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Abstract: Guided-mode resonance (GMR) sensors are widely used as biosensors with the advantages
of simple structure, easy detection schemes, high efficiency, and narrow linewidth. However, their
applications are limited by their relatively low sensitivity (<200 nm/RIU) and in turn low figure of
merit (FOM, <100 1/RIU). Many efforts have been made to enhance the sensitivity or FOM, separately.
To enhance the sensitivity and FOM simultaneously for more sensitive sensing, we proposed a
metal layer-assisted double-grating (MADG) structure with the evanescent field extending to the
sensing region enabled by the metal reflector layer underneath the double-grating. The influence of
structural parameters was systematically investigated. Bulk sensitivity of 550.0 nm/RIU and FOM of
1571.4 1/RIU were obtained after numerical optimization. Compared with a single-grating structure,
the surface sensitivity of the double-grating structure for protein adsorption increases by a factor of
2.4 times. The as-proposed MADG has a great potential to be a biosensor with high sensitivity and
high accuracy.

Keywords: sensors; guided-mode resonance; figure of merit; grating

1. Introduction

The advanced analytical biosensors are widely used as molecules detection and diagnos-
tic tools, which are able to probe the interactions between chemical and biological molecules
with high sensitivity and have found extensive applications in disease diagnosis, drug devel-
opment, environmental pollution monitoring, and food safety detection [1–3]. The emergence
of nanotechnology and nanofabrication has given rise to a variety of label-free biosensor
technologies, such as cladding-mode resonance biosensors based on short- or long-period
fiber gratings [4], Mach–Zehnder interferometer biosensors [5,6], surface plasmon reso-
nance (SPR) biosensors [7–9], and guided mode resonance (GMR) biosensors [10–15].

GMR refers to the resonance between the incident light modulated by the grating and
the conduction mode of the waveguide, and the GMR effect is widely used in the sensing
field due to the advantages of simple structure, easy detection schemes, high efficiency,
and narrow linewidth [12]. However, GMR sensors typically have relatively low sensitivity
(<200 nm/RIU) and a small figure of merit (FOM, <100 1/RIU), which is defined as the sen-
sitivity of the sensor divided by the full width at half maximum (FWHM) of the resonance
(Sensitivity/FWHM) [16–20]. Biosensors with large sensitivity and FOM are more desirable
since a large signal noise ratio is achievable for accurate detection of small signals during
biosensing [21–23]. Many research groups have proposed several ways to improve the sen-
sitivity of GMR sensors. Lu et al. proposed a compound waveguide grating biosensor via
a modulated wave vector to enhance the sensitivity up to 345 nm/RIU, which is two times
higher in magnitude than the normal case [18]. Wan et al. designed an ultralow refractive
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index porous silicon dioxide structure to make the resonance mode reside mainly in the
sensing medium, which resulted in a sensitivity of up to 546 nm/RIU. In addition, metal
structures are also used to improve the sensitivity of the sensor [24]. Lin et al. utilized a
metal layer-assisted guided mode resonance (MaGMR) sensor to make the evanescent wave
distribute asymmetrically in the waveguide layer which resulted in distribution of more
electric field intensity in the analytes. The sensitivity of such a structure is 338.5 nm/RIU,
increased by a factor of 1.5 over conventional structures [17]. Wang et al. proposed a hybrid
guided-mode resonance/surface plasmon resonance structure to increase sensitivity to
1087 nm/RIU with a resonance wavelength of 1796.1 nm [25].

These reports demonstrated obvious sensitivity enhancement. However, the reso-
nant linewidth also broadened (>10 nm) and the resultant FOM values were still small
(~20 1/RIU). Some research groups also devoted their attention to improving the FOM
values through narrowing the resonance linewidth without special efforts to increase sensi-
tivity [13,15,26]. Lan et al. proposed a all-dielectric nano-silt arrayguided mode resonance
sensor, and ultra-high FOM (~12,000 1/RIU) values were achieved with sensitivity in the
range of 240 nm/RIU [26].

In this work, we proposed a GMR sensor with simultaneous enhancement of sensitiv-
ity and FOM. We explored a metal layer-assisted double-grating (MADG) structure-based
GMR which consists of a substrate, a metal reflector and a double dielectric grating with
two ridges in a period. With numerical simulation, we demonstrated that the bulk sensi-
tivity of 550.0 nm/RIU and FOM of 1571.4 1/RIU can be achieved simultaneously. The
proposed MADG-based GMR sensor has great potential in biosensing applications which
require high sensitivity and a low detection limit.

