Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Characterization
2.3. Synthesis of apt1−GNPs
2.4. Fabrication of apt2−UCNPs
2.5. Bacteria Culture
2.6. Construction of Upconversion Fluorescent Probe and Detection of Shigella
2.7. Recovery Experiments for Samples
3. Results and Discussion
3.1. Characterization
3.2. Feasibility of the Upconversion Fluorescence Probe
3.3. Characterization of the Construction Process of Upconversion Fluorescence Probe
3.4. Optimization of Experimental Conditions
3.5. Determination of Shigella
3.6. Selectivity of the Developed Upconversion Fluorescence Probe
3.7. Analytical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, B.R.; Parish, M.E.; Schneider, K.R. Shigella as a Foodborne Pathogen and Current Methods for Detection in Food. Crit. Rev. Food Sci. Nutr. 2006, 46, 551–567. [Google Scholar] [CrossRef]
- Levin, R.E. Molecular Methods for Detecting and Discriminating Shigella Associated with Foods and Human Clinical Infec-tions—A Review. Food Biotechnol. 2009, 23, 1–7. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H.; Amini, B. A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Mater. Sci. Eng. C 2019, 105, 110113.1–110113.9. [Google Scholar] [CrossRef]
- Liding, Z.; Qiujiang, W.; Qinqin, H.; Qiang, C.; Wenlin, T.; Jinyang, Z.; Yuzhu, S.; Xueshan, X. Detection of Shigella in Milk and Clinical Samples by Magnetic Immunocaptured-Loop-Mediated Isothermal Amplification Assay. Front. Microbiol. 2018, 9, 94. [Google Scholar]
- He, P.; Wang, H.; Yan, Y.; Zhu, G.; Chen, Z. Development and Application of a Multiplex Fluorescent PCR for Shigella Detection and Species Identification. J. Fluoresc. 2022, 32, 707–713. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Yin, J.; Yue, M.; Mu, Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res. Int. 2021, 143, 110246. [Google Scholar] [CrossRef]
- Lehniger, L.; Rudloff, A.; Pollok, S.; Grosse, N.; Wessel, K.; Brendel, M.; Popp, J.; Weber, K. A Model System for Sensitive Detection of Viable E. coli Bacteria Combining Direct Viability PCR and a Novel Microarray-Based Detection Approach. Chemosensors 2021, 9, 357. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.K.; Zhang, T.T.; Bi, Y.; Shu, M.; Zhong, C.; Tang, K.J.; Wu, G.P. A Novel Real-Time Loop-Mediated Isothermal Amplification Combined with Immunomagnetic Beads Separation and Ethidium Bromide Monoazide Treatment for Rapid and Ultrasensitive Detection of Viable Escherichia coli O157:H7 in Milk. Food Anal. Methods 2021, 14, 944–956. [Google Scholar] [CrossRef]
- Xia, J.F.; Qiu, S.; Zeng, H.J.; Liu, C.; Liu, Q. A rapid detection of Escherichia coli O157:H7 by competition visual antigen macroarray. J. Food Saf. 2021, 41, e12872. [Google Scholar] [CrossRef]
- Matsui, K.; Tanabe, S.; Sun, S.Y.; Nguyen, D.; Kinoshita, F.; Yamamoto, Y.; Shiigi, H. Development of Metal Nanoparticle-immobilized Microplate for High-throughput and Highly Sensitive Fluorescence Analysis. Anal. Sci. 2020, 36, 1461–1465. [Google Scholar] [CrossRef]
- Liu, X.K.; Li, C.H.; Wang, Z.; Zhang, N.; Feng, N.; Wang, W.J.; Xin, X. Luminescent Hydrogel Based on Silver Nanocluster/Malic Acid and Its Composite Film for Highly Sensitive Detection of Fe3+. Gels 2021, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Wang, Z.; Sun, D.; Li, S.L.; Deng, Q.H.; Xin, X. Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine. Nanomaterial 2022, 12, 424. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ye, Y.X.; Jiang, C.Y.; Guo, M.Y.; Zhu, H.L. Design and synthesis of a novel “turn-on” fluorescent probe based on benzofuran-3(2H)-one for detection of hydrazine in water samples and biological systems. Dyes Pigment. 2021, 194, 109587. [Google Scholar] [CrossRef]
