Electroanalysis of Fentanyl and Its New Analogs: A Review
Abstract
:1. Introduction
1.1. Fentanyl and Fentanyl Analogs Used for Human and Veterinary Medical Purposes
1.2. Metabolism of Fentanyl and Fentanyl Analogs
1.3. Toxicology of New Synthetic Opioids
2. Determination of Fentanyl and Analogs
3. Electroanalytical Methods
3.1. Adsorptive Stripping Voltammetry
3.2. Differential Pulse Voltammetry
3.2.1. DPV at Glassy Carbon Electrode Modified with Carbon Nano-Onions
3.2.2. DPV at Single-Walled Carbon Nanotubes Electrode
3.3. Differential Normal Pulse Voltammetry
3.4. Square-Wave Voltammetry
3.4.1. Square-Wave Voltammetry with Microcatheter-Based Dual-Analyte Sensor
3.4.2. Screen-Printed Electrodes Modified with the Room Temperature Ionic Liquid
3.4.3. Screen-Printed Electrodes Printed on Gloves
3.4.4. Unmodified Screen-Printed Electrodes
3.5. Cyclic Voltammetry at a Polarized Ionic Liquid Membrane
3.6. Potentiometry
3.7. Electrochemiluminescence
3.8. Indirect Amperometry
4. Hyphenated Techniques
4.1. Amperometry in Hyphenation with HPLC
4.2. Electromembrane Extraction Combined with Differential Pulse Voltammetry at Modified Carbon Screen-Printed Electrode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jullie, D.; Gondin, A.B.; von Zastrow, M.; Canals, M. Opioid pharmacology under the microscope. Mol. Pharmacol. 2020, 98, 425–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carli, M.; Donnini, S.; Pellegrini, C.; Coppi, E.; Bocci, G. Opioid receptors beyond pain control: The role in cancer pathology and the debated importance of their pharmacological modulation. Pharmacol. Res. 2020, 159, 104938. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Nareda, M.; Aziz, S.; Sharma, S.; Garg, S.K. Fentanyl—A potent opioid analgesic: A review. J. Dev. Drugs 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.S. Opioid metabolism. Mayo Clin. Proc. 2009, 84, 613–624. [Google Scholar] [CrossRef] [Green Version]
- UNODC. Fentanyl and Its Analogues—50 Years on. Available online: https://www.unodc.org/documents/scientific/Global_SMART_Update_17_web.pdf (accessed on 19 October 2020).
- UNODC. The Challenge of the New Psychoactive Substances. Available online: https://www.unodc.org/documents/scientific/NPS_2013_SMART.pdf (accessed on 19 October 2020).
- UNODC. Nps. New Psychoactive Substances. Available online: https://www.unodc.org/documents/drugs/printmaterials2013/NPS_leaflet/WDC13_NPS_leaflet_EN_LORES.pdf (accessed on 19 October 2020).
- Weedn, V.W.; Zaney, M.E.; McCord, B.; Lurie, I.; Baker, A. Fentanyl-related substance scheduling as an effective drug control strategy. J. Forensic Sci. 2021, 66, 1186–1200. [Google Scholar] [CrossRef]
- Elbardisy, H.M.; Foster, C.W.; Cumba, L.; Antonides, L.H.; Gilbert, N.; Schofield, C.J.; Belal, T.S.; Talaat, W.; Sutcliffe, O.B.; Daabees, H.G.; et al. Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid chromatography with diode array and amperometric detection. Anal. Met. 2019, 11, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.W.H.; Sandler, A.N. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology 1999, 90, 576–599. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Chand, R.; Kumar, S.; Mittal, N.; Srinivasan, S.; Rajabzadeh, A.R. Recent biosensing advances in the rapid detection of illicit drugs. TrAC–Trends Anal. Chem. 2020, 131, 116006. [Google Scholar] [CrossRef]
- Bazley, M.M.; Logan, M.; Baxter, C.; Robertson, A.A.B.; Blanchfield, J.T. Decontamination of fentanyl and fentanyl analogues in field and laboratory settings: A review of fentanyl degradation. Aust. J. Chem. 2020, 73, 868–879. [Google Scholar] [CrossRef]
- WHO. Opioid Overdose. Available online: https://www.who.int/news-room/fact-sheets/detail/opioid-overdose (accessed on 19 October 2020).
