Super-Resolution Imaging with Graphene
Abstract
:1. Introduction
2. Working Principle of a Super-Resolution Imaging System with Graphene
3. Super-Resolution Imaging Cooperated with Graphene
3.1. Graphene-Assisted Super-Resolution Imaging in Near Field
3.2. Graphene-Assisted Super-Resolution Imaging in Far Field
4. Alternative Imaging Devices Integrated with Graphene Oxide
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Boeckl, J.; Motta, N.; Iacopi, F. Graphene growth on silicon carbide: A review. Phys. Status Solidi A 2016, 213, 2277–2289. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.Y.; Zhou, C.W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef]
- Othman, M.; Ritikos, R.; Rahman, S.A. Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst. Thin Solid Films 2019, 685, 335–342. [Google Scholar] [CrossRef]
- Yang, X.H.; Zhang, G.X.; Prakash, J.; Chen, Z.S.; Gauthier, M.; Sun, S.H. Chemical vapour deposition of graphene: Layer control, the transfer process, characterisation, and related applications. Int. Rev. Phys. Chem. 2019, 38, 149–199. [Google Scholar] [CrossRef]
- Fukumori, M.; Pandey, R.R.; Fujiwara, T.; TermehYousefi, A.; Negishi, R.; Kobayashi, Y.; Tanaka, H.; Ogawa, T. Diameter dependence of longitudinal unzipping of single-walled carbon nanotube to obtain graphene nanoribbon. Jpn. J. Appl. Phys. 2017, 56, 06GG12. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Khannanov, A.; Vakhitov, I.; Kiiamov, A.; Shukhina, K.; Tour, J.M. Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons. ACS Nano 2018, 12, 3985–3993. [Google Scholar] [CrossRef] [PubMed]
- Du, W.C.; Jiang, X.Q.; Zhu, L.H. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single-and few-layered pristine graphene. J. Mater. Chem. A 2013, 1, 10592–10606. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.M.; McGovern, I.T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.H.; Joshi, R.K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190–199. [Google Scholar] [CrossRef]
- Jiang, L.W.; Zheng, Y.S. Remarkable enhancement of terahertz conductivity of graphene tuned by periodic gate voltage. Phys. Lett. A 2010, 375, 203–207. [Google Scholar] [CrossRef]
- Chang, Y.C.; Liu, C.H.; Liu, C.H.; Zhong, Z.H.; Norris, T.B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 2014, 104, 261909. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, X.; Garcia-Vidal, F.J.; Yuan, X.C.; Teng, J. Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. 2012, 109, 73901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.N.; Badioli, M.; Alonso-Gonzalez, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenovic, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Chang, D.E.; de Abajo, F.J.G. Graphene plasmonics: A platform for strong light-matter interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Abajo, F.J.G. Graphene plasmonics: Challenges and opportunities. ACS Photonics 2014, 1, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.S.; Zhu, X.L.; Li, B.H.; Mortensen, N.A. Graphene-plasmon polaritons: From fundamental properties to potential applications. Front. Phys. 2016, 11, 117801. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Song, C.Y.; Zhang, G.W.; Yan, H.G. Graphene plasmonics: Physics and potential applications. Nanophotonics 2017, 6, 1191–1204. [Google Scholar] [CrossRef]
- Heilemann, M. Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 2010, 149, 243–251. [Google Scholar] [CrossRef]
- Cricenti, A.; Colonna, S.; Girasole, M.; Gori, P.; Ronci, F.; Longo, G.; Dinarelli, S.; Luce, M.; Rinaldi, M.; Ortenzi, M. Scanning probe microscopy in material science and biology. J. Phys. D Appl. Phys. 2011, 44, 464008. [Google Scholar] [CrossRef]