- Wang, J.; Peng, R.; Luo, Y.; Wu, Q.; Cui, Q. Preparation of fluorescent conjugated polymer micelles with multi-color emission for latent fingerprint imaging. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126192. [Google Scholar] [CrossRef]
- Lu, H.; Cui, H.; Duan, D.; Li, L.; Ding, Y. A novel molecularly imprinted electrochemical sensor based on a nitrogen-doped graphene oxide quantum dot and molybdenum carbide nanocomposite for indometacin determination. Analyst 2021, 146, 7178–7186. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Fan, X.; Peng, J.; Pan, L.Q.; Tu, K.; Chen, Y.P. Sandwich fluorometric method for dual-role recognition of Listeria monocytogenes based on antibiotic-affinity strategy and fluorescence quenching effect. Anal. Chim. Acta 2022, 1221, 340085. [Google Scholar] [CrossRef]
- Annavaram, V.; Chen, M.; Kutsanedzie, F.Y.H.; Agyekum, A.A.; Zareef, M.; Ahmad, W.; Hassan, M.M.; Huanhuan, L.; Chen, Q. Synthesis of highly fluorescent RhDCP as an ideal inner filter effect pair for the NaYF4:Yb,Er upconversion fluorescent nanoparticles to detect trace amount of Hg(II) in water and food samples. J. Photochem. Photobiol. A Chem. 2019, 382, 111950. [Google Scholar] [CrossRef]
- Chen, M.; Han, L.; Zhou, D.D.; Kong, L.Y.; Pan, L.Q.; Tu, K. Amplified UCNPs-Mitoxantrone dihydrochloride fluorescence PCR sensor based on inner filter for ultrasensitive and rapid determination of Salmonella typhimurium. Sens. Actuators B Chem. 2022, 355, 131287. [Google Scholar] [CrossRef]
- Chen, M.; Kutsanedzie, F.Y.H.; Cheng, W.; Li, H.; Chen, Q. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchem. J. 2019, 144, 296–302. [Google Scholar] [CrossRef]
- Liang, M.Y.; Zhao, B.; Xiong, Y.; Chen, W.X.; Huo, J.Z.; Zhang, F.; Wang, L.; Li, Y. A “turn-on” sensor based on MnO2 coated UCNPs for detection of alkaline phosphatase and ascorbic acid. Dalton Trans. 2019, 48, 16199–16210. [Google Scholar] [CrossRef]
- Si, F.; Zou, R.; Jiao, S.; Qiao, X.; Guo, Y.; Zhu, G. Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicol. Environ. Saf. 2018, 148, 862–868. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, X.B.; Chen, X.X.; Cao, X.Z.; Cao, J.; Xiong, X.F.; Zeng, W.B. A novel upconversion luminescence turn-on nanosensor for ratiometric detection of organophosphorus pesticides. RSC Adv. 2016, 6, 46317–46324. [Google Scholar] [CrossRef]
- Liang, T.; Li, Z.; Song, D.; Shen, L.; Zhuang, Q.G.; Liu, Z.H. Modulating the Luminescence of Upconversion Nanoparticles with Heavy Metal Ions: A New Strategy for Probe Design. Anal. Chem. 2016, 88, 9989–9995. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.Y.; Wang, W.N.; Zhang, C.Y.; Ruan, J.; Chen, B.J.; Xu, H.M.; Qian, H.S. Monitoring and removal of trace heavy metal ions via fluorescence resonance energy transfer mechanism: In case of silver ions. Chem. Eng. J. 2019, 375, 121927. [Google Scholar] [CrossRef]
- Chen, H.Q.; Xia, W.Y.; Gao, Q.; Wang, L. Sensitive quantitative image analysis of bisulfite based on near-infrared upconversion luminescence total internal reflection platform. Talanta 2021, 224, 121928. [Google Scholar] [CrossRef]
- Fang, A.J.; Long, Q.; Wu, Q.Q.; Li, H.T.; Zhang, Y.Y.; Yao, S.Z. Upconversion nanosensor for sensitive fluorescence detection of Sudan I-IV based on inner filter effect. Talanta 2016, 148, 129–134. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Hassan, M.M.; Rong, Y.W.; Liu, R.; Li, H.H.; Ouyang, Q.; Chen, Q.S. A solid-phase capture probe based on upconvertion nanoparticles and inner filter effect for the determination of ampicillin in food. Food Chem. 2022, 386, 132739. [Google Scholar] [CrossRef]
- Wang, P.; Wang, A.; Hassan, M.M.; Ouyang, Q.; Chen, Q. A highly sensitive Upconversion nanoparticles-WS2 nanosheet sensing platform for Escherichia coli detection. Sens. Actuators B Chem. 2020, 320, 128434. [Google Scholar] [CrossRef]