- Jannetto, P.J.; Helander, A.; Garg, U.; Janis, G.C.; Goldberger, B.; Ketha, H. The fentanyl epidemic and evolution of fentanyl analogs in the united states and the european union. Clin. Chem. 2019, 65, 242–253. [Google Scholar] [CrossRef]
- Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J. Solid State Electrochem. 2020, 24, 2603–2616. [Google Scholar] [CrossRef]
- Manchikanti, L.; Vanaparthy, R.; Atluri, S.; Sachdeva, H.; Kaye, A.D.; Hirsch, J.A. Covid-19 and the opioid epidemic: Two public health emergencies that intersect with chronic pain. Pain Ther. 2021, 10, 269–286. [Google Scholar] [CrossRef]
- Niles, J.K.; Gudin, J.; Radcliff, J.; Kaufman, H.W. The opioid epidemic within the COVID-19 pandemic: Drug testing in 2020. Popul. Health Manag. 2021, 24, S43–S51. [Google Scholar] [CrossRef]
- Glasscott, M.W.; Vannoy, K.J.; Iresh Fernando, P.U.A.; Kosgei, G.K.; Moores, L.C.; Dick, J.E. Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. TrAC–Trends Anal. Chem. 2020, 132, 116037. [Google Scholar] [CrossRef]
- TIC. Toxicological Information Center (Czech Republic)—Database “Evidence”; TIC: Hong Kong, China, 2021. [Google Scholar]
- Gozdzialski, L.; Ramsay, M.; Larnder, A.; Wallace, B.; Hore, D.K. Fentanyl detection and quantification using portable Raman spectroscopy in community drug checking. J. Raman Spectrosc. 2021, 52, 1308–1316. [Google Scholar] [CrossRef]
- Kuo, Y.F.; Baillargeon, J.; Raji, M.A. Overdose deaths from nonprescribed prescription opioids, heroin, and other synthetic opioids in medicare beneficiaries. J. Subst. Abuse Treat. 2021, 124, 108282. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Kuczynska, K.; Kosmal, W.; Markiewicz, K.; Adamowicz, P. Carfentanil—From an animal anesthetic to a deadly illicit drug. Forensic Sci. Int. 2021, 320, 110715. [Google Scholar] [CrossRef]
- Uuskula, A.; Talu, A.; Vorobjov, S.; Salekesin, M.; Rannap, J.; Lemsalu, L.; Jarlais, D.D. The fentanyl epidemic in Estonia: Factors in its evolution and opportunities for a comprehensive public health response, a scoping review. Int. J. Drug Policy 2020, 81, 102757. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.G.; Raveendran, J.; Docoslis, A. Portable identification of fentanyl analogues in drugs using surface-enhanced Raman scattering. Sens. Actuat. B-Chem. 2021, 330, 129303. [Google Scholar] [CrossRef]
- Smialek, J.E.; Levine, B.; Chin, L.; Wu, S.C.; Jenkins, A.J. A fentanyl epidemic in maryland 1992. J. Forensic Sci. 1994, 39, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, M.D.; Abate, M.A.; Hu, L.; Long, D.L.; Blommel, M.L.; Haikal, N.A.; Kraner, J.C. Parent and metabolite opioid drug concentrations in unintentional deaths involving opioid and benzodiazepine combinations. J. Forensic Sci. 2015, 60, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A. 1-aralkyl-4-(N-aryl-carbonyl amino)-Piperidines and Related Compounds. U.S. Patent no. 5100903a, 5 January 1965. [Google Scholar]