2. Optimization of MADG Structure
2.1. MADG Structure

The proposed MADG structure that excites GMR is shown in Figure 1. On top of
the SiO2 substrate, there is a metal reflector layer (Au) which is covered with a dielectric
layer (HfO2, ng = 1.95) [27]. The metal reflector layer thickness is Hm. The dielectric layer
is designed to be a double grating which is composed of two ridges with identical width
in a period. With a grating period of Λ and fill factors f and fi, the width of each ridge is
f × Λ, the interval between two ridges is fi × Λ, and the interval between two periods is
(1 − 2f − fi) × Λ. The depth of the grating is Hg. The refractive index of the top medium
surrounded the MADG structure is na. The resonant features and electric field distribution
of the MADG-based GMR structure were simulated with COMSOL Multiphysics 5.2a
(COMSOL Inc., Stockholm, Sweden) [28].
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2.2. Influence of fi on MADG Based GMR Sensor Performance

With Λ being set at 500 nm, Hg at 300 nm, Hm at 100 nm and fill factor f at 0.25, we
studied how the fill factor fi affected the MADG-based GMR’s performance. As shown in
Figure 2a, the resonance wavelength is in the range of visible light, which demonstrates a
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red shift, with fi increasing from 0 to 0.225. When fi is close to 0.25, the resonance disappears.
With fi increasing from 0.275 to 0.5, there are strong resonances again with features the
same as resonances at 0.5 − fi.
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Figure 2. (a) Reflection spectrum of MADG based GMR sensor with fi ranging from 0 to 0.5 for the normal incident TE
polarized light (electric field perpendicular to the plane of incidence light with normal direction of interface). (b) Dependence
of sensitivity and FWHM of MADG based GMR on fi. (c) Dependence of FOM and resonance curve depth on fi. (d) Electric
field distribution of GMR with fi = 0 and with (e) fi = 0.2. For simulation, Λ was set at 500 nm, Hg at 300 nm, Hm at 100 nm,
and fill factor f at 0.25.

Figure 2b shows that the sensitivity of the GMR sensor increases and FWHM decreases
monotonically with fi less than 0.25. In addition, the sensitivity decreases and FWHM
increases monotonically with fi larger than 0.25. The sensitivity and FWHM are not shown
for fi = 0.25 where resonance disappears. As demonstrated in Figure 2c, the FOM of the
MADG-based GMR sensor maximizes with fi close to 0.25, similar to the behavior of the
sensitivity.

Figure 2d,e show the electric field distribution of the MADG-based GMR structure
with fi = 0 and fi = 0.2, respectively. Due to the metal layer underneath the grating, no
electric field distributes in the substrate and the evanescent diffraction field distributes
mostly in the top medium for sensing. Around the grating ridge, most of the electric field
is located inside the ridge with fi = 0, while it is mostly distributes in the top medium
between two ridges with fi = 0.2. In addition, the penetration depth of the evanescent
diffraction field is deeper with fi = 0.2. The distribution of the electric field in the top
medium and the deep penetration depth with fi = 0.2 demonstrate that the MADG-based
GMR sensor provides more evanescent energy for sensing, which may be responsible
for the improvement in the sensitivity with the double grating structure [29]. The larger
overlap area between analytes and evanescent diffraction field provided by the MADG
structure has the potential to enhance the sensitivity of the techniques taking advantage of
evanescent field, such as the plasmon-enhanced fluorescence method for the detection of
molecules of various sizes [30,31].
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The change in FWHM with fi can be attributed to the coupling changes between
evanescent diffraction fields and the leaky guided modes. The permittivity of the periodic
grating can be expanded into Fourier series [32],

ε = ∑
n

εnexp
(

i
2nπx

Λ

)
(1)

where the Fourier harmonic coefficients εn can be expressed as,

ε0 = 2 f n2
g + (1 − 2 f )n2

a (2)

εn = (n2
g − n2

a)
sin[nπ(1 − 2 f − fi)]− sin(nπ fi)

nπ
, (n = ±1,±2, . . . ± N . . .) (3)

According to the rigorous coupled-wave theory [33], the Fourier harmonic coeffi-
cients εn regulate the interaction among evanescent diffraction fields and the leaky guided
modes [30]. Since the MADG-based GMR sensor excites leaky guided modes through
the first evanescent diffracted order of the grating, the coupling between the evanescent
diffraction fields and the leaky guided modes is mainly determined by ε1. Equation (3)
shows that |ε1| decreases to zero when fi changes from 0 to 0.25 and |ε1| increases from
zero with fi changing from 0.25 to 0.5. Smaller |ε1| signifies poorer coupling, causing
decreased spectrum linewidth [32], which may explain behaviors of FWHM.

One more feature in Figure 2a is the depth of the resonance curve, which is defined as
reflectivity at the inflection point minus the reflectivity at the resonance point. Figure 2c
shows that the resonance curve depths are close to 0.8 with fi less than 0.2 and decrease
sharply to around 0.1 with fi changing from 0.2 to 0.25. Since resonance signals with larger
depth have better noise tolerating capability for better sensing performance, fi = 0.2 is used
in the following simulations with which large sensitivity, large FOM and large resonance
curve depth are all achievable.