- Bulat, K.; Rygula, A.; Szafraniec, E.; Ozaki, Y.; Baranska, M. Live endothelial cells imaged by scanning near-field optical microscopy (SNOM): Capabilities and challenges. J. Biophotonics 2017, 10, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Kazantsev, D.V.; Kuznetsov, E.V.; Timofeev, S.V.; Shelaev, A.V.; Kazantseva, E.A. Apertureless near-field optical microscopy. Phys. Uspekhi 2017, 60, 259–275. [Google Scholar] [CrossRef]
- Bazylewski, P.; Ezugwu, S.; Fanchini, G. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. 2017, 7, 973. [Google Scholar] [CrossRef] [Green Version]
- Durant, S.; Liu, Z.W.; Steele, J.A.; Zhang, X. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 2006, 23, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.J.; Zhang, Z.Y.; Xin, W.J. Study on the imaging characteristics of far-field superlens. Optik 2014, 125, 208–211. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.Q.; Deng, H. Potential application of far-field superlens in optical critical dimension metrology: A simulation study. Opt. Eng. 2017, 56, 53109. [Google Scholar] [CrossRef]
- Lee, H.; Liu, Z.; Xiong, Y.; Sun, C.; Zhang, X. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 2007, 15, 15886–15891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rho, J.; Ye, Z.L.; Xiong, Y.; Yin, X.B.; Liu, Z.W.; Choi, H.; Bartal, G.; Zhang, X.A. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 2010, 1, 143. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, J.G.; Stefani, A.; Antipov, S.; Lwin, R.; Jackson, S.D.; Hudson, D.D.; Fleming, S.; Argyros, A.; Kuhlmey, B.T. Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies. Opt. Express 2019, 27, 21420–21434. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.L.; Liu, Z.W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 2012, 3, 1205. [Google Scholar] [CrossRef]
- Lemoult, F.; Lerosey, G.; de Rosny, J.; Fink, M. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 2010, 104, 203901. [Google Scholar] [CrossRef] [Green Version]
- Zuo, R.Z.; Liu, W.W.; Cheng, H.; Chen, S.Q.; Tian, J.G. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv. Opt. Mater. 2018, 6, 1800795. [Google Scholar] [CrossRef]
- Zhuang, Z.P.; Chen, R.; Fan, Z.B.; Pang, X.N.; Dong, J.W. High focusing efficiency in subdiffraction focusing metalens. Nanophotonics 2019, 8, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Sarmento, M.J.; Oneto, M.; Pelicci, S.; Pesce, L.; Scipioni, L.; Faretta, M.; Furia, L.; Dellino, G.I.; Pelicci, P.G.; Bianchini, P.; et al. Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures. Nat. Commun. 2018, 9, 3415. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Chen, B.L.; Yan, W.; Yang, Z.G.; Peng, X.; Lin, D.Y.; Weng, X.Y.; Ye, T.; Qu, J.L. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale 2018, 10, 16252–16260. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef]
- Zhang, W.C.; Noa, A.; Nienhaus, K.; Hilbert, L.; Nienhaus, G.U. Super-resolution imaging of densely packed DNA in nuclei of zebrafish embryos using stimulated emission double depletion microscopy. J. Phys. D Appl. Phys. 2019, 52, 414001. [Google Scholar] [CrossRef]
- Cheng, T.; Chen, D.N.; Yu, B.; Niu, H.B. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation. Biomed. Opt. Express 2017, 8, 2445–2457. [Google Scholar] [CrossRef] [Green Version]
- Hainsworth, A.H.; Lee, S.; Foot, P.; Patel, A.; Poon, W.W.; Knight, A.E. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). Neuropathol. Appl. Neurobiol. 2018, 44, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.Y.; Gagnon, L.A.; Howard, M.D.; Halpern, A.R.; Vaughan, J.C. Extended-depth 3D super-resolution imaging using probe-refresh STORM. Biophys. J. 2018, 114, 1980–1987. [Google Scholar] [CrossRef] [Green Version]
- Nehme, E.; Weiss, L.E.; Michaeli, T.; Shechtman, Y. Deep-STORM: Super-resolution single-molecule microscopy by deep learning. Optica 2018, 5, 458–464. [Google Scholar] [CrossRef]