- Wilde, M.; Pichini, S.; Pacifici, R.; Tagliabracci, A.; Busardo, F.P.; Auwarter, V.; Solimini, R. Metabolic pathways and potencies of new fentanyl analogs. Front. Pharmacol. 2019, 10, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comer, S.D.; Cahill, C.M. Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. Neurosci. Biobehav. Rev. 2019, 106, 49–57. [Google Scholar] [CrossRef]
- Algren, D.A.; Monteilh, C.P.; Punja, M.; Schier, J.G.; Belson, M.; Hepler, B.R.; Schmidt, C.J.; Miller, C.E.; Patel, M.; Paulozzi, L.J.; et al. Fentanyl-associated fatalities among illicit drug users in Wayne County, Michigan (July 2005–May 2006). J. Med. Toxicol. 2013, 9, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.D.; Flynn, G.L. Solubility behavior of narcotic analgesics in aqueous-media–solubilities and dissociation-constants of morphine, fentanyl, and sufentanil. Pharm. Res. 1989, 6, 147–151. [Google Scholar] [CrossRef]
- Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s Isolation and Identification of Drugs in Pharmaceuticals, Body Fluids, and Post-Mortem Material, 4th ed.; Pharmaceutical Press: London, UK, 2011. [Google Scholar]
- Misailidi, N.; Athanaselis, S.; Nikolaou, P.; Katselou, M.; Dotsikas, Y.; Spiliopoulou, C.; Papoutsis, I. A gc-ms method for the determination of furanylfentanyl and ocfentanil in whole blood with full validation. Forensic Toxicol. 2019, 37, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuckovic, S.; Prostran, M.; Ivanovic, M.; Dosen-Micovic, L.; Todorovic, Z.; Nesic, Z.; Stojanovic, R.; Divac, N.; Mikovic, Z. Fentanyl analogs: Structure–activity–relationship study. Curr. Med. Chem. 2009, 16, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 2nd ed.; Biomedical Publications: Davis, CA, USA, 1982. [Google Scholar]
- Thurlkill, R.L.; Cross, D.A.; Scholtz, J.M.; Pace, C.N. Pka of fentanyl varies with temperature: Implications for acid-base management during extremes of body temperature. J. Cardiothorac. Vasc. Anesth. 2005, 19, 759–762. [Google Scholar] [CrossRef]
- Meuldermans, W.E.G.; Hurkmans, R.M.A.; Heykants, J.J.P. Plasma-protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch. Int. Pharmacodyn. Ther. 1982, 257, 4–19. [Google Scholar]
- Albrecht, J. Study of electrochemical transformations of new designer drugs. Master’s Thesis, Palacky University in Olomouc, Olomouc, Czech Republic, 2019. [Google Scholar]
- Bergh, M.S.S.; Bogen, I.L.; Nerem, E.; Wohlfarth, A.; Wilson, S.R.; Oiestad, A.M.L. Discovering the major metabolites of the three novel fentanyl analogues 3-methylcrotonylfentanyl, furanylbenzylfentanyl, and 4-fluorocyclopropylbenzylfentanyl for forensic case work. Forensic Toxicol. 2021, 39, 167–178. [Google Scholar] [CrossRef]
- DEA. Controlled Substances. Available online: https://www.deadiversion.usdoj.gov/schedules/orangebook/c_cs_alpha.pdf (accessed on 19 October 2020).