2.3. Influence of Hm on MADG Based GMR Sensor Performance

With Λ at 500 nm, Hg at 300 nm, f at 0.25, and fi at 0.2, we studied the influences of the
metal reflector layer underneath the double grating on performance of GMR sensor. As
shown in Figure 3a,b, the sensitivity increases and the FWHM decreases with Hm, which
results in FOM increasing with Hm. The FOM almost levels off when Hm is larger than
100 nm, meaning that Hm = 100 nm is used in the following simulations. In addition,
the resonance curve depth is close to 0.9 with Hm = 100 nm which provides good noise
tolerating capability.
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(c) Electric field distribution of GMR with no metal reflector layer. For simulation, Λ was set at 500 nm, Hg at 300 nm, fill
factor f at 0.25, and fi at 0.2.

To understand the increase in sensitivity with Hm, Figure 3c shows the electric field
distribution of GMR without the metal reflector layer. Compared with the electric field
distribution with the metal reflector layer shown in Figure 2e, most of the electric field
distributes in the substrate layer rather than in the analytes when there is no metal reflector
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layer. The increase in sensitivity from 15 nm/RIU with Hm = 0 nm to 420 nm/RIU with
Hm = 100 nm could be due to the asymmetrical evanescent diffraction field wave distri-
bution in the waveguide layer and the distribution of more electric field intensity in the
analytes [19].

2.4. Influence of Λ and Hg on MADG Based GMR Sensor Performance

Figure 4a,b show the dependence of GMR performance on Λ with Hm at 100 nm, f
at 0.25, and fi at 0.2. To obtain resonance curves under phase matching conditions with Λ
ranging from 480 to 660 nm, Hg was set at 380 nm. It is clear that a large Λ provides high
sensitivity and small FWHM, which is similar to the previous studies [34,35]. Even though
both sensitivity and FOM monotonically increase with Λ within the range of simulations,
resonance curve depths drop dramatically with Λ at 660 nm. In this case, Λ = 640 nm is
used for following simulations. In addition, the resonant wavelength at Λ = 640 nm is
858.2 nm, which makes the as-designed sensor a promising candidate for applications with
high sensitivity and relatively low absorption in water.
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Figure 4c,d show the dependence of GMR performance on grating Hg with Λ at
640 nm, Hm at 100 nm, f at 0.25, and fi at 0.2. In order to satisfy the phase matching
condition with Λ at 640 nm, Hg varies from 370 to 410 nm. Both sensitivity and FOM
decrease with Hg and maximal FOM is located at 370 nm, at which the resonance curve
depth is only 0.3. To obtain large sensitivity and FOM with acceptable resonance curve
depth, Hg = 380 nm was used for following simulations.

2.5. Bulk and Surface Sensitivity

With Λ at 640 nm, Hg at 380 nm, Hm at 100 nm, f at 0.25, and fi at 0.2, the MADG-based
GMR sensor was immersed in liquids with increasing refractive indices. Figure 5a,b show
that the resonance wavelength increases linearly with refractive index and the slope (i.e.,
bulk sensitivity) is 550.0 nm/RIU. With FWHM being 0.35 nm, FOM is calculated to be
1571.4 1/RIU. Comparing with other GMR sensors, the MADG-based GMR sensor provides
both high sensitivity and a large FOM, as shown in Table 1.
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Figure 5. (a) Reflection spectra of the MADG-based GMR sensor immersed in liquids with increasing
refractive indices. (b) Resonance wavelength of the MADG-based GMR sensor changes as a function
of the liquid refractive index. For simulation, Λ was set at 640 nm, Hg at 380 nm, Hm at 100 nm, f at
0.25, and fi at 0.2.

Table 1. Sensitivity, FOM, and resonance wavelength of some GMR sensors.

GMR Sensors Sensitivity (nm/RIU) FOM (1/RIU) Wavelength (nm) Reference

MADG based GMR device 550.0 1571 858.2 This work
One-dimensional all-dielectric

nano-slit array 240 12,000 819 [26]

Hybird GMR/SPR sensor 1087 23 1796.1 [25]
Compound waveguide grating 345 17.3 1580 [18]

Ultralow RI substrate GMR 546 ~273 ~784 [24]

We then investigated the surface sensitivity with the protein sample adsorbing on the
MADG-based GMR sensor. For simulation, we assumed a refractive index of 1.5 [36] and
the protein thickness increasing from 0 nm to 20 nm to calculate the surface sensitivity [37].
Figure 6b shows the resonant wavelength of GMR as a function of the protein thickness.
The sensitivity of MADG with double grating is 0.415 nm/nm, which is 2.4 times of that of
metal assist single grating and 5.5 times of that of double grating without metal layer.
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3. Results

In summary, a metal layer-assisted guided mode resonance biosensor modulated by
a double grating structure was designed to achieve both high sensitivity and high FOM
for optical biosensing. The sensitivity is increased by the metal reflector under the double
grating layer, which causes asymmetrical electric field distribution and leads to longer pen-
etration depth and larger overlap area between the analytes and the evanescent diffraction
field. The spectral linewidth is optimized through double grating by modulating coupling
between the evanescent diffraction fields and the leaky guided modes. With optimization,
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the MADG-based GMR sensor is able to provide bulk sensitivity of 550.0 nm/RIU and
FOM of 1571.4 1/RIU, which shows great potential for sensitive label-free biosensing.
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