Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Chemicals
2.2. Buffers and Solutions
2.3. Sample Pretreatment
2.4. Ic-ELISA Method for the Determination of Cu Ions
3. Results and Discussion
3.1. Optimization of ic-ELISA Conditions and Correlation Analysis with ICP-MS
3.2. The Investigation of Cu Content in Retail Swine Samples
3.3. Distributions of Cu in Pigs under Different Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ding, H.; Zhang, Q.; Xu, H.; Yu, X.; Chen, L.; Wang, Z.; Feng, J. Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. Ecotoxicol. Environ. Saf. 2021, 216, 112177. [Google Scholar] [CrossRef]
- Espinosa, C.D.; Fry, R.S.; Kocher, M.E.; Stein, H.H. Effects of copper hydroxychloride and dietary fiber on intestinal permeability, growth performance, and blood characteristics of nursery pigs. Anim. Feed. Sci. Technol. 2020, 263, 114447. [Google Scholar] [CrossRef]
- Lin, G.; Guo, Y.; Liu, B.; Wang, R.; Su, X.; Yu, D.; He, P. Optimal dietary copper requirements and relative bioavailability for weanling pigs fed either copper proteinate or tribasic copper chloride. J. Anim. Sci. Biotechnol. 2020, 11, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, X.; Guo, Y.; Wang, Z.; Zhao, B.; Yin, Y.; Liu, G. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs. Biol. Trace Elem. Res. 2016, 172, 134–139. [Google Scholar] [CrossRef]
- Davin, R.; Almeida, F.N.; Zhao, J.; Escobar, J.; Vazquez-Anon, M. Effects of copper source and level on growth performance and bone mineralization in pigs fed phytase-supplemented diets. J. Anim. Sci. 2016, 94, 74–75. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, W.; Che, D.; Adams, S.; Yang, L. Advances in the mechanism of high copper diets in restraining pigs growth. J. Anim. Physiol. Anim. Nutr. 2020, 104, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Buntain, D. Deaths in pigs on a high copper diet. Vet. Rec. 1961, 73, 707–713. [Google Scholar]
- Zhong, G.; He, Y.; Wan, F.; Wu, S.; Jiang, X.; Tang, Z.; Hu, L. Effects of Long-Term Exposure to Copper on the Keap1/Nrf2 Signaling Pathway and Msr-Related Redox Status in the Kidneys of Rats. Biol. Trace Elem. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Husain, N.; Hasan, S.; Khan, A.A.; Mahmood, R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: A dose-dependent study. Environ. Sci. Pollut. Res. Int. 2021. [Google Scholar] [CrossRef]
- Niu, B.; Mackness, B.C.; Zitzewitz, J.A.; Matthews, C.R.; Gross, M.L. Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry 2020, 59, 3650–3659. [Google Scholar] [CrossRef]
- Khan, A.; Dobson, J.P.; Exley, C. Redox cycling of iron by A beta(42). Free. Radic. Biol. Med. 2006, 40, 557–569. [Google Scholar] [CrossRef]
- Qazmooz, H.A.; Smesam, H.N.; Mousa, R.F.; Al-Hakeim, H.K.; Maes, M. Trace element, immune and opioid biomarkers of unstable angina, increased atherogenicity and insulin resistance: Results of machine learning. J. Trace Elem. Med. Biol. 2021, 64, 126703. [Google Scholar] [CrossRef]
- Ribeiro Sant’Ana, M.A.; de Carvalho, T.C.; da Silva, I.F. Concentration of heavy metals in UHT dairy milk available in the markets of Sao Luis, Brazil, and potential health risk to children. Food Chem. 2021, 346, 128961. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, A.P.; Miranda, G.; Goncalves, M.I.; Belino, C.; Ballesteros, R. Chronic Copper Sulfate Poisoning. Eur. J. case Rep. Intern. Med. 2021, 8, 002309. [Google Scholar]
- Ghazaryan, K.; Movsesyan, H.; Ghazaryan, N.; Watts, B.A. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia. Environ. Pollut. 2019, 249, 491–501. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, T.; Wang, X.; Cheng, X.; Yuan, Y.; Jin, M.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Toxicological mechanism of excessive copper supplementation: Effects on coloration, copper bioaccumulation and oxidation resistance in mud crab Scylla paramamosain. J. Hazard. Mater. 2020, 395, 122600. [Google Scholar] [CrossRef]
- Campana, O.; Simpson, S.L.; Spadaro, D.A.; Blasco, J. Sub-Lethal Effects of Copper to Benthic Invertebrates Explained by Sediment Properties and Dietary Exposure. Environ. Sci. Technol. 2012, 46, 6835–6842. [Google Scholar] [CrossRef]
- Draghici, G.A.; Dehelean, C.; Pinzaru, I.; Bordean, D.M.; Borozan, A.; Tsatsakis, A.M.; Kovatsi, L.; Nica, D. Soil copper uptake by land snails: A semi-field experiment with juvenile Cantareus aspersus snails. Environ. Toxicol. Pharmacol. 2019, 72, 103243. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Shu, X.; Tang, M.; Tan, B.; Yin, Y. Effect of dietary copper source (inorganic vs. chelated) on immune response, mineral status, and fecal mineral excretion in nursery piglets. Food Agric. Immunol. 2018, 29, 548–563. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO. Food Standards Program Codex Committee on Contaminants in Foods, Fifth Session; WHO Press: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/handle/10665/44514 (accessed on 12 July 2021).