- Labroo, R.B.; Paine, M.F.; Thummel, K.E.; Kharasch, E.D. Fentanyl metabolism by human hepatic and intestinal cytochrome p450 3a4: Implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab. Dispos. 1997, 25, 1072–1080. [Google Scholar]
- Burkle, H.; Dunbar, S.; VanAken, H. Remifentanil: A novel, short-acting, mu-opioid. Anesth. Analg. 1996, 83, 646–651. [Google Scholar] [CrossRef]
- Henkel, E.; Vella, R.; Behan, K.; Austin, D.; Kruger, P.; Fenning, A. The effect of concentration, reconstitution solution and ph on the stability of a remifentanil hydrochloride and propofol admixture for simultaneous co-infusion. BMC Anesthesiol. 2020, 20, 283. [Google Scholar] [CrossRef]
- Feasel, M.G.; Wohlfarth, A.; Nilles, J.M.; Pang, S.K.; Kristovich, R.L.; Huestis, M.A. Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry. AAPS J. 2016, 18, 1489–1499. [Google Scholar] [CrossRef]
- Watanabe, S. Metabolic Study of New Psychoactive Substances. Ph.D. Thesis, University of Technology, Sydney, Australia, 2018. [Google Scholar]
- Watanabe, S.; Vikingsson, S.; Roman, M.; Green, H.; Kronstrand, R.; Wohlfarth, A. In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. AAPS J. 2017, 19, 1102–1122. [Google Scholar] [CrossRef] [Green Version]
- Staeheli, S.N.; Baumgartner, M.R.; Gauthier, S.; Gascho, D.; Jarmer, J.; Kraemer, T.; Steuer, A.E. Time-dependent postmortem redistribution of butyrfentanyl and its metabolites in blood and alternative matrices in a case of butyrfentanyl intoxication. Forensic Sci. Int. 2016, 266, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Sohouli, E.; Keihan, A.H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M.E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110684. [Google Scholar] [CrossRef] [PubMed]
- Vikingsson, S.; Rautio, T.; Wallgren, J.; Astrand, A.; Watanabe, S.; Dahlen, J.; Wohlfarth, A.; Konradsson, P.; Wu, X.Y.; Kronstrand, R.; et al. Lc-qtof-ms identification of major urinary cyclopropylfentanyl metabolites using synthesized standards. J. Anal. Toxicol. 2019, 43, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Gampfer, T.M.; Wagmann, L.; Park, Y.M.; Cannaert, A.; Herrmann, J.; Fischmann, S.; Westphal, F.; Muller, R.; Stove, C.P.; Meyer, M.R. Toxicokinetics and toxicodynamics of the fentanyl homologs cyclopropanoyl-1-benzyl-4′-fluoro-4-anilinopiperidine and furanoyl-1-benzyl-4-anilinopiperidine. Arch. Toxicol. 2020, 94, 2009–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaabani, N.; Chan, N.W.C.; Jemere, A.B. A molecularly imprinted sol-gel electrochemical sensor for naloxone determination. Nanomaterials 2021, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Marchei, E.; Pacifici, R.; Mannocchi, G.; Marinelli, E.; Busardo, F.P.; Pichini, S. New synthetic opioids in biological and non-biological matrices: A review of current analytical methods. TrAC Trends Anal. Chem. 2018, 102, 1–15. [Google Scholar] [CrossRef]