- Samanta, S.; Gong, W.J.; Li, W.; Sharma, A.; Shim, I.; Zhang, W.; Das, P.; Pan, W.H.; Liu, L.W.; Yang, Z.G.; et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights and future possibilities. Coord. Chem. Rev. 2019, 380, 17–34. [Google Scholar] [CrossRef]
- Karras, C.; Smedh, M.; Forster, R.; Deschout, H.; Fernandez-Rodriguez, J.; Heintzmann, R. Successful optimization of reconstruction parameters in structured illumination microscopy—A practical guide. Opt. Commun. 2019, 436, 69–75. [Google Scholar] [CrossRef]
- Huttunen, M.J.; Abbas, A.; Upham, J.; Boyd, R.W. Label-free super-resolution with coherent nonlinear structured-illumination microscopy. J. Opt. 2017, 19, 85504. [Google Scholar] [CrossRef]
- Wu, Y.C.; Shroff, H. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Methods 2018, 15, 1011–1019. [Google Scholar] [CrossRef]
- Turcottea, R.; Liang, Y.J.; Tanimoto, M.; Zhang, Q.R.; Li, Z.W.; Koyama, M.; Betzig, E.; Ji, N. Dynamic super-resolution structured illumination imaging in the living brain. Proc. Natl. Acad. Sci. USA 2019, 116, 9586–9591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, F.F.; Lu, D.L.; Shen, H.; Wan, W.W.; Ponsetto, J.L.; Huang, E.; Liu, Z.W. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014, 14, 4634–4639. [Google Scholar] [CrossRef]
- Bezryadina, A.; Li, J.X.; Zhao, J.X.; Kothambawala, A.; Ponsetto, J.; Huang, E.; Wang, J.; Liu, Z.W. Localized plasmonic structured illumination microscopy with an optically trapped microlens. Nanoscale 2017, 9, 14907–14912. [Google Scholar] [CrossRef] [PubMed]
- Ponsetto, J.L.; Bezryadina, A.; Wei, F.F.; Onishi, K.; Shen, H.; Huang, E.; Ferrari, L.; Ma, Q.; Zou, Y.M.; Liu, Z.W. Experimental demonstration of localized plasmonic structured illumination microscopy. ACS Nano 2017, 11, 5344–5350. [Google Scholar] [CrossRef] [PubMed]
- Bezryadina, A.; Zhao, J.X.; Xia, Y.; Zhang, X.; Liu, Z.W. High spatiotemporal resolution imaging with localized plasmonic structured illumination microscopy. ACS Nano 2018, 12, 8248–8254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andryieuski, A.; Lavrinenko, A.V.; Chigrin, D.N. Graphene hyperlens for terahertz radiation. Phys. Rev. B 2012, 86, 121108. [Google Scholar] [CrossRef] [Green Version]
- Li, P.N.; Taubner, T. Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano 2012, 6, 10107–10114. [Google Scholar] [CrossRef] [PubMed]
- Houmad, M.; Zaari, H.; Benyoussef, A.; El Kenz, A.; Ez-Zahraouy, H. Optical conductivity enhancement and band gap opening with silicon doped graphene. Carbon 2015, 94, 1021–1027. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 64302. [Google Scholar] [CrossRef] [Green Version]
- Falkovsky, L.A.; Pershoguba, S.S. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 2007, 76, 153410. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.Y.; Alu, A. Atomically thin surface cloak using graphene monolayers. ACS Nano 2011, 5, 5855–5863. [Google Scholar] [CrossRef]
- Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, M.C.; Kim, P.; Stormer, H.L.; Basov, D.N. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 2008, 4, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 2007, 19, 26222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, L.; Li, X. Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. Opt. Express 2013, 21, 20888–20899. [Google Scholar] [CrossRef]
- Li, P.N.; Wang, T.; Bockmann, H.; Taubner, T. Graphene-enhanced infrared near-field microscopy. Nano Lett. 2014, 14, 4400–4405. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.H.; Huang, T.J.; Liu, J.Y.; Tan, Y.H.; Liu, P.K. Tunable terahertz deep subwavelength imaging based on a graphene monolayer. Sci. Rep. 2017, 7, 46283. [Google Scholar] [CrossRef] [Green Version]
