A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Samples and Stress Exposure
2.2. Design and Implementation of SiPM Miniaturized Photon Counting Modules and Device
3. Results
3.1. Design Considerations for the SiPM
3.2. Development of Software for SiPM Photon Counting Delayed Florescence
3.2.1. Estimation of Higher-Order Counts
3.2.2. Crosstalk
3.2.3. Measurement of Higher-Level Avalanches
3.3. SiPM Photon Counting in Measuring Delayed Fluorescence
3.4. Photon Counting Biosensing
3.4.1. Photon Counting Biosensing: Impact of Acute Heat Stress
3.4.2. Photon Counting Biosensing: Impact of Acute Chill Stress
3.4.3. Photon Counting Biosensing: Impact of Chronic Drought
4. Discussion
4.1. Photon Counting Biosensing: Design Considerations
4.2. Future Embodiements: Delayed Fluorescence Biosensing on a Drone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather. Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Cassia, R.; Nocioni, M.; Correa-Aragunde, N.; Lamattina, L. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Front. Plant Sci. 2018, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Asad, U.; Asghari, B.; Naeem, K. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Front. Sustain. Food Syst. 2021, 5, 618092. [Google Scholar]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Aurora, G.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pareek, A.; Dhankher, O.P.; Foyer, C.H. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J. Exp. Bot. 2020, 71, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Extreme temperature responses, oxidative stress and antioxidant defense in plants. In Abiotic Stress-Plant Responses and Applications in Agriculture; Vahdati, K., Leslie, C., Eds.; IntechOpen: London, UK, 2013; pp. 169–205. [Google Scholar]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of temperature extremes on European vegetation during the growing season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef] [Green Version]
- Roper, J.M.; Garcia, J.F.; Tsutsui, H. Emerging Technologies for Monitoring Plant Health in Vivo. ACS Omega 2021, 6, 5101–5107. [Google Scholar] [CrossRef] [PubMed]
- Strehler, B.L.; Arnold, W. Light production in green plants. J. Gen. Physiol. 1951, 34, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Amesz, J.; van Gorkom, H.J. Delayed fluorescence in photosynthesis. Ann. Rev. Plant Physiol. 1978, 29, 47–66. [Google Scholar] [CrossRef]
- Goltsev, V.; Zaharieva, I.; Chernev, P.; Strasser, R.J. Delayed fluorescence in photosynthesis. Photosynth. Res. 2009, 101, 217–232. [Google Scholar] [CrossRef]
- Krasnovsky, A.A., Jr. Delayed fluorescence and phosphorescence of plants pigments. Photochem. Photobiol. 1982, 36, 733–741. [Google Scholar] [CrossRef]
- Guo, Y.; Jinglu, T. Applications of Delayed Fluorescence from Photosystem II. Sensors 2013, 13, 17332–17345. [Google Scholar] [CrossRef] [Green Version]
- Goltsev, V.; Zaharieva, I.; Chernev, P.; Strasser, R. Delayed Chlorophyll Fluorescence as a Monitor for Physiological State of Photosynthetic Apparatus. Biotechnol. Biotechnol. Equip. 2009, 23, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tan, J. A kinetic model structure for delayed fluorescence from plants. Biosystems 2009, 95, 98–103. [Google Scholar] [CrossRef]
- Parker, C.A.; Joyce, T.A. Delayed fluorescence and some properties of the chlorophyll triplets. Photochem. Photobiol. 1967, 6, 395–406. [Google Scholar] [CrossRef]
- Razinger, J.; Drinovec, L.; Berden-Zrimec, M. Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato. Cent. Eur. J. Biol. 2012, 7, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Velthuys, B.R.; Amesz, J. Temperature and preillumination dependence of delayed fluorescence of spinach chloroplasts. Biochem. Biophys. Acta 1975, 376, 162–168. [Google Scholar] [CrossRef]
- Abbott, J.A.; Campbell, T.A.; Massie, D.R. Delayed light emission and fluorescence responses of plants to chilling. Remote Sens. Environ. 1994, 47, 87–97. [Google Scholar] [CrossRef]
- Turzó, K.; Laczkó, G.; Filus, Z.; Marói, P. Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys. J. 2000, 79, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Lambrev, P.; Goltsev, V. Temperature affects herbicide-sensitivity of pea plants. Bulg. J. Plant Physiol. 1999, 25, 54–66. [Google Scholar]
- Berden-Zrimec, M.; Drinovec, L.; Molinari, I.; Zrimec, A.; Umani, S.F.; Monti, M. Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. J. Photochem. Photobiol. B Biol. 2008, 92, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Joliot, P.; Joliot, A.; Bouges, B.; Barbieri, G. Studies of system II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission. Photchem. Photobiol. 1971, 14, 287–305. [Google Scholar] [CrossRef]
- Jursinic, P.A. Delayed Fluorescence: Current Concepts and Status. In Light Emission by Plant and Bacteria, 1st ed.; Govindjee, Amesz, J., Fork, D.C., Eds.; Academic Press, Inc.: London, UK, 1986; pp. 291–328. [Google Scholar]
- Carminati, M.; Di Vita, D.; Buonanno, L.; Montagnani, G.L.; Fiorini, C. A Lightweight SiPM-Based Gamma-Ray Spectrometer for Environmental Monitoring with Drones. In Applications in Electronics Pervading Industry, Environment and Society, 1st ed.; Lecture Notes in Electrical Engineering; Saponara, S., De Gloria, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 738, pp. 55–61. [Google Scholar]
- Agishev, R.; Comerón, A.; Bach, J.; Rodriguez, A.; Sicard, M.; Riu, J.; Royo, S. Lidar with SiPM: Some capabilities and limitations in real environment. Opt. Laser Technol. 2013, 49, 86–90. [Google Scholar] [CrossRef]
- Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems. Rev. Sci. Instrum. 2016, 87, 073101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccia, M.; Nardo, L.; Santoro, R.; Schaffhauser, D. Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives. Nucl. Inst. Methods Phys. Res. A 2019, 926, 101–117. [Google Scholar] [CrossRef]
- Calabretta, M.M.; Montali, L.; Lopreside, A.; Fragapane, F.; Iacoangeli, F.; Roda, A.; Bocci, V.; D’Elia, M.; Michelini, E. Ultrasensitive on-field luminescence detection using a low-cost silicon photomultiplier device. Anal. Chem. 2021, 93, 7388–7393. [Google Scholar] [CrossRef]
- Fernandez-Göbel, T.F.; Deanna, R.; Muñoz, N.B.; Robert, G.; Asurmendi, S.; Lascano, R. Redox systemic signaling and induced tolerance responses during soybean—Bradyrhizobium japonicum interaction: Involvement of nod factor receptor and autoregulation of nodulation. Front. Plant Sci. 2019, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xing, D.; Chen, Q. A novel method for measuring photosynthesis using delayed fluorescence of chloroplast. Biosens. Bioelectron. 2004, 20, 454–459. [Google Scholar] [CrossRef]
- Wang, J.; Xing, D.; Zhang, L.; Jia, L. A new principle photosynthesis capacity biosensor based on quantitative measurement of delayed fluorescence in vivo. Biosens. Bioelectron. 2007, 22, 2861–2868. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, D.; Wang, J. A non-invasive and real-time monitoring of the regulation of photosynthetic metabolism biosensor based on measurement of delayed fluorescence in vivo. Sensors 2007, 7, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; de J Romero-Troncoso, R.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in developing chlorophyll fluorescence biosensing: A review. Sensors 2012