- Lozier, M.J.; Boyd, M.; Stanley, C.; Ogilvie, L.; King, E.; Martin, C.; Lewis, L. Acetyl fentanyl, a novel fentanyl analog, causes 14 overdose deaths in Rhode Island, March–May 2013. J. Med. Toxicol. 2015, 11, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Ballantyne, J.A.; Baker, A.B. A sensitive assay for the simultaneous measurement of alfentanil and fentanyl in plasma. J. Pharm. Biomed. Anal. 1996, 14, 667–673. [Google Scholar] [CrossRef]
- Gergov, M.; Nokua, P.; Vuori, E.; Qjanpera, I. Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography-tandem mass spectrometry. Forensic Sci. Int. 2009, 186, 36–43. [Google Scholar] [CrossRef]
- Wang, L.Q.; Bernert, J.T. Analysis of 13 fentanils, including sufentanil and carfentanil, in human urine by liquid chromatography-atmospheric-pressure ionization-tandem mass spectrometry. J. Anal. Toxicol. 2006, 30, 335–341. [Google Scholar] [CrossRef]
- Kingsbury, D.P.; Makowski, G.S.; Stone, J.A. Quantitative-analysis of fentanyl in pharmaceutical preparations by gas-chromatography mass-spectrometry. J. Anal. Toxicol. 1995, 19, 27–30. [Google Scholar] [CrossRef]
- Slepchenko, G.B.; Gindullina, T.M.; Nekhoroshev, S.V. Capabilities of the electrochemical methods in the determination of narcotic and psychotropic drugs in forensic chemistry materials. J. Anal. Chem. 2017, 72, 703–709. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, J.F.; Tang, M.; Zhang, G.H.; Yu, L.; Zhao, X.B.; Ai, R.; Yu, H.L.; Shao, B.; He, Y. Synergistic recognition-triggered charge transfer enables rapid visual colorimetric detection of fentanyl. Anal. Chem. 2021, 93, 6544–6550. [Google Scholar] [CrossRef]
- Roda, G.; Faggiani, F.; Bolchi, C.; Pallavicini, M.; Dei Cas, M. Ten years of fentanyl-like drugs: A technical-analytical review. Anal. Sci. 2019, 35, 479–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alburges, M.E.; Hanson, G.R.; Gibb, J.W.; Sakashita, C.O.; Rollins, D.E. Fentanyl receptor assay 2. Utilization of a radioreceptor assay for the analysis of fentanyl analogs in urine. J. Anal. Toxicol. 1992, 16, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.J.; Wen, M.L.; Yao, Y. Potentiometric determination of fentanyl in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2002, 30, 667–673. [Google Scholar] [CrossRef]
- Garrido, J.M.P.J.; Delerue-Matos, C.; Borges, F.; Macedo, T.R.A.; Oliveira-Brett, A.M. Electrochemical analysis of opiates—An overview. Anal. Lett. 2004, 37, 831–844. [Google Scholar] [CrossRef]
- Hu, N.F.; Hong, G.; Lin, S.C. Adsorptive stripping voltammetry of a fentanyl derivative at a mercury-electrode. Talanta 1994, 41, 1269–1274. [Google Scholar] [CrossRef]
- Hu, N.; Guo, H.; Lin, S. Adsorptive stripping voltammetry properties of fentanyl at hg electrode. Talanta 1994, 41, 1929–1932. [Google Scholar] [CrossRef]
- Naghian, E.; Khosrowshahi, E.M.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of zn(ii)-mof. New J. Chem. 2020, 44, 9271–9277. [Google Scholar] [CrossRef]
- Najafi, M.; Sohouli, E.; Mousavi, F. An electrochemical sensor for fentanyl detection based on multi-walled carbon nanotubes as electrocatalyst and the electrooxidation mechanism. J. Anal. Chem. 2020, 75, 1209–1217. [Google Scholar] [CrossRef]
- Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Mikladal, B.F.; Zhang, Q.; Jiang, H.; Sainio, S.; Nordlund, D.; et al. Single-walled carbon nanotube network electrodes for the detection of fentanyl citrate. ACS Appl. Nano Mater. 2020, 3, 1203–1212. [Google Scholar] [CrossRef]
- Mishra, R.K.; Goud, K.Y.; Li, Z.H.; Moonla, C.; Mohamed, M.A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc. 2020, 142, 5991–5995. [Google Scholar] [CrossRef] [PubMed]
- Moonla, C.; Yugender Goud, K.; Teymourian, H.; Tangkuaram, T.; Ingrande, J.; Suresh, P.; Wang, J. An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta 2020, 218, 121205. [Google Scholar] [CrossRef]
- Barfidokht, A.; Mishra, R.K.; Seenivasan, R.; Liu, S.Y.; Hubble, L.J.; Wang, J.; Hall, D.A. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensor. Actuat. B Chem. 2019, 296, 126422. [Google Scholar] [CrossRef]
- Ott, C.E.; Cunha-Silva, H.; Kuberski, S.L.; Cox, J.A.; Arcos-Martínez, M.J.; Arroyo-Mora, L.A. Electrochemical detection of fentanyl with screen-printed carbon electrodes using square-wave adsorptive stripping voltammetry for forensic applications. J. Electroanal. Chem. 2020, 873, 114425. [Google Scholar] [CrossRef]
- Peng, L.J.; Wen, M.L.; Yao, Y. Construction and performance characteristics of new fentanyl-selective plastic membrane electrode. Anal. Sci. 2001, 17, 815–818. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Xu, H.F.; Wu, X.P.; Chi, Y.W.; Chen, G.N. Fabrication of a new electrochemiluminescent sensor for fentanyl citrate based on glassy carbon microspheres and ionic liquid composite paste electrode. Anal. Chim. Acta 2009, 647, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, H.; Wu, X.; Chen, H.; Xu, L.; Chen, Y.; Chen, G. Electrochemiluminescence determination of fentanyl citrate with a novel glassy carbon paste electrode. Luminescence 2008, 23, 99. [Google Scholar]
- Ahmar, H.; Fakhari, A.R.; Tabani, H.; Shahsavani, A. Optimization of electromembrane extraction combined with differential pulse voltammetry using modified screen-printed electrode for the determination of sufentanil. Electrochim. Acta 2013, 96, 117–123. [Google Scholar] [CrossRef]
- Milne, B.; Quintin, L.; Gillon, J.Y.; Pujol, J.F. Fentanyl decreases catecholamine metabolism measured by in vivo voltammetry in the rat locus coeruleus. Can. J. Physiol. Pharmacol. 1989, 67, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Milne, B.; Quintin, L.; Pujol, J.F. Fentanyl increases catecholamine oxidation current measured by in vivo voltammetry in the rat striatum. Can. J. Anaesth. 1989, 36, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, S.A.; Hubble, L.J.; Mishra, R.K.; Li, Z.H.; Goud, K.Y.; Barfidokht, A.; Shah, R.; Bagot, K.S.; McIntosh, A.J.S.; Wang, J. Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal. Chem. 2019, 91, 3747–3753. [Google Scholar] [CrossRef]