- Sahan, Y.; Basoglu, F.; Guecer, S. ICP-MS analysis of a series of metals (Namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chem. 2007, 105, 395–399. [Google Scholar] [CrossRef]
- Yenisoy-Karakas, S. Estimation of uncertainties of the method to determine the concentrations of Cd, Cu, Fe, Pb, Sn and Zn in tomato paste samples analysed by high resolution ICP-MS. Food Chem. 2012, 132, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Papaslioti, E.M.; Parviainen, A.; Roman Alpiste, M.J.; Marchesi, C.; Garrido, C.J. Quantification of potentially toxic elements in food material by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) via pressed pellets. Food Chem. 2019, 274, 726–732. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S. A novel strategy to determine the compositions of inorganic elements in fruit wines using ICP-MS/MS. Food Chem. 2019, 299, 125172. [Google Scholar] [CrossRef] [PubMed]
- Branislav, S.; Drangan, V.; Zdenka, S.; Nenad, P.; Sasa, J.; Slavoljub, S.; Milica, B.; Vesna, A. Determination of sensory properties and levels of trace elements during storage of canned meat products. J. Food Process. Preserv. 2021, 45, e15278. [Google Scholar] [CrossRef]
- Souza, S.O.; Costa, S.S.L.; Brum, B.C.T.; Santos, S.H.; Garcia, C.A.B.; Araujo, R.G.O. Determination of nutrients in sugarcane juice using slurry sampling and detection by ICP OES. Food Chem. 2019, 273, 57–63. [Google Scholar] [CrossRef]
- Limchoowong, N.; Sricharoen, P.; Techawongstien, S.; Chanthai, S. Using bio-dispersive solution of chitosan for green dispersive liquid-liquid microextraction of trace amounts of Cu(II) in edible oils prior to analysis by ICP-OES. Food Chem. 2017, 230, 398–404. [Google Scholar] [CrossRef]
- Hong-lin, L.; Qing, M.; Xin, Z.; Yu-long, Y.; Hua-rong, T. Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES)-based discrimination for the authentication of tea. Food Control 2021, 123, 107735. [Google Scholar]
- Abduljabbar, T.N.; Sharp, B.L.; Reid, H.J.; Barzegar-Befroeid, N.; Peto, T.; Lengyel, I. Determination of Zn, Cu and Fe in human patients’ serum using micro sampling ICP-MS and sample dilution. Talanta 2019, 204, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Solana, R.; Manuel Salgado, J.; Manuel Dominguez, J.; Cortes, S. Assessment of minerals in aged grape marc distillates by FAAS/FAES and ICP-MS. Characterization and safety evaluation. Food Control 2014, 35, 49–55. [Google Scholar] [CrossRef]
- Ferreira, K.S.; Ferreira, W.A.; Mendonca Gomes, J.M.; Correa-Junior, J.D.; Donnici, C.L.; Borba da Silva, J.B. Use of fast alkaline solubilisation to determine copper in bovine liver, fish tissues (salmon), and rolled oats by graphite furnace atomic absorption spectrometry using aqueous calibration. Microchem. J. 2016, 124, 350–355. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Kilar, J.; Chwil, S.; Rudas, M. Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals 2020, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Tomovic, V.M.; Petrovic, L.S.; Tomovic, M.S.; Kevresan, Z.S.; Dzinic, N.R. Determination of mineral contents of semimembranosus muscle and liver from pure and crossbred pigs in Vojvodina (northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar] [CrossRef]
