The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics
Abstract
:1. Introduction
2. Peptide Selection, Synthesis, and Characterisation
3. Peptides as Self-Assembled Layers
4. Peptides as Antifouling Agents
5. Peptides as Substrate and Signal Development Agents in Catalytic Biosensors
6. Peptides as Bioreceptors in Affinity Biosensors
7. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rifai, N. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics—E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; ISBN 9780323549738. [Google Scholar]
- Ulijn, R.V.; Smith, A.M. Designing Peptide Based Nanomaterials. Chem. Soc. Rev. 2008, 37, 664. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Peptide-Based Biosensors: From Self-Assembled Interfaces to Molecular Probes in Electrochemical Assays. Bioelectrochemistry 2018, 120, 66–75. [Google Scholar] [CrossRef]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic Acid and Peptide Aptamers: Fundamentals and Bioanalytical Aspects. Angew. Chem. Int. Ed. 2012, 51, 1316–1332. [Google Scholar] [CrossRef] [PubMed]
- Kerman, K.; Song, H.; Duncan, J.S.; Litchfield, D.W.; Kraatz, H.-B. Peptide Biosensors for the Electrochemical Measurement of Protein Kinase Activity. Anal. Chem. 2008, 80, 9395–9401. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. Building Switchable Peptide-Architectures on Gold/Composite Surfaces: New Perspectives in Electrochemical Bioassays. Curr. Opin. Electrochem. 2018, 12, 13–20. [Google Scholar] [CrossRef]
- Sfragano, P.S.; Pillozzi, S.; Palchetti, I. Electrochemical and PEC Platforms for MiRNA and Other Epigenetic Markers of Cancer Diseases: Recent Updates. Electrochem. Commun. 2021, 124, 106929. [Google Scholar] [CrossRef]
- Sfragano, P.S.; Laschi, S.; Palchetti, I. Sustainable Printed Electrochemical Platforms for Greener Analytics. Front. Chem. 2020, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bettazzi, F.; Palchetti, I. Nanotoxicity Assessment: A Challenging Application for Cutting Edge Electroanalytical Tools. Anal. Chim. Acta 2019, 1072, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Liang, B.; Li, L.; Tang, X.; Palchetti, I.; Mascini, M.; Liu, A. Direct Energy Conversion from Xylose Using Xylose Dehydrogenase Surface Displayed Bacteria Based Enzymatic Biofuel Cell. Biosens. Bioelectron. 2013, 44. [Google Scholar] [CrossRef]
- Palchetti, I.; Laschi, S.; Marrazza, G.; Mascini, M. Electrochemical Imaging of Localized Sandwich DNA Hybridization Using Scanning Electrochemical Microscopy. Anal. Chem. 2007, 79, 7206–7213. [Google Scholar] [CrossRef]
- Liang, B.; Li, L.; Tang, X.; Lang, Q.; Wang, H.; Li, F.; Shi, J.; Shen, W.; Palchetti, I.; Mascini, M.; et al. Microbial Surface Display of Glucose Dehydrogenase for Amperometric Glucose Biosensor. Biosens. Bioelectron. 2013, 45. [Google Scholar] [CrossRef]
- Vanova, V.; Mitrevska, K.; Milosavljevic, V.; Hynek, D.; Richtera, L.; Adam, V. Peptide-Based Electrochemical Biosensors Utilized for Protein Detection. Biosens. Bioelectron. 2021, 180, 113087. [Google Scholar] [CrossRef]
- Lim, J.M.; Ryu, M.Y.; Yun, J.W.; Park, T.J.; Park, J.P. Electrochemical Peptide Sensor for Diagnosing Adenoma-Carcinoma Transition in Colon Cancer. Biosens. Bioelectron. 2017, 98, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Rodovalho, V.R.; Araujo, G.R.; Vaz, E.R.; Ueira-Vieira, C.; Goulart, L.R.; Madurro, J.M.; Brito-Madurro, A.G. Peptide-Based Electrochemical Biosensor for Juvenile Idiopathic Arthritis Detection. Biosens. Bioelectron. 2018, 100, 577–582. [Google Scholar] [CrossRef]
- Piccoli, J.P.; Soares, A.C.; Oliveira, O.N.; Cilli, E.M. Nanostructured Functional Peptide Films and Their Application in C-Reactive Protein Immunosensors. Bioelectrochemistry 2021, 138, 107692. [Google Scholar] [CrossRef] [PubMed]
- Ucar, A.; González-Fernández, E.; Staderini, M.; Avlonitis, N.; Murray, A.F.; Bradley, M.; Mount, A.R. Miniaturisation of a Peptide-Based Electrochemical Protease Activity Sensor Using Platinum Microelectrodes. Analyst 2020, 145, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puiu, M.; Idili, A.; Moscone, D.; Ricci, F.; Bala, C. A Modular Electrochemical Peptide-Based Sensor for Antibody Detection. Chem. Commun. 2014, 50, 8962. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Bodanszky, M. In Search of New Methods in Peptide Synthesis. A Review of the Last Three Decades. Int. J. Pept. Protein Res. 2009, 25, 449–474. [Google Scholar] [CrossRef]