- Kolesnichenko, I.I.; Balashova, L.M.; Korobova, L.S. The development of a method of multisensory stripping voltammetry for analysis of medical preparations. Determination of fentanyl in lacrimal fluid. Biofizika 2021, 66, 491–495. [Google Scholar] [CrossRef]
- Langmaier, J.; Maier, V.; Samec, Z. Voltammetry of several natural and synthetic opioids at a polarized ionic liquid membrane. ChemElectroChem 2021, 8, 2519–2525. [Google Scholar] [CrossRef]
- Solis, E.; Cameron-Burr, K.T.; Kiyatkin, E.A. Heroin contaminated with fentanyl dramatically enhances brain hypoxia and induces brain hypothermia. Eneuro 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, E.; Cameron-Burr, K.T.; Shaham, Y.; Kiyatkin, E.A. Fentanyl-induced brain hypoxia triggers brain hyperglycemia and biphasic changes in brain temperature. Neuropsychopharmacology 2018, 43, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Kiyatkin, E.A. Central and peripheral mechanisms underlying physiological and drug-induced fluctuations in brain oxygen in freely-moving rats. Front. Integrat. Neurosci. 2018, 12, 44. [Google Scholar] [CrossRef]
- Misailidi, N.; Papoutsis, I.; Nikolaou, P.; Katselou, M.; Spiliopoulou, C.; Athanaselis, S. Furanylfentanyl: Another fentanyl analogue, another hazard for public health. Forensic Toxicol. 2018, 36, 1–11. [Google Scholar] [CrossRef]
Common Name (Summary Formula) Structural Formula | Common Name (Summary Formula) Structural Formula | Common Name (Summary Formula) Structural Formula |
---|---|---|
3-fluorofentanyl (C22H27FN2O) | butyrfentanyl (C23H30N2O) | furanylfentanyl (C24H26N2O2) |
4-fluorobutyrfentanyl (C23H29FN2O) | despropionyl fentanyl (4-ANPP) (C19H24N2) | isobutyrfentanyl (C23H30N2O) |
4-methoxybutyrfentanyl (C24H32N2O2) | despropionyl-2-fluorofentanyl (C19H23FN2) | 4-fluoroisobutyrfentanyl (C23H29FN2O) |
acetylfentanyl (C21H26N2O) | sufentanil (C22H30N2O2S) | methoxyacetylfentanyl (C22H28N2O2) |
β-hydroxythiofentanyl (C20H26N2O2S) | carfentanyl (C24H30N2O3) | ocfentanyl (C22H27FN2O2) |
tetrahydrofuranylfentanyl (C24H30N2O2) | valerylfentanyl (C24H32N2O) | alfentanil (C21H32N6O3) |
remifentanil (C20H28N2O5) | thiofentanyl (C20H26N2OS) | acrylfentanyl (C22H26N2O) |
3-methylcrotonylfentanyl (C₂₄H₃₀N₂O) | furanylbenzylfentanyl (C23H24N2O2) | 4-fluorocyclopropylbenzylfentanyl (C22H25FN2O) |
Compound | Mol. Mass [g mol−1] | Dissociation Constant pKA | PARTITION Coefficient Log P | Solubility in Water [g L−1] |
---|---|---|---|---|
Fentanyl | 336.471 | 8.99 (DB, e) | 4.05 (DB, e) | 0.74 (DB, e) |
8.4 [36] | 4.12 (DB, p-AG) | 0.15 (p-SF) | ||
8.92 ± 0.20 (p-SF) | 3.82 (DB, p-CA) | |||
8.99 [32] | 3.683 (p-SF) | |||
8.44 ± 0.05 [37] | 2.3 (pH 7.4 [33]) | |||
8.43 [38] | ||||
Norfentanyl | 232.321 | 9.81 ± 0.10 (p-SF) | 1.59 (CS, p-ACD/LogP) | 7.4 (p-SF) |
1.667 (p-SF) | ||||
Sufentanil | 386.552 | 8.86 (DB, p-SF) | 3.95 (DB, e) | 0.076 [39] |
8.51 [32] | 3.4 (DB, p-AG) | 0.012 (DB, p) | ||
8.01 [39] | 3.61 (DB, p-CA) | 0.15 (p-SF) | ||
8.0 [36] | 3.950 (p-SF) | |||
7.89 ± 0.20 (p-SF) | ||||
Carfentanyl | 394.515 | 8.05 (DB, p-CA) | 3.7 (DB, p-AG) | 0.0259 (DB, p-AG) |