- Inampudi, S.; Cheng, J.R.; Mosallaei, H. Graphene-based near-field optical microscopy: High-resolution imaging using reconfigurable gratings. Appl. Opt. 2017, 56, 3132–3141. [Google Scholar] [CrossRef]
- Liu, J.Y.; Huang, T.J.; Liu, P.K. Terahertz super-resolution imaging using four-wave mixing in graphene. Opt. Lett. 2018, 43, 2102–2105. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, A.; Srivastava, T.; Jha, R. Ultrasensitive THz—Plasmonics gaseous sensor using doped graphene. Sens. Actuators B 2016, 227, 291–295. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.B.; Ulin-Avila, E.; Geng, B.S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.L.; Zhang, H.; Wang, B.; Ni, Z.H.; Lim, C.H.Y.X.; Wang, Y.; Tang, D.Y.; Loh, K.P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.B.; Zhang, X. Double-layer graphene optical modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef]
- Pirruccio, G.; Moreno, L.M.; Lozano, G.; Rivas, J.G. Coherent and broadband enhanced optical absorption in graphene. ACS Nano 2013, 7, 4810–4817. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Kats, M.A.; Genevet, P.; Yu, N.F.; Song, Y.; Kong, J.; Capasso, F. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 2013, 13, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.W.; Tang, C.J.; Yan, Z.D.; Wang, Q.G.; Liu, F.X.; Chen, J.; Xu, Z.J.; Sui, C.H. Graphene-based superlens for subwavelength optical imaging by graphene plasmon resonances. Plasmonics 2016, 11, 515–522. [Google Scholar] [CrossRef]
- Forouzmand, A.; Yakovlev, A.B. Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces. AIP Adv. 2015, 5, 77108. [Google Scholar] [CrossRef]
- Forouzmand, A.; Bernety, H.M.; Yakovlev, A.B. Graphene-loaded wire medium for tunable broadband subwavelength imaging. Phys. Rev. B 2015, 92, 85402. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Z.; Wang, T.S.; Chen, Z.L.; Hu, B.L.; Yu, W.X. Super-resolution imaging at mid-infrared waveband in graphene-nanocavity formed on meta-surface. Sci. Rep. 2016, 6, 37898. [Google Scholar] [CrossRef] [Green Version]
- Menabde, S.G.; Lee, I.H.; Lee, S.; Ha, H.; Heiden, J.T.; Yoo, D.; Kim, T.T.; Low, T.; Lee, Y.H.; Oh, S.H.; et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat. Commun. 2021, 12, 938. [Google Scholar] [CrossRef]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861–23898. [Google Scholar] [CrossRef]
- Cao, S.; Wang, T.S.; Sun, Q.; Hu, B.L.; Levy, U.; Yu, W.X. Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution. Opt. Express 2017, 25, 14494–14503. [Google Scholar] [CrossRef] [PubMed]
- Kaipa, C.S.R.; Yakovlev, A.B.; Maslovski, S.I.; Silveirinha, M.G. Near-field imaging with a loaded wire medium. Phys. Rev. B 2012, 86, 155103. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, A.Y.; Alonso-Gonzalez, P.; Velez, S.; Mastel, S.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Casanova, F.; Hueso, L.E.; Koppens, F.H.L.; et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photonics 2016, 10, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Fei, Z.; Goldflam, M.D.; Wu, J.S.; Dai, S.; Wagner, M.; McLeod, A.S.; Liu, M.K.; Post, K.W.; Zhu, S.; Janssen, G.C.A.M.; et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 2015, 15, 8271–8276. [Google Scholar] [CrossRef]
- Ghanekar, A.; Ricci, M.; Tian, Y.P.; Gregory, O.; Zheng, Y. Strain-induced modulation of near-field radiative transfer. Appl. Phys. Lett. 2018, 112, 241104. [Google Scholar] [CrossRef] [PubMed]
- Hipolito, F.; Taghizadeh, A.; Pedersen, T.G. Nonlinear optical response of doped monolayer and bilayer graphene: Length gauge tight-binding model. Phys. Rev. B 2018, 98, 205420. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.R.; He, G.; Lin, J.; Huang, P. Graphene-semiconductor nanocomposites for cancer phototherapy. Biomed. Mater. 2021, 16, 22007. [Google Scholar] [CrossRef]