- Ullman, C.G.; Frigotto, L.; Cooley, R.N. In Vitro Methods for Peptide Display and Their Applications. Brief. Funct. Genom. 2011, 10, 125–134. [Google Scholar] [CrossRef]
- Smith, G. Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Tang, L. Next-Generation Peptide Sequencing. Nat. Methods 2018, 15, 997. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Lee, S.; Park, J.P.; Choo, J.; Lee, E.K. Modification of Phage Display Technique for Improved Screening of High-Affinity Binding Peptides. J. Biotechnol. 2019, 289, 88–92. [Google Scholar] [CrossRef]
- Roberts, R.W.; Szostak, J.W. RNA-Peptide Fusions for the in Vitro Selection of Peptides and Proteins. Proc. Natl. Acad. Sci. USA 1997, 94, 12297–12302. [Google Scholar] [CrossRef] [Green Version]
- Hanes, J.; Pluckthun, A. In Vitro Selection and Evolution of Functional Proteins by Using Ribosome Display. Proc. Natl. Acad. Sci. USA 1997, 94, 4937–4942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, J.A.; Campbell, R.; Iverson, B.L.; Georgiou, G. Production and Fluorescence-Activated Cell Sorting of Escherichia Coli Expressing a Functional Antibody Fragment on the External Surface. Proc. Natl. Acad. Sci. USA 1993, 90, 10444–10448. [Google Scholar] [CrossRef] [Green Version]
- Boder, E.T.; Wittrup, K.D. Yeast Surface Display for Screening Combinatorial Polypeptide Libraries. Nat. Biotechnol. 1997, 15, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Linciano, S.; Pluda, S.; Bacchin, A.; Angelini, A. Molecular Evolution of Peptides by Yeast Surface Display Technology. Medchemcomm 2019, 10, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- D’Annessa, I.; Di Leva, F.S.; La Teana, A.; Novellino, E.; Limongelli, V.; Di Marino, D. Bioinformatics and Biosimulations as Toolbox for Peptides and Peptidomimetics Design: Where Are We? Front. Mol. Biosci. 2020, 7. [Google Scholar] [CrossRef]
- Xiao, X.; Kuang, Z.; Slocik, J.M.; Tadepalli, S.; Brothers, M.; Kim, S.; Mirau, P.A.; Butkus, C.; Farmer, B.L.; Singamaneni, S.; et al. Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution. ACS Sens. 2018, 3, 1024–1031. [Google Scholar] [CrossRef]
- Daems, E.; Moro, G.; Campos, R.; De Wael, K. Mapping the Gaps in Chemical Analysis for the Characterisation of Aptamer-Target Interactions. Trends Anal. Chem. 2021, 142, 116311. [Google Scholar] [CrossRef]
- Pusuluri, A.; Krishnan, V.; Lensch, V.; Sarode, A.; Bunyan, E.; Vogus, D.R.; Menegatti, S.; Soh, H.T.; Mitragotri, S. Treating Tumors at Low Drug Doses Using an Aptamer–Peptide Synergistic Drug Conjugate. Angew. Chem. Int. Ed. 2019, 58, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yoo, Y.K.; Chae, M.-S.; Hwang, K.S.; Lee, J.; Kim, H.; Hur, D.; Lee, J.H. Highly Selective Reduced Graphene Oxide (RGO) Sensor Based on a Peptide Aptamer Receptor for Detecting Explosives. Sci. Rep. 2019, 9, 10297. [Google Scholar] [CrossRef] [Green Version]
- Ponnamperuma, C.; Peterson, E. Peptide Synthesis from Amino Acids in Aqueous Solution. Science 1965, 147, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Palomo, J.M. Solid-Phase Peptide Synthesis: An Overview Focused on the Preparation of Biologically Relevant Peptides. RSC Adv. 2014, 4, 32658–32672. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.P. The Renascence of Continuous-Flow Peptide Synthesi—An Abridged Account of Solid and Solution-Based Approaches. Org. Biomol. Chem. 2018, 16, 180–196. [Google Scholar] [CrossRef]
- Rosenberg, R.A.; Rozhkova, E.A.; Novosad, V. Investigations into Spin- and Unpolarized Secondary Electron-Induced Reactions in Self-Assembled Monolayers of Cysteine. Langmuir 2021, 37, 2985–2992. [Google Scholar] [CrossRef]
- Secchi, V.; Franchi, S.; Santi, M.; Dettin, M.; Zamuner, A.; Iucci, G.; Battocchio, C. Self-Assembling Behavior of Cysteine-Modified Oligopeptides: An XPS and NEXAFS Study. J. Phys. Chem. C 2018, 122, 6236–6239. [Google Scholar] [CrossRef]
