Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Carbon Fiber Microelectrode Fabrication and Calibration
2.3. In Vivo Measurements of Nitrite and Ascorbate Using the Microelectrode Sensor
3. Results and Discussion
3.1. Carbon Fiber Microelectrode—Nitrite and Ascorbate In Vitro Calibrations
3.2. In Vivo Nitrite and Ascorbate Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001, 357, 593. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, D. Hippocampus and Nitric Oxide. In Vitamins and Hormones: Nitric Oxide; Academic Press: Waltham, MA, USA; San Diego, CA, USA; London, UK; Oxford, UK, 2014; Volume 96, pp. 127–160. ISBN 9780128002544. [Google Scholar]
- Liu, H.; Li, J.; Zhao, F.; Wang, H.; Qu, Y.; Mu, D. Nitric oxide synthase in hypoxic or ischemic brain injury. Rev. Neurosci. 2015, 26, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Stuehr, D.J. Enzymes of the L-Arginine to Nitric Oxide Pathway. J. Nutr. 2004, 134, 2748S–2751S. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.E.; Kim, G.S.; Chen, H.; Maier, C.M.; Narasimhan, P.; Song, Y.S.; Niizuma, K.; Katsu, M.; Okami, N.; Yoshioka, H.; et al. Reperfusion and Neurovascular Dysfunction in Stroke: From Basic Mechanisms to Potential Strategies for Neuroprotection. Mol. Neurobiol. 2010, 41, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, C.F.; Ledo, A.; Barbosa, R.M.; Laranjinha, J. Neurovascular-neuroenergetic coupling axis in the brain: Master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic. Biol. Med. 2017, 108, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Ferreira, N.R.; Rocha, B.S.; Barbosa, R.M.; Laranjinha, J. The redox interplay between nitrite and nitric oxide: From the gut to the brain. Redox Biol. 2013, 1, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Bryan, N.S.; Fernandez, B.O.; Bauer, S.M.; Garcia-Saura, M.F.; Milsom, A.B.; Rassaf, T.; Maloney, R.E.; Bharti, A.; Rodriguez, J.; Feelisch, M. Nitrite is a Signaling Molecule and Regulator of Gene Expression in Mammalian Tissues. Nat. Chem. Biol. 2005, 1, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.C.; Ferreira, G.C.; Damacena de Angelis, C.; Toledo, J.C.; Tanus-Santos, J.E. A comprehensive time course study of tissue nitric oxide metabolites concentrations after oral nitrite administration. Free Radic. Biol. Med. 2020, 152, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [Google Scholar] [CrossRef]
- Koch, C.D.; Gladwin, M.T.; Freeman, B.A.; Lundberg, J.O.; Weitzberg, E.; Morris, A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic. Biol. Med. 2017, 105, 48–67. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Carlström, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Piknova, B.; Kocharyan, A.; Schechter, A.N.; Silva, A.C. The Role of Nitrite in Neurovascular Coupling. Brain Res. 2011, 1407, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, J. The nitric oxide/ascorbate cycle: How neurones may control their own oxygen supply. Med. Hypotheses 1995, 45, 21–26. [Google Scholar] [CrossRef]
- Wilson, J.X.; Peters, C.E.; Sitar, S.M.; Daoust, P.; Gelb, A.W. Glutamate stimulates ascorbate transport by astrocytes. Brain Res. 2000, 858, 61–66. [Google Scholar] [CrossRef]
- Ferreira, N.R.; Lourenço, C.F.; Barbosa, R.M.; Laranjinha, J. Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: A novel functional interplay. Brain Res. Bull. 2015, 114, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Dale, N.; Hatz, S.; Tian, F.; Llaudet, E. Listening to the brain: Microelectrode biosensors for neurochemicals. Trends Biotechnol. 2005, 23, 420–428. [Google Scholar] [CrossRef]
- Robinson, D.L.; Hermans, A.; Seipel, A.T.; Wightman, R.M. Monitoring Rapid Chemical Communication in the Brain. Chem. Rev. 2008, 108, 2554–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldanha, C.; de Almeida, J.P.; Silva-Herdade, A.S. Application of a Nitric Oxide Sensor in Biomedicine. Biosensors 2014, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.; McEachern, F.; Filippelli, R.; Dimentberg, E.; Harvey, E.J.; Merle, G. Microelectrochemical Smart Needle for Real Time Minimally Invasive Oximetry. Biosensors 2020, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Naughton, D.P.; Blake, D.R.; Benjamin, N.; Stevens, C.R.; Winyard, P.G.; Symone, M.C.R.; Harrison, R. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochem. Soc. Trans. 1997, 25, 524S. [Google Scholar] [CrossRef]