7.76 ± 0.20 (p-SF) | 3.67 (DB, p-CA) | 0.19 (p-SF) | ||
3.684 (p-SF) | ||||
Acetylfentanyl | 322.44 | 8.92 ± 0.10 (p-SF) | 3.173 (p-SF) | 0.30 (p-SF) |
alfa-methylfentanyl | 350.50 | 9.37 ± 0.20 (p-SF) | 4.49 (DB, p-AG) | 0.014 (DB, p-AG) |
4.23 (DB, p-CA) | ||||
Acrylfentanyl | 334.45 | 8.72 ± 0.10 (p-SF) | 3.201 (p-SF) | 0.037 (p-SF) |
Butyrfentanyl | 350.50 | 8.92 ± 0.20 (p-SF) | 4.44 (DB, p-AG) | 0.0137 (DB, p-AG) |
4.26 (DB, p-CA) | ||||
Cyclopropylfentanyl | 348.48 | 8.75 ± 0.10 (p-SF) | 3.564 (p-SF) | 0.045 (p-SF) |
Furanylfentanyl | 374.48 | 8.71 ± 0.10 (p-SF) | 5.277 (p-SF) | 0.012 (p-SF) |
Methoxyacetylfentanyl | 352.47 | 8.88 ± 0.20 (p-SF) | 2.574 (p-SF) | 0.85 (p-SF) |
Ocfentanyl | 370.46 | 8.81 ± 0.20 (p-SF) | 2.816 (p-SF) | 0.26 (p-SF) |
tetrahydrofuranylfentanyl | 378.51 | 8.71 ± 0.10 (p-SF) | 2.815 (p-SF) | 0.016 (p-SF) |
p-fluroisobutyrylfentanyl | 368.49 | 8.91 ± 0.20 (p-SF) | 4.150 (p-SF) | 0.027 (p-SF) |
Alfentanil | 416.52 | 7.82 ± 0.20 (p-SF) | 2.16 (DB, e) | 0.252 (DB, p-AG) |
2.2 (DB, p-AG) | ||||
2.81 (DB, p-CA) | ||||
Remifentanil | 376.45 | 6.65 ± 0.20 (p-SF) | 1.75 (DB, p-AG) | 0.591 (DB, p-AG) |
1.52 (DB, p-CA) |
Analyte | Method | Working Electrode/Detector | LOD [µmol L−1] | Ref. |
---|---|---|---|---|
DBPPE | ASV | SMDE | 0.005 | [65] |
Fentanyl | ASV | SMDE | 0.050 | [66] |
Fentanyl | DPV | SPCE modified with MOF | 0.3 | [67] |
Fentanyl | DPV | MWCNTs-GCE | 0.1 | [68] |
Fentanyl | DPV | GCE + carbon nano-onions | 0.3 | [49] |
Fentanyl | DPV | SWCNTs | 0.0011 | [69] |
Fentanyl, norfentanyl | SWV | MWCNTs | 0.05 | [70] |
Fentanyl | SWV | Microcatheter-based dual sensor | 0.00218 | [71] |
Fentanyl | SWV | SPCE | 10 | [72] |
Fentanyl | SWASV | SPCE | 0.110 ± 0.051 | [73] |
Fentanyl | SWASV | SPCE | 0.692 ± 0.074 | [73] |
Fentanyl | Potentiometry | ISME | 5.43 | [63] |
Fentanyl | Potentiometry | ISME | 6.29 | [74] |
Fentanyl | HPLC | AD | 1.3 | [9] |
Fentanyl analogs | HPLC | AD | 1.3–8.7 | [9] |
Fentanyl | ECL | GCE and ILCPE | 0.0085 | [75,76] |
Sufentanil | DPV | SPE | 0.020 | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choińska, M.K.; Šestáková, I.; Hrdlička, V.; Skopalová, J.; Langmaier, J.; Maier, V.; Navrátil, T. Electroanalysis of Fentanyl and Its New Analogs: A Review. Biosensors 2022, 12, 26. https://doi.org/10.3390/bios12010026
Choińska MK, Šestáková I, Hrdlička V, Skopalová J, Langmaier J, Maier V, Navrátil T. Electroanalysis of Fentanyl and Its New Analogs: A Review. Biosensors. 2022; 12(1):26. https://doi.org/10.3390/bios12010026
Chicago/Turabian StyleChoińska, Marta Katarzyna, Ivana Šestáková, Vojtěch Hrdlička, Jana Skopalová, Jan Langmaier, Vítězslav Maier, and Tomáš Navrátil. 2022. "Electroanalysis of Fentanyl and Its New Analogs: A Review" Biosensors 12, no. 1: 26. https://doi.org/10.3390/bios12010026
APA StyleChoińska, M. K., Šestáková, I., Hrdlička, V., Skopalová, J., Langmaier, J., Maier, V., & Navrátil, T. (2022). Electroanalysis of Fentanyl and Its New Analogs: A Review. Biosensors, 12(1), 26. https://doi.org/10.3390/bios12010026