- Piccoli, J.P.; Santos, A.; Santos-Filho, N.A.; Lorenzón, E.N.; Cilli, E.M.; Bueno, P.R. The Self-Assembly of Redox Active Peptides: Synthesis and Electrochemical Capacitive Behavior. Biopolymers 2016, 357–367. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, M.; Jiao, M.; Luo, X. Antifouling and Ultrasensitive Biosensing Interface Based on Self-Assembled Peptide and Aptamer on Macroporous Gold for Electrochemical Detection of Immunoglobulin E in Serum. Anal. Bioanal. Chem. 2018, 410, 5871–5878. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, J.; Hein, R.; El-Sagheer, A.H.; Brown, T.; Cilli, E.M.; Bueno, P.R.; Davis, J.J. Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Anal. Chem. 2018, 90, 3005–3008. [Google Scholar] [CrossRef] [Green Version]
- Reynoso, E.C.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.-H.; Li, B.-R. Antifouling Strategies in Advanced Electrochemical Sensors and Biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J. Antifouling (Bio)Materials for Electrochemical (Bio)Sensing. Int. J. Mol. Sci. 2019, 20, 423. [Google Scholar] [CrossRef] [Green Version]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A Survey of Structure−Property Relationships of Surfaces That Resist the Adsorption of Protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Wei, Q.; Becherer, T.; Angioletti-Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, A.T.; Lendlein, A.; Ballauff, M.; Haag, R. Protein Interactions with Polymer Coatings and Biomaterials. Angew. Chem. Int. Ed. 2014, 53, 8004–8031. [Google Scholar] [CrossRef]
- Ye, H.; Wang, L.; Huang, R.; Su, R.; Liu, B.; Qi, W.; He, Z. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide. ACS Appl. Mater. Interfaces 2015, 7, 22448–22457. [Google Scholar] [CrossRef]
- Nowinski, A.K.; Sun, F.; White, A.D.; Keefe, A.J.; Jiang, S. Sequence, Structure, and Function of Peptide Self-Assembled Monolayers. J. Am. Chem. Soc. 2012, 134, 6000–6005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yawitz, T.M.; Patterson, K.S.; Onkst, B.X.; Youmbi, F.; Clark, R.A. Cytochrome c Electrochemistry on Peptide Self-Assembled Monolayers. J. Electroanal. Chem. 2018, 828, 59–62. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.; Chen, M.; Ambrosi, A.; Ding, C.; Luo, X. Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex Biological Media. Anal. Chem. 2021, 93, 5963–5971. [Google Scholar] [CrossRef]
- Liu, N.; Fan, X.; Hou, H.; Gao, F.; Luo, X. Electrochemical Sensing Interfaces Based on Hierarchically Architectured Zwitterionic Peptides for Ultralow Fouling Detection of Alpha Fetoprotein in Serum. Anal. Chim. Acta 2021, 1146, 17–23. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Y.; Han, R.; Lv, S.; Wang, P.; Luo, X. Antifouling Biosensors for Reliable Protein Quantification in Serum Based on Designed All-in-One Branched Peptides. Chem. Commun. 2021, 57, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Song, Z.; Hui, N. Highly Selective and Antifouling Electrochemical Biosensors for Sensitive MicroRNA Assaying Based on Conducting Polymer Polyaniline Functionalized with Zwitterionic Peptide. Anal. Bioanal. Chem. 2021, 413, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Han, R.; Li, Q.; Han, Y.; Luo, X. Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Anal. Chem. 2020, 92, 7186–7193. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Chen, M.; Ding, C.; Luo, X. Designed Three-in-One Peptides with Anchoring, Antifouling, and Recognizing Capabilities for Highly Sensitive and Low-Fouling Electrochemical Sensing in Complex Biological Media. Anal. Chem. 2020, 92, 5795–5802. [Google Scholar] [CrossRef]
- Liu, N.; Hui, N.; Davis, J.J.; Luo, X. Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sens. 2018, 3, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tang, R.; Zhang, T.; Zhao, J.; Jiang, Z.; Wang, Q. Anti-Fouling Poly Adenine Coating Combined with Highly Specific CD20 Epitope Mimetic Peptide for Rituximab Detection in Clinical Patients’ Plasma. Biosens. Bioelectron. 2021, 171, 112678. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Song, Z.; Han, R.; Li, Y.; Luo, X. Low Fouling Electrochemical Biosensors Based on Designed Y-Shaped Peptides with Antifouling and Recognizing Branches for the Detection of IgG in Human Serum. Biosens. Bioelectron. 2021, 178, 113016. [Google Scholar] [CrossRef]
- Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019, 91, 8334–8340. [Google Scholar] [CrossRef]