- Nikolic, D.; Djinovic-Stojanovic, J.; Jankovic, S.; Stanisic, N.; Radovic, C.; Pezo, L.; Lausevic, M. Mineral composition and toxic element levels of muscle, liver and kidney of intensive (Swedish Landrace) and extensive (Mangulica) pigs from Serbia. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 962–971. [Google Scholar] [CrossRef]
- Sumner, J.P.; Westerberg, N.M.; Stoddard, A.K.; Hurst, T.K.; Cramer, M.; Thompson, R.B.; Fierke, C.A.; Kopelman, R. DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. Biosens. Bioelectron. 2006, 21, 1302–1308. [Google Scholar] [CrossRef]
- Sorenson, A.E.; Schaeffer, P.M. A new bivalent fluorescent fusion protein for differential Cu(II) and Zn(II) ion detection in aqueous solution. Anal. Chim. Acta 2020, 1101, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, N.; Mazzaracchio, V.; Cinti, S.; Colozza, N.; Di Natale, C.; Netti, P.A.; Saraji, M.; Roggero, S.; Moscone, D.; Arduini, F. Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Anal. Chem. 2021, 93, 5225–5233. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, K.S.; Sen, D.; Yu, H.-Z. Ultrasensitive detection of total copper with an electrochemical biosensor built on the in cis coupling of hexynyl CLICK-17 DNAzyme with azido self-assembled monolayers. Electrochim. Acta 2021, 379, 138125. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative Assessment of Copper(II) in Wilson’s Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. Acs. Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Eremin, S.A.; Yakup, O.; Yao, G.; Zhang, X. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chem. 2017, 227, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; He, S.; Liu, G.; Li, C.; Ma, Z.; Zhang, X. Residue and dissipation kinetics of toosendanin in cabbage, tobacco and soil using IC-ELISA detection. Food Chem. 2021, 335, 127600. [Google Scholar] [CrossRef]
- Wang, W.-J.; Ling, Y.; Xu, T.; Gao, H.-B.; Sheng, W.; Li, J. Development of an indirect competitive ELISA based on polyclonal antibody for the detection of diethylstilbestrol in water samples. Chin. J. Chem. 2007, 25, 1145–1150. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Deng, H.; Deng, X.-F.; Yang, J.-Y.; Jiang, Y.-M.; Zeng, D.-P.; Huang, F.; Shen, Y.-D.; Lei, H.-T.; Wang, H.; et al. Monitoring of organophosphorus pesticides in vegetables using monoclonal antibody-based direct competitive ELISA followed by HPLC-MS/MS. Food Chem. 2012, 131, 1569–1576. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, Y.; Li, Y.; Yang, J.; Liang, L.; Yang, J.; Cui, P.; Song, C.; Zhou, Y.; Zeng, M.; et al. Evaluation of the diagnostic performance and its associated factors of a commercial anti-EV-A71 IgM-capture ELISA kit in hospitalized children with clinical diagnostic HFMD. J. Clin. Virol. 2020, 130, 104582. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, X.; Kuang, H.; Zhu, J.; Liu, L. Development of a fluorescent quantification strip assay for the detection of lead. Food Agric. Immunol. 2020, 31, 642–652. [Google Scholar] [CrossRef]
- Zou, S.; Cui, G.; Liu, L.; Song, S.; Kuang, H. Development of ic-ELISA and an immunochromatographic strip assay for the detection of methylmercury. Food Agric. Immunol. 2017, 28, 699–710. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, X.; Liu, L.; Zhu, J.; Xu, L.; Kuang, H. Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice. Food Agric. Immunol. 2020, 31, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.; Hao, C.; Liu, L.; Xu, C.; Kuang, H. A highly sensitive enzyme-linked immunosorbent assay for copper(II) determination in drinking water. Food Agric. Immunol. 2014, 25, 432–442. [Google Scholar] [CrossRef]