- Lin, J.; Chen, X.; Huang, P. Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. 2016, 105, 242–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younis, M.R.; He, G.; Lin, J.; Huang, P. Recent advances on graphene quantum dots for bioimaging applications. Front. Chem. 2020, 8, 424. [Google Scholar] [CrossRef]
- Wojcik, M.; Hauser, M.; Li, W.; Moon, S.; Xu, K. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat. Commun. 2015, 6, 7384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Xu, B.; Li, S.; Lin, H.; Qiu, L.; Li, D.; Jia, B. Free-standing graphene oxide mid-infrared polarizers. Nanoscale 2020, 12, 11480–11488. [Google Scholar] [CrossRef]
- Wu, J.; Jia, L.; Zhang, Y.; Qu, Y.; Jia, B.; Moss, D.J. Graphene oxide for integrated photonics and flat optics. Adv. Mater. 2020, 33, 2006415. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Du, J.; Wang, X.; Duan, A.; Gao, R.; Liu, J.; Li, B. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci. Rep. 2021, 11, 1725. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, M.; Wang, C.; Zhang, J.; Wu, H.; Yang, S. Graphene oxide/BaHoF5/PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon 2020, 158, 382–385. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yan, B.; Li, Y.; Ma, X.; Jiao, W.; Shi, K.; Zhang, T.; Chen, S.; He, Y.; Liang, X.J.; et al. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy. ACS Nano 2020, 14, 1936–1950. [Google Scholar] [CrossRef]
- Li, R.H.; Georgiades, P.; Cox, H.; Phanphak, S.; Roberts, I.S.; Waigh, T.A.; Lu, J.R. Quenched stochastic optical reconstruction microscopy (qSTORM) with graphene oxide. Sci. Rep. 2018, 8, 16928. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Berciaud, S.; Nuckolls, C.; Heinz, T.F.; Brus, L.E. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 2010, 4, 2964–2968. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, R.P.J.; Lidke, K.A.; Bates, M.; Puig, D.L.; Grunwald, D.; Stallinga, S.; Rieger, B. Measuring image resolution in optical nanoscopy. Nat. Methods 2013, 10, 557–562. [Google Scholar] [CrossRef] [Green Version]
Year | Device Type | Near/Far Field | Waveband | Resolution | Physical Mechanism | Refs. |
---|---|---|---|---|---|---|
2013 | Hyperlens | Far field | Mid-infrared | Tunable conductivity | [69] | |
2014 | SNOM | Near field | Infrared | Graphene plasmonic | [70] | |
2015 | Superlens | Near field | 60 THz | Graphene plasmonic | [80] | |
2015 | Wire medium | Near field | 22.8 THz 25.9 THz | Graphene plasmonic | [81] | |
2015 | Wire medium | Near field | THz | Graphene plasmonic | [82] | |
2016 | GNMS | Far field | Mid infrared | 26 nm | Graphene plasmonic | [83] |
2017 | Superlens | Near field | 4.3~9 THz | 400 nm | Tunable conductivity | [71] |
2017 | GNOM | Near field | 30 THz | Tunable conductivity | [72] | |
2017 | GMS | Far field | Infrared | 6 nm | Graphene plasmonic | [86] |
2018 | FWM | Near field | THz | Tunable conductivity | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Kong, L.; Ying, Y.; Gu, Q.; Lv, J.; Dai, Z.; Si, G. Super-Resolution Imaging with Graphene. Biosensors 2021, 11, 307. https://doi.org/10.3390/bios11090307
Jiang X, Kong L, Ying Y, Gu Q, Lv J, Dai Z, Si G. Super-Resolution Imaging with Graphene. Biosensors. 2021; 11(9):307. https://doi.org/10.3390/bios11090307
Chicago/Turabian StyleJiang, Xiaoxiao, Lu Kong, Yu Ying, Qiongchan Gu, Jiangtao Lv, Zhigao Dai, and Guangyuan Si. 2021. "Super-Resolution Imaging with Graphene" Biosensors 11, no. 9: 307. https://doi.org/10.3390/bios11090307
APA StyleJiang, X., Kong, L., Ying, Y., Gu, Q., Lv, J., Dai, Z., & Si, G. (2021). Super-Resolution Imaging with Graphene. Biosensors, 11(9), 307. https://doi.org/10.3390/bios11090307