- Cahill, P.S.; Walker, Q.D.; Finnegan, J.M.; Mickelson, G.E.; Travis, E.R.; Wightman, R.M. Microelectrodes for the Measurement of Catecholamines in Biological Systems. Anal. Chem. 1996, 68, 3180–3186. [Google Scholar] [CrossRef]
- Barbosa, R.M.; Lourenço, C.F.; Santos, R.M.; Pomerleau, F.; Huettl, P.; Gerhardt, G.A.; Laranjinha, J. In Vivo Real-Time Measurement of Nitric Oxide in Anesthetized Rat Brain. In Methods in Enzymology; Academic Press: San Diego, CA, USA, 2008; ISBN 9780123743091. [Google Scholar]
- Michael, A.C.; Borland, L.M. Electrochemical Methods for Neuroscience; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Huffman, M.L.; Venton, B.J. Carbon-fiber microelectrodes for in vivo applications. Analyst 2009, 134, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.G.; Sombers, L.A. Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Anal. Chem. 2018, 90, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.S.; Sawarynski, L.E.; Dabiri, P.D.; Choi, W.R.; Andrews, A.M. Head-to-Head Comparisons of Carbon Fiber Microelectrode Coatings for Sensitive and Selective Neurotransmitter Detection by Voltammetry. Anal. Chem. 2011, 83, 6658–6666. [Google Scholar] [CrossRef] [Green Version]
- Kita, J.M.; Wightman, R.M. Microelectrodes for studying neurobiology. Curr. Opin. Chem. Biol. 2008, 12, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Buchanan, A.M.; Witt, C.E.; Hashemi, P. Frontiers in electrochemical sensors for neurotransmitter detection: Towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 2019, 11, 2738–2755. [Google Scholar] [CrossRef]
- Tan, C.; Robbins, E.M.; Wu, B.; Cui, X.T. Recent Advances in In Vivo Neurochemical Monitoring. Micromachines 2021, 12, 208. [Google Scholar] [CrossRef] [PubMed]
- Garris, P.A.; Wightman, R. Regional Differences in Dopamine Release, Uptake, and Diffusion Measured by Fast-Scan Cyclic Voltammetry BT—Voltammetric Methods in Brain Systems. In Neuromethods; Boulton, A.A., Baker, G.B., Adams, R.N., Eds.; Humana Press: Totowa, NJ, USA, 1995; Volume 27, pp. 179–220. [Google Scholar]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Brown, F.O.; Finnerty, N.J.; Lowry, J.P. Nitric oxide monitoring in brain extracellular fluid: Characterisation of Nafion®-modified Pt electrodes in vitro and in vivo. Analyst 2009, 134, 2012–2020. [Google Scholar] [CrossRef]
- Ledo, A.; Barbosa, R.M.; Frade, J.; Laranjinha, J. Nitric oxide monitoring in hippocampal brain slices using electrochemical methods. Methods Enzymol. 2002, 359, 111–125. [Google Scholar] [CrossRef]
- Santos, R.M.; Lourenço, C.F.; Piedade, A.P.; Andrews, R.; Pomerleau, F.; Huettl, P.; Gerhardt, G.A.; Laranjinha, J.; Barbosa, R.M. A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Biosens. Bioelectron. 2008, 24, 704–709. [Google Scholar] [CrossRef]
- Fourmond, V. QSoas, A Versatile Software for Data Analysis. Anal. Chem. 2016, 88, 5050–5052. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, C.F.; Santos, R.; Barbosa, R.M.; Gerhardt, G.; Cadenas, E.; Laranjinha, J. In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus. Hippocampus 2011, 21, 622–630. [Google Scholar] [CrossRef]
- Ledo, A.; Lourenço, C.F.; Laranjinha, J.; Brett, C.M.A.; Gerhardt, G.A.; Barbosa, R.M. Ceramic-Based Multisite Platinum Microelectrode Arrays: Morphological Characteristics and Electrochemical Performance for Extracellular Oxygen Measurements in Brain Tissue. Anal. Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press, Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Zheng, D.; Hu, C.; Peng, Y.; Hu, S. A carbon nanotube/polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor. Electrochim. Acta 2009, 54, 4910–4915. [Google Scholar] [CrossRef]
- Lee, W.H.; Wahman, D.G.; Pressman, J.G. Amperometric carbon fiber nitrite microsensor for in situ biofilm monitoring. Sens. Actuators B Chem. 2013, 188, 1263–1269. [Google Scholar] [CrossRef]
- Piela, B.; Wrona, P.K. Oxidation of Nitrites on Solid Electrodes: I. Determination of the Reaction Mechanism on the Pure Electrode Surface. J. Electrochem. Soc. 2002, 149, E55. [Google Scholar] [CrossRef]
- Shibata, M.; Araki, N.; Hamada, J.; Sasaki, T.; Shimazu, K.; Fukuuchi, Y. Brain nitrite production during global ischemia and reperfusion: An in vivo microdialysis study. Brain Res. 1996, 734, 86–90. [Google Scholar] [CrossRef]