- Ding, C.; Wang, X.; Luo, X. Dual-Mode Electrochemical Assay of Prostate-Specific Antigen Based on Antifouling Peptides Functionalized with Electrochemical Probes and Internal References. Anal. Chem. 2019, 91, 15846–15852. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Ding, C.; Luo, X. Ratiometric Antifouling Electrochemical Biosensors Based on Multifunctional Peptides and MXene Loaded with Au Nanoparticles and Methylene Blue. ACS Appl. Mater. Interfaces 2021, 13, 20388–20396. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Wang, Y.; Jiao, M.; Luo, X.; Cui, M. One-Step Electrodeposition of Poly(m-Aminobenzoic Acid) Membrane Decorated with Peptide for Antifouling Biosensing of Immunoglobulin, E. Colloids Surf. B Biointerfaces 2020, 186, 110706. [Google Scholar] [CrossRef]
- González-Fernández, E.; Staderini, M.; Yussof, A.; Scholefield, E.; Murray, A.F.; Mount, A.R.; Bradley, M. Electrochemical Sensing of Human Neutrophil Elastase and Polymorphonuclear Neutrophil Activity. Biosens. Bioelectron. 2018, 119, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Su, L.; Mao, Y.; Gan, S.; Bao, Y.; Qin, D.; Wang, W.; Zhang, Y.; Niu, L. Electrochemically Induced Grafting of Ferrocenyl Polymers for Ultrasensitive Cleavage-Based Interrogation of Matrix Metalloproteinase Activity. Biosens. Bioelectron. 2021, 178, 113010. [Google Scholar] [CrossRef]
- Ye, Z.; Li, G.; Xu, L.; Yu, Q.; Yue, X.; Wu, Y.; Ye, B. Peptide-Conjugated Hemin/G-Quadruplex as a Versatile Probe for “Signal-on” Electrochemical Peptide Biosensor. Talanta 2020, 209, 120611. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; Staderini, M.; Avlonitis, N.; Murray, A.F.; Mount, A.R.; Bradley, M. Effect of Spacer Length on the Performance of Peptide-Based Electrochemical Biosensors for Protease Detection. Sens. Actuators B Chem. 2018, 255, 3040–3046. [Google Scholar] [CrossRef]
- Cox, T.R. The Matrix in Cancer. Nat. Rev. Cancer 2021, 21, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ma, Z. Dual-Reaction Triggered Sensitivity Amplification for Ultrasensitive Peptide-Cleavage Based Electrochemical Detection of Matrix Metalloproteinase-7. Biosens. Bioelectron. 2018, 108, 46–52. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Chen, F.; Ma, F. Peptide-Based Electrochemical Biosensor for Matrix Metalloproteinase-14 and Protein-Overexpressing Cancer Cells Based on Analyte-Induced Cleavage of Peptide. Microchem. J. 2020, 157, 105103. [Google Scholar] [CrossRef]
- Lin, Y.; Shen, R.; Liu, N.; Yi, H.; Dai, H.; Lin, J. A Highly Sensitive Peptide-Based Biosensor Using NiCo2O4 Nanosheets and g-C3N4 Nanocomposite to Construct Amplified Strategy for Trypsin Detection. Anal. Chim. Acta 2018, 1035, 175–183. [Google Scholar] [CrossRef]
- Palomar, Q.; Xu, X.X.; Selegård, R.; Aili, D.; Zhang, Z. Peptide Decorated Gold Nanoparticle/Carbon Nanotube Electrochemical Sensor for Ultrasensitive Detection of Matrix Metalloproteinase-7. Sens. Actuators B Chem. 2020, 325, 128789. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Nanozymes in Electrochemical Affinity Biosensing. Microchim. Acta 2020, 187, 1–16. [Google Scholar] [CrossRef]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.B.; Shiddiky, M.J.A. Nanozyme-Based Electrochemical Biosensors for Disease Biomarker Detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Xi, X.; Wen, M.; Song, S.; Zhu, J.; Wen, W.; Zhang, X.; Wang, S. A H2O2-Free Electrochemical Peptide Biosensor Based on Au@Pt Bimetallic Nanorods for Highly Sensitive Sensing of Matrix Metalloproteinase 2. Chem. Commun. 2020, 56, 6039–6042. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Ma, J.; Kong, D.; Zhang, Z.; Khan, A.; Yi, C.; Hu, K.; Yi, Y.; Li, J. One Step Electrochemical Detection for Matrix Metalloproteinase 2 Based on Anodic Stripping of Silver Nanoparticles Mediated by Host-Guest Interactions. Sens. Actuators B Chem. 2021, 330, 129379. [Google Scholar] [CrossRef]
- Kim, S.; Sikes, H.D. Radical Polymerization Reactions for Amplified Biodetection Signals. Polym. Chem. 2020, 11, 1424–1444. [Google Scholar] [CrossRef]
- Hu, Q.; Bao, Y.; Gan, S.; Zhang, Y.; Han, D.; Niu, L. Amplified Electrochemical Biosensing of Thrombin Activity by RAFT Polymerization. Anal. Chem. 2020, 92, 3470–3476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Yu, S.; Sun, H.; Wang, L.; Li, L.; Kong, J.; Zhang, X. A Highly Sensitive Assay for Matrix Metalloproteinase 2 via Signal Amplification Strategy of EATRP. Microchem. J. 2021, 164, 106015. [Google Scholar] [CrossRef]