- Zhu, X.; Miao, X.; Qin, X.; Zhu, X. Design of immunogens: The effect of bifunctional chelator on immunological response to chelated copper. J. Pharm. Biomed. Anal. 2019, 174, 263–269. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Q.; Shi, X.; Liu, F.; Wang, L.; Wang, H. Development and analytical validation of an Enzyme-Linked Immunosorbent Assay (ELISA) for the detection of copper in human hair and serum samples. Anal. Methods 2013, 5, 2578–2583. [Google Scholar] [CrossRef]
- Brooks, A.; Liang, X.; Zhang, Y.; Zhao, C.-X.; Roberts, M.S.; Wang, H.; Zhang, L.; Crawford, D.H.G. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol. Res. 2021, 169, 105608. [Google Scholar] [CrossRef] [PubMed]
- De Martin, E.; Michot, J.-M.; Rosmorduc, O.; Guettier, C.; Samuel, D. Liver toxicity as a limiting factor to the increasing use of immune checkpoint inhibitors. JHEP Rep. Innov. Hepatol. 2020, 2, 100170. [Google Scholar] [CrossRef] [PubMed]
- Bertinato, J.; Sherrard, L.; Plouffe, L.J. Decreased Erythrocyte CCS Content is a Biomarker of Copper Overload in Rats. Int. J. Mol. Sci. 2010, 11, 2624–2635. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, K.; Roelen, Y.S.; van Wolferen, M.E.; Kruitwagen, H.S.; Penning, L.C.; Burgener, I.A.; Spee, B.; Fieten, H. Erythrocyte copper chaperone for superoxide dismutase and superoxide dismutase as biomarkers for hepatic copper concentrations in Labrador retrievers. Vet. J. 2016, 218, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.C. Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.; Mar, D.; Ishida, M.; Vargas, R.; Gaite, M.; Montgomery, A.; Linder, M.C. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS ONE 2016, 11, e0149516. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Roberts, E.A. The puzzle posed by COMMD1, a newly discovered protein binding Cu(II). Metallomics 2011, 3, 20–27. [Google Scholar] [CrossRef]
- Manley, S.A.; Byrns, S.; Lyon, A.W.; Brown, P.; Gailer, J. Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography-inductively coupled plasma atomic emission spectroscopy. J. Biol. Inorg. Chem. 2009, 14, 61–74. [Google Scholar] [CrossRef]
- Blavi, L.; Sola, D.; Monteiro, A.; Perez, J.F.; Stein, H.H. Inclusion of dicopper oxide instead of copper sulfate in diets for growing-finishing pigs results in greater final body weight and bone mineralization, but reduced accumulation of copper in the liver. J. Anim. Sci. 2021, 99, skab127. [Google Scholar] [CrossRef]
- Espinosa, C.D.; Stein, H.H. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: A review. J. Anim. Sci. Biotechnol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, K.; Sun, P.; Zhouyang, S.; Wang, Y.; Wang, H.; Zheng, Y.; Li, Q. Effects of substrate types on the transformation of heavy metal speciation and bioavailability in an anaerobic digestion system. J. Environ. Sci. 2021, 101, 361–372. [Google Scholar] [CrossRef] [PubMed]
Detect Method | Sample Type | LOD (μg/kg, mg/kg *) | LOQ (μg/kg, mg/kg *) | Reference |
---|---|---|---|---|
ICP-MS | Olive | 0.03 | 0.07 | [22] |