- Chen, M.; Hassan, M.; Li, H.H.; Chen, Q.S. Fluorometric determination of lead(II) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles. Microchim. Acta 2020, 187, 85. [Google Scholar] [CrossRef]
- Chen, M.; Kutsanedzie, F.Y.H.; Cheng, W.; Agyekum, A.A.; Li, H.H.; Chen, Q.S. A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion. Microchim. Acta 2018, 185, 378. [Google Scholar] [CrossRef]
- Ouyang, Q.; Yang, Y.; Ali, S.; Wang, L.; Chen, Q. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119734. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. Turn-on Fluoresence Sensor for Hg2+ in Food Based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Song, Y.Q.; Han, L.; Zhou, D.D.; Wang, Y.; Pan, L.Q.; Tu, K. An Ultrasensitive Upconversion Fluorescence Aptasensor Based on Graphene Oxide Release and Magnetic Separation for Staphylococcus aureus Detection. Food Anal. Methods 2022, 15, 2791–2800. [Google Scholar] [CrossRef]
- Luo, J.L.; Wang, J.P.; Mathew, A.S.; Yau, S.T. Ultrasensitive Detection of Shigella Species in Blood and Stool. Anal. Chem. 2016, 88, 2010–2014. [Google Scholar] [CrossRef]
- Xiao, R.; Rong, Z.; Long, F.; Liu, Q.Q. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 1–5. [Google Scholar] [CrossRef]
- Wu, S.J.; Duan, N.; He, C.X.; Yu, Q.R.; Dai, S.L.; Wang, Z.P. Surface-enhanced Raman spectroscopic-based aptasensor for Shigella sonnei using a dual-functional metal complex-ligated gold nanoparticles dimer. Colloids Surf. B Biointerfaces 2020, 190, 110940. [Google Scholar] [CrossRef]
- Song, M.S.; Sekhon, S.S.; Shin, W.R.; Kim, H.C.; Min, J.; Ahn, J.Y.; Kim, Y.H. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform. Molecules 2017, 22, 825. [Google Scholar] [CrossRef]
- Gong, W.H.; Duan, N.; Wu, S.J.; Huang, Y.K.; Chen, X.J.; Wang, Z.P. Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Anal. Methods 2015, 7, 3625–3631. [Google Scholar] [CrossRef]
Sensors | Linear Range (CFU/mL) | LOD (CFU/mL) | Detection Time | Reference |
---|---|---|---|---|
Electrochemical sensor | 3 × 103–3 × 104 | 18 | 78 min | [34] |
wave fiber sensor | 102–104 | 100 | - | [35] |
SERS sensor | 10–106 | 10 | 1.5 h | [36] |
Fluorescence sensor | 102–107 | 30 | 1 h | [38] |
Fluorescence sensor | 103–107 | 103 | 1.5 h | [37] |
Upconversion fluorescence sensor | 1.2 × 102–1.2 × 108 | 30 | 1 h | This work |
Sample | Spiked Levels (CFU/mL) | Our Developed Method (Mean a ± SD b) (CFU/mL) | Flat Colony Counting Method (Mean a ± SD b) (CFU/mL) | Recovery (%) |
---|---|---|---|---|
Chicken | 103 | (1.068 ± 0.170) × 103 | (1.077 ± 0.054) × 103 | 106.8 |
103 | (0.964 ± 0.084) × 103 | (0.977 ± 0.033) × 103 | 96.4 | |
103 | (0.881 ± 0.021) × 103 | (0.903 ± 0.028) × 103 | 88.1 | |
104 | (1.134 ± 0.160) × 104 | (1.090 ± 0.030) × 104 | 113.4 | |
104 | (1.111 ± 0.082) × 104 | (1.127 ± 0.053) × 104 | 111.1 | |
104 | (0.867 ± 0.026) × 104 | (0.933 ± 0.037) × 104 | 86.7 | |
105 | (1.042 ± 0.032) × 105 | (1.093 ± 0.041) × 105 | 104.2 | |
105 | (0.952 ± 0.010) × 105 | (1.003 ± 0.020) × 105 | 95.2 | |
105 | (0.895 ± 0.047) × 105 | (0.970 ± 0.069) × 105 | 89.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yan, Z.; Han, L.; Zhou, D.; Wang, Y.; Pan, L.; Tu, K. Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. Biosensors 2022, 12, 795. https://doi.org/10.3390/bios12100795
Chen M, Yan Z, Han L, Zhou D, Wang Y, Pan L, Tu K. Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. Biosensors. 2022; 12(10):795. https://doi.org/10.3390/bios12100795
Chicago/Turabian StyleChen, Min, Zhongyu Yan, Lu Han, Dandan Zhou, Yan Wang, Leiqing Pan, and Kang Tu. 2022. "Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella" Biosensors 12, no. 10: 795. https://doi.org/10.3390/bios12100795
APA StyleChen, M., Yan, Z., Han, L., Zhou, D., Wang, Y., Pan, L., & Tu, K. (2022). Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. Biosensors, 12(10), 795. https://doi.org/10.3390/bios12100795