- Hu, Q.; Gan, S.; Bao, Y.; Zhang, Y.; Han, D.; Niu, L. Electrochemically Controlled ATRP for Cleavage-Based Electrochemical Detection of the Prostate-Specific Antigen at Femtomolar Level Concentrations. Anal. Chem. 2020, 92, 15982–15988. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wang, M.; Wang, L.; Xia, N. Recent Progress in Electrochemical Biosensors for Detection of Prostate-Specific Antigen. Int. J. Electrochem. Sci. 2018, 13, 4071–4084. [Google Scholar] [CrossRef]
- Dowlatshahi, S.; Abdekhodaie, M.J. Electrochemical Prostate-Specific Antigen Biosensors Based on Electroconductive Nanomaterials and Polymers. Clin. Chim. Acta 2021, 516, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Sun, H.; Huang, Y.; Tang, Y.; Chen, Q.; Miao, P. Peptide Cleavage-Based Electrochemical Biosensor Coupling Graphene Oxide and Silver Nanoparticles. Anal. Chim. Acta 2019, 1047, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, Y.; Liu, Z.; Lei, S.; Li, G.; Ye, B. Novel Electrochemical Biosensor Based on Cationic Peptide Modified Hemin/G-Quadruples Enhanced Peroxidase-like Activity. Biosens. Bioelectron. 2018, 107, 178–183. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Ultrasensitive Peptide-Based Multiplexed Electrochemical Biosensor for the Simultaneous Detection of Listeria monocytogenes and Staphylococcus aureus. Microchim. Acta 2020, 187, 1–11. [Google Scholar] [CrossRef]
- Armanetti, P.; Flori, A.; Avigo, C.; Conti, L.; Valtancoli, B.; Petroni, D.; Doumett, S.; Cappiello, L.; Ravagli, C.; Baldi, G.; et al. Spectroscopic and Photoacoustic Characterization of Encapsulated Iron Oxide Super-Paramagnetic Nanoparticles as a New Multiplatform Contrast Agent. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 248–253. [Google Scholar] [CrossRef]
- Baydemir, G.; Bettazzi, F.; Palchetti, I.; Voccia, D. Strategies for the Development of an Electrochemical Bioassay for TNF-Alpha Detection by Using a Non-Immunoglobulin Bioreceptor. Talanta 2016, 151, 141–147. [Google Scholar] [CrossRef]
- Bettazzi, F.; Enayati, L.; Sánchez, I.C.; Motaghed, R.; Mascini, M.; Palchetti, I. Electrochemical Bioassay for the Detection of TNF-α Using Magnetic Beads and Disposable Screen-Printed Array of Electrodes. Bioanalysis 2013, 5, 11–19. [Google Scholar] [CrossRef]
- Muñoz-San Martín, C.; Pedrero, M.; Gamella, M.; Montero-Calle, A.; Barderas, R.; Campuzano, S.; Pingarrón, J.M. A Novel Peptide-Based Electrochemical Biosensor for the Determination of a Metastasis-Linked Protease in Pancreatic Cancer Cells. Anal. Bioanal. Chem. 2020, 412, 6177–6188. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.J. Microelectrodes: New Dimensions in Electrochemistry. Chem. Soc. Rev. 1994, 23, 289. [Google Scholar] [CrossRef]
- Hu, Q.; Kong, J.; Han, D.; Bao, Y.; Zhang, X.; Zhang, Y.; Niu, L. Ultrasensitive Peptide-Based Electrochemical Detection of Protein Kinase Activity Amplified by RAFT Polymerization. Talanta 2020, 206, 120173. [Google Scholar] [CrossRef]
- Hu, Q.; Kong, J.; Han, D.; Zhang, Y.; Bao, Y.; Zhang, X.; Niu, L. Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. Anal. Chem. 2019, 91, 1936–1943. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, L.; Wu, S.; Pan, Y.; Dong, Y.; Zhu, S.; Yang, J.; Yin, Y.; Li, G. An Electrochemical Biosensor Designed by Using Zr-Based Metal–Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal. Chem. 2020, 92, 3819–3826. [Google Scholar] [CrossRef]
- Ostatná, V.; Kasalová, V.; Sommerová, L.; Hrstka, R. Electrochemical Sensing of Interaction of Anterior Gradient-2 Protein with Peptides at a Charged Interface. Electrochim. Acta 2018, 269, 70–75. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, E.; Wang, C.; Wei, W.; Liu, Y.; Liu, S. High Specificity and Efficiency Electrochemical Detection of Poly(ADP-Ribose) Polymerase-1 Activity Based on Versatile Peptide-Templated Copper Nanoparticles and Detection Array. Anal. Chim. Acta 2019, 1091, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dai, Y.; Huang, X.; Li, L.; Han, B.; Cao, Y.; Zhao, J. Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells. Anal. Chem. 2019, 91, 7531–7537. [Google Scholar] [CrossRef]
- Global Cancer Observatory (GLOBOCAN). Available online: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=conti-nents&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&grou (accessed on 28 May 2021).