Tomato paste | 0.16 | 0.53 | [23] | |
Leaves | 9 | [24] | ||
Fruit wines | 7.13 × 10−3 | 23.8 × 10−3 | [25] | |
Bovine liver | 0.022 * | 0.066 * | [26] | |
ICP-OES | Sugarcane juice | 0.04 * | 0.13 * | [27] |
Oil | 2.1 * | 6.8 * | [28] | |
Tea | 0.06 * | 0.2 * | [29] | |
Human serum | 0.08 | 0.28 | [30] | |
AAS | Grape marc distillate | 0.097 * | 0.322 * | [31] |
Bovine liver | 1.8 * | 6.0 * | [32] | |
Salmon | 2.0 * | 6.6 * | ||
Rolled oats | 1.4 * | 4.6 * | ||
Wild boar liver | 2.6 * | [33] | ||
Pig semimembranosus muscle | 0.5 * | 0.75 * | [34] | |
Pig liver | 0.5 * | 0.75 * | ||
Pig longissimus thoracis et lumborum | 0.022 * | 0.066 * | [35] | |
Pig liver | 0.022 * | 0.066 * | ||
Pig kidney | 0.022 * | 0.066 * | ||
Biosensor | Cu (II) stock solutions | 0.71 | [36] | |
Aqueous solutions. | 64 | [37] | ||
Sweat; serum | 3 | 10 | [38] | |
Mine | 0.06 | [39] | ||
Mice liver | 0.9* | [40] | ||
Mice urinary | 0.9* |
Sample | Original Concentrations (mg/kg) | Fortified Cu (II) Level (mg/kg) | Detection by ELISA (Mean ± SD) (mg/kg) | Recovery (%) | CV (%) |
---|---|---|---|---|---|
Pork | 1.07 | 0.50 | 1.56 ± 0.14 | 99.24 | 8.35 |
1.07 | 1.00 | 2.10 ± 0.16 | 101.23 | 6.84 | |
1.07 | 2.00 | 2.90 ± 0.15 | 94.53 | 8.05 | |
Serum | 1.49 | 0.75 | 2.23 ± 0.24 | 99.53 | 7.70 |
1.49 | 1.50 | 2.94 ± 0.08 | 98.46 | 2.63 | |
1.49 | 3.00 | 4.59 ± 0.64 | 102.24 | 7.85 | |
Liver | 9.32 | 5.00 | 13.64 ± 0.95 | 95.26 | 6.18 |
9.32 | 10.00 | 18.79 ± 1.91 | 97.27 | 9.53 | |
9.32 | 20.00 | 28.88 ± 2.75 | 98.51 | 7.75 |
Tissue | Sample | Detection Level | Sample | Detection Level | Sample | Detection Level |
---|---|---|---|---|---|---|
Pork | CQ1 | 60.96 ± 5.70 | CQ11 | 39.54 ± 2.57 | CQ21 | 66.55 ± 6.42 |
(μg/kg) | CQ2 | 51.18 ± 4.06 | CQ12 | 43.72 ± 4.24 | CQ22 | 52.04 ± 3.55 |
CQ3 | 58.34 ± 5.65 | CQ13 | 39.77 ± 3.97 | CQ23 | 49.76 ± 4.39 | |
CQ4 | 42.47 ± 2.81 | CQ14 | 42.56 ± 0.98 | CQ24 | 67.96 ± 6.35 | |
CQ5 | 38.07 ± 3.14 | CQ15 | 37.31 ± 3.10 | CQ25 | 85.36 ± 8.42 | |
CQ6 | 39.35 ± 2.50 | CQ16 | 39.85 ± 2.53 | CQ26 | 54.32 ± 4.75 | |
CQ7 | 42.88 ± 4.12 | CQ17 | 51.02 ± 4.53 | CQ27 | 55.91 ± 5.39 | |
CQ8 | 38.35 ± 2.82 | CQ18 | 44.38 ± 4.34 | CQ28 | 50.41 ± 4.98 | |
CQ9 | 68.12 ± 5.21 | CQ19 | 39.95 ± 3.65 | CQ29 | 66.31 ± 6.13 | |
CQ10 | 37.60 ± 3.05 | CQ20 | 65.66 ± 6.42 | CQ30 | 38.88 ± 2.70 | |
Liver | CQ31 | 1.30 ± 0.04 | CQ33 | 1.04 ± 0.05 | CQ34 | 1.43 ± 0.06 |
(mg/kg) | CQ32 | 1.90 ± 0.12 | CQ34 | 1.57 ± 0.17 | CQ35 | 1.90 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xu, L.; Jiang, H.; Xu, C.; Liu, W.; Wu, T.; Kuang, H. Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues. Biosensors 2021, 11, 235. https://doi.org/10.3390/bios11070235
Zhang J, Xu L, Jiang H, Xu C, Liu W, Wu T, Kuang H. Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues. Biosensors. 2021; 11(7):235. https://doi.org/10.3390/bios11070235
Chicago/Turabian StyleZhang, Junqiu, Liwei Xu, Hongtao Jiang, Chuanlai Xu, Wenjing Liu, Ting Wu, and Hua Kuang. 2021. "Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues" Biosensors 11, no. 7: 235. https://doi.org/10.3390/bios11070235
APA StyleZhang, J., Xu, L., Jiang, H., Xu, C., Liu, W., Wu, T., & Kuang, H. (2021). Development of an Immunoassay for the Detection of Copper Residues in Pork Tissues. Biosensors, 11(7), 235. https://doi.org/10.3390/bios11070235