- Mao, L.; Shi, G.; Tian, Y.; Liu, H.; Jin, L.; Yamamoto, K.; Tao, S.; Jin, J. A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis. Talanta 1998, 46, 1547–1556. [Google Scholar] [CrossRef]
- Rizzo, V.; Montalbetti, L.; Rozza, A.; Bolzani, W.; Porta, C.; Balduzzi, G.; Scoglio, E.; Moratti, R. Nitrite/nitrate balance during photoinduced cerebral ischemia in the rat determined by high-performance liquid chromatography with UV and electrochemical detection. J. Chromatogr. A 1998, 798, 103–108. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, S.; Lin, X.; Jin, L.; Jin, S.; Deng, J.; Kong, J. Electrocatalytic reduction of nitrite at a carbon fiber microelectrode chemically modified by palladium(II)-substituted Dawson type heptadecatungstodiphosphate. J. Electroanal. Chem. 1999, 469, 63–71. [Google Scholar] [CrossRef]
- Woitzik, J.; Abromeit, N.; Schaefer, F. Measurement of nitric oxide metabolites in brain microdialysates by a sensitive fluorometric high-performance liquid chromatography assay. Anal. Biochem. 2001, 289, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Barber-Singh, J.; Kottegoda, S.; Wirtshafter, D.; Shippy, S.A. Determination of nitrate and nitrite in rat brain perfusates by capillary electrophoresis. Electrophoresis 2004, 25, 1264–1269. [Google Scholar] [CrossRef]
- Iravani, M.M.; Millar, J.; Kruk, Z.L. Differential Release of Dopamine by Nitric Oxide in Subregions of Rat Caudate Putamen Slices. J. Neurochem. 2002, 71, 1969–1977. [Google Scholar] [CrossRef]
- Ferreira, N.R.; Ledo, A.; Laranjinha, J.; Gerhardt, G.A.; Barbosa, R.M. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays. Bioelectrochemistry 2018, 121, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Honma, I.; Zhou, H. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosens. Bioelectron. 2007, 23, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Raj, C.R.; Ohsaka, T. Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer. J. Electroanal. Chem. 2001, 496, 44–49. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K.; Xiang, L.; Lin, Y.; Su, L.; Mao, L. Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Anal. Chem. 2007, 79, 6559–6565. [Google Scholar] [CrossRef]
- Nemet, I.; Monnier, V.M. Vitamin C Degradation Products and Pathways in the Human Lens. J. Biol. Chem. 2011, 286, 37128–37136. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000, 23, 209–216. [Google Scholar] [CrossRef]
- May, J.M. Vitamin C Transport and Its Role in the Central Nervous System. In Subcellular Biochemistry; Stanger, O., Ed.; Springer: Dordrecht, Netherlands, 2012; Volume 56, pp. 85–103. ISBN 978-94-007-2198-2. [Google Scholar]
- Goodman, J.C.; Feng, Y.-Q.; Valadka, A.B.; Bryan, R.J.; Robertson, C.S. Measurement of the Nitric Oxide Metabolites Nitrate and Nitrite in the Human Brain by Microdialysis. In Intracranial Pressure and Brain Biochemical Monitoring; Springer: Vienna, Austria, 2002; Volume 81, pp. 343–345. [Google Scholar]
Nitrite Linear Range. (µM) | Ascorbate (µM) | CFM Analytical Parameters for Nitrite | ||
---|---|---|---|---|
Sens.Nitrite (pA M−1) | LODNitrite (µM) | R2 | ||
5–500 | 0 | 135 | 2.7 | 0.999 |
5–500 | 100 | 124 | 9.2 | 0.998 |
5–500 | 200 | 119 | 8.4 | 0.998 |
5–500 | 500 | 107 | 5.2 | 0.999 |
Amount of. Injected Species | IMax (nA) | trise (s) | Signal Duration (s) | Concentration at Peak (µM) |
---|---|---|---|---|
Nitrite (nmol) | ||||
0.2 | 14 | 5 | 82 | 57 |
0.2 | 14 | 4 | 81 | 58 |
0.6 | 39 | 6 | 53 | 135 |
0.6 | 36 | 8 | 118 | 123 |
Ascorbate (nmol) | ||||
6.3 | 22 | 22 | 236 | 85 |
12.5 | 35 | 25 | 211 | 142 |
28.1 | 59 | 20 | 252 | 243 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, T.; Dias, C.; Lourenço, C.F.; Ledo, A.; Barbosa, R.M.; Almeida, M.G. Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. Biosensors 2021, 11, 277. https://doi.org/10.3390/bios11080277
Monteiro T, Dias C, Lourenço CF, Ledo A, Barbosa RM, Almeida MG. Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. Biosensors. 2021; 11(8):277. https://doi.org/10.3390/bios11080277
Chicago/Turabian StyleMonteiro, Tiago, Cândida Dias, Cátia F. Lourenço, Ana Ledo, Rui M. Barbosa, and M. Gabriela Almeida. 2021. "Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate" Biosensors 11, no. 8: 277. https://doi.org/10.3390/bios11080277
APA StyleMonteiro, T., Dias, C., Lourenço, C. F., Ledo, A., Barbosa, R. M., & Almeida, M. G. (2021). Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. Biosensors, 11(8), 277. https://doi.org/10.3390/bios11080277