- Wu, Y.; Li, G.; Zou, L.; Lei, S.; Yu, Q.; Ye, B. Highly Active DNAzyme-Peptide Hybrid Structure Coupled Porous Palladium for High-Performance Electrochemical Aptasensing Platform. Sens. Actuators B Chem. 2018, 259, 372–379. [Google Scholar] [CrossRef]
- Yaman, Y.T.; Akbal, Ö.; Bolat, G.; Bozdogan, B.; Denkbas, E.B.; Abaci, S. Peptide Nanoparticles (PNPs) Modified Disposable Platform for Sensitive Electrochemical Cytosensing of DLD-1 Cancer Cells. Biosens. Bioelectron. 2018, 104, 50–57. [Google Scholar] [CrossRef]
- Cho, C.H.; Kim, J.H.; Kim, J.; Yun, J.W.; Park, T.J.; Park, J.P. Re-Engineering of Peptides with High Binding Affinity to Develop an Advanced Electrochemical Sensor for Colon Cancer Diagnosis. Anal. Chim. Acta 2021, 1146, 131–139. [Google Scholar] [CrossRef]
- Georgieva, S.; Todorov, P.; Peneva, P.; Varbanov, M.; Gartsiyanova, K. VV-Hemorphin-5 Analogue for Trace Copper Determination in Water Samples. J. Iran. Chem. Soc. 2020, 17, 2885–2894. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.; Zhang, T.; Fan, Z.; Xie, M.; Ding, Y.; Li, H. Peptide Based Biosensing of Protein Functional Control Indicates Novel Mechanism of Cancerous Development under Oxidative Stress. Sens. Actuators B Chem. 2021, 329, 129121. [Google Scholar] [CrossRef]
- Lee, M.H.; Liu, K.T.; Thomas, J.L.; Su, Z.L.; O’Hare, D.; Van Wuellen, T.; Chamarro, J.M.; Bolognin, S.; Luo, S.C.; Schwamborn, J.C.; et al. Peptide-Imprinted Poly(Hydroxymethyl 3,4-Ethylenedioxythiophene) Nanotubes for Detection of α Synuclein in Human Brain Organoids. ACS Appl. Nano Mater. 2020, 3, 8027–8036. [Google Scholar] [CrossRef]
- Negahdary, M.; Heli, H. An Electrochemical Peptide-Based Biosensor for the Alzheimer Biomarker Amyloid-β(1–42) Using a Microporous Gold Nanostructure. Microchim. Acta 2019, 186, 1–8. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Q.; Fan, Z.; Zhao, J.; Li, H. Platelet-Driven Formation of Interface Peptide Nano-Network Biosensor Enabling a Non-Invasive Means for Early Detection of Alzheimer’s Disease. Biosens. Bioelectron. 2019, 145, 111701. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, B.; Yuan, L.; Liu, L. A Signal Amplification Strategy Based on Peptide Self-Assembly for the Identification of Amyloid-β Oligomer. Sens. Actuators B Chem. 2021, 335, 129697. [Google Scholar] [CrossRef]
- He, Y.; Zhou, L.; Deng, L.; Feng, Z.; Cao, Z.; Yin, Y. An Electrochemical Impedimetric Sensing Platform Based on a Peptide Aptamer Identified by High-Throughput Molecular Docking for Sensitive l-Arginine Detection. Bioelectrochemistry 2021, 137, 107634. [Google Scholar] [CrossRef] [PubMed]
- Chinnadayyala, S.R.; Cho, S. Electrochemical Immunosensor for the Early Detection of Rheumatoid Arthritis Biomarker: Anti-Cyclic Citrullinated Peptide Antibody in Human Serum Based on Avidin-Biotin System. Sensors 2021, 21, 124. [Google Scholar] [CrossRef]
- Guerrero, S.; Sánchez-Tirado, E.; Martínez-García, G.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Biosensor for the Simultaneous Determination of Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide Antibodies in Human Serum. Analyst 2020, 145, 4680–4687. [Google Scholar] [CrossRef]
- Cho, C.H.; Kim, J.H.; Song, D.-K.; Park, T.J.; Park, J.P. An Affinity Peptide-Incorporated Electrochemical Biosensor for the Detection of Neutrophil Gelatinase-Associated Lipocalin. Biosens. Bioelectron. 2019, 142, 111482. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, Y.; Chen, Y.; Liu, J.; Zeng, X. Labeled and Non-Label Electrochemical Peptide Inhibitor-Based Biosensing Platform for Determination of Hemopexin Domain of Matrix Metalloproteinase-14. Talanta 2019, 194, 548–553. [Google Scholar] [CrossRef]
