen peroxide, which was recorded by cyclic voltammetry | gold nanoparticles covered with 4-mercaptophenylboronic acid | linear dynamic range 5–1000 μg/mL respective 2–20%, assay lasting 65 min | - | [105] |
Interaction of non-glycated hemoglobin respective to HbA1c with molecularly imprinted polymer caused change in voltametric characteristics | molecularly imprinted polymer based on boronic acid | - | limit of detection equal 0.08 ng/mL for the non-glycated hemoglobin, 0.09 ng/mL for the HbA1c | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohanka, M. Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors 2021, 11, 70. https://doi.org/10.3390/bios11030070
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors. 2021; 11(3):70. https://doi.org/10.3390/bios11030070
Chicago/Turabian StylePohanka, Miroslav. 2021. "Glycated Hemoglobin and Methods for Its Point of Care Testing" Biosensors 11, no. 3: 70. https://doi.org/10.3390/bios11030070
APA StylePohanka, M. (2021). Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors, 11(3), 70. https://doi.org/10.3390/bios11030070