- Ma, F.; Yan, J.; Sun, L.; Chen, Y. Electrochemical Impedance Spectroscopy for Quantization of Matrix Metalloproteinase-14 Based on Peptides Inhibiting Its Homodimerization and Heterodimerization. Talanta 2019, 205, 120142. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, C.H.; Ryu, M.Y.; Kim, J.-G.; Lee, S.-J.; Park, T.J.; Park, J.P. Development of Peptide Biosensor for the Detection of Dengue Fever Biomarker, Nonstructural 1. PLoS ONE 2019, 14, e0222144. [Google Scholar] [CrossRef]
- Baek, S.H.; Kim, M.W.; Park, C.Y.; Choi, C.-S.; Kailasa, S.K.; Park, J.P.; Park, T.J. Development of a Rapid and Sensitive Electrochemical Biosensor for Detection of Human Norovirus via Novel Specific Binding Peptides. Biosens. Bioelectron. 2019, 123, 223–229. [Google Scholar] [CrossRef]
- Baek, S.H.; Park, C.Y.; Nguyen, T.P.; Kim, M.W.; Park, J.P.; Choi, C.; Kim, S.Y.; Kailasa, S.K.; Park, T.J. Novel Peptides Functionalized Gold Nanoparticles Decorated Tungsten Disulfide Nanoflowers as the Electrochemical Sensing Platforms for the Norovirus in an Oyster. Food Control. 2020, 114, 107225. [Google Scholar] [CrossRef]
- Matsubara, T.; Ujie, M.; Yamamoto, T.; Einaga, Y.; Daidoji, T.; Nakaya, T.; Sato, T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens. 2020, 5, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Materón, E.M.; Ibáñez-Redín, G.; Faria, R.C.; Correa, D.S.; Oliveira, O.N. Electrical Detection of Pathogenic Bacteria in Food Samples Using Information Visualization Methods with a Sensor Based on Magnetic Nanoparticles Functionalized with Antimicrobial Peptides. Talanta 2019, 194, 611–618. [Google Scholar] [CrossRef]
- Yu, N.; Zhang, X.; Gao, Y.; You, H.; Zhang, J.; Miao, P. Highly Sensitive Endotoxin Assay Combining Peptide/Graphene Oxide and DNA-Modified Gold Nanoparticles. ACS Omega 2019, 4, 14312–14316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Remarks | Target Peptide Sequence | Electrode | LOD | Real Samples | Ref. |
---|---|---|---|---|---|---|
MMP-2 | Grafting of ferrocenyl polymers through eRAFT polymerization. Signal-on sensor. Fc as redox reporter. | PLGVR | Au electrode | 0.27 pg/mL | / | [65] |
MMP-2 | Signal amplification via Au@Pt (nanorods) bimetallic nanozyme. H2O2-free peptide biosensor. | PLGVR | GCE | 0.18 ng/mL | 100-fold diluted human serum | [75] |
MMP-2 | Signal amplification via eATRP reaction and Fc polymers as electroactive probe. Measurements in SWV: Fc signal is decreased when the peptide used as recognition substrate is cleaved by MMP-2. | CGAPLGVRGA | Au electrode | 0.53 fM | 1000-fold diluted NHS | [79] |
MMP-2 | Signal amplification by anodic stripping of AgNPs. A first peptide is anchored onto the Au electrode and second-peptide-templated AgNPs are used to generate the signal. MMP-2 cleaves the first peptide, lowering the signal. | PLGVR | Au electrode | 0.12 pg/mL | Human serum | [76] |
MMP-7 | JR2EC peptide as substrate. DPV analysis. Label-free approach: current increases linearly at higher concentrations of MMP-7 due to the cleavage of the peptide, which gives an electron transfer hindering effect (less surface area available). | / | CNTs/AuNPs/Au electrode | 6 pg/mL | Spiked undiluted synthetic urine and 100-fold diluted human serum | [72] |
MMP-7 | Dual-reaction enhanced sensitivity. Amperometric detection. PdNPs catalytic probes combined with Au-rGO/methylene blue-SA nanocomposite. | KKKRPLALWRSCCC | GCE | 3.1 fg/mL | Spiked healthy human serum | [69] |
MMP-14 | MMP-14-mediated cleavage of a Fc-carrying peptide placed on a Au electrode. | CPLPLRSWGLK | Au electrode | 0.1 ng/L | Breast cancer cell lines type MCF-7 | [70] |
PSA | Signal amplification via eATRP reaction and Fc polymers as electroactive probe. | CSGGSSHSSKLQKK | Au electrode | 3.2 fM | NHS | [80] |
PSA | Signal-on biosensor based on peptide-conjugated hemin/G-quadruplex DNAzyme and rosebud-like MoSe2@rGO nanocomposite. | HSSKLQ | GCE | 0.3 fg/mL | Clinical serum samples | [66] |
PSA | Aggregation of silver ions and formation of AgNPs on a GO-modified Au electrode. If PSA is cleaved, the immobilisation of graphene oxide and the formation of AgNPs will not occur, hence leading to a subsequently decreased electrochemical response. | CGGHSSKLQFWYFWY | Au electrode | 0.33 pg/mL | Spiked healthy human serum | [83] |
PSA | Peptide-hemin/G-quadruplex conjugate. GCE modified with PEI-rGO@PtNTs nanocomposites. In the presence of PSA, the peptide-DNAzyme conjugate is cleaved, reducing the electrochemical signal. | CAAAHHHHHHHSSKLQ | GCE | 2 fg/mL | Spiked 100-fold diluted human serum | [84] |
Proteases from L. monocytogenes and S. aureus | Magnetic beads/peptide immobilised on an array of AuNPs-modified SPCE. Increased SWV reduction peak of ferro/ferricyanide when the cleaved magnetic beads/peptide were pulled away from the electrode surface. | S. aureus: ETKVEENEAIQK; L. monocytogenes: NMLSEVERE | AuNPs-modified SPCE | 3 and 9 CFU/mL for S. aureus and L. monocytogenes, respectively | / | [85] |
Trypsin | Amperometric detection of trypsin activity using the HQ/HRP/H2O2 system, and a peptide-sequence immobilised onto neutravidin-modified magnetic beads, dually labelled with biotin and fluorescein isothiocyanate. | FRR | SPCE | 7 nM | HEK293T, HeLa, BxPC3 and PANC-1 cell lysates | [89] |
Trypsin | Evaluation of Pt-based microelectrodes in a peptide-based biosensor for the detection of trypsin, envisaging a possible implantable application. | FRR | Pt microelectrode | 2.9 nM | / | [17] |
Trypsin | NiCo2O4 nanosheets and g-C3N4 nanocomposite for signal amplification. | CAGRAAADAD | GCE | 10−10 mg/mL | 10-fold diluted healthy human serum | [71] |
Thrombin | RAFT polymerization as signal amplification. Recruitment of a large quantity of Fc tags on the electrode surface. | CGLVPRGS | Au electrode | 2.7 µU/mL | Spiked NHS | [78] |
HNE | HNE-mediated peptide cleavage leads to the release of a redox-labelled probe fragment, resulting in a measurable decrease of the electrochemical output via SWV. Immobilisation of a methylene blue-labelled peptide sequence. | APEEIMRRQ | Polycrystalline Au electrode | 4 nM | Human blood | [64] |
PKA | RAFT polymerization as signal amplification. Recruitment of a large quantity of Fc electroactive probes to each phosphorylated site. | LRRASLGGGGC | Au electrode | 1.05 mU/mL | HepG2 cell lysates | [91] |
PKA | eRAFT polymerization as signal amplification. Recruitment of a large quantity of Fc electroactive probes to each phosphorylated site. | LRRASLGGGGC | Au electrode | 1.02 mU/mL | / | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfragano, P.S.; Moro, G.; Polo, F.; Palchetti, I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. Biosensors 2021, 11, 246. https://doi.org/10.3390/bios11080246
Sfragano PS, Moro G, Polo F, Palchetti I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. Biosensors. 2021; 11(8):246. https://doi.org/10.3390/bios11080246
Chicago/Turabian StyleSfragano, Patrick Severin, Giulia Moro, Federico Polo, and Ilaria Palchetti. 2021. "The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics" Biosensors 11, no. 8: 246. https://doi.org/10.3390/bios11080246
APA StyleSfragano, P. S., Moro, G., Polo, F., & Palchetti, I. (2021). The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. Biosensors, 11(8), 246. https://doi.org/10.3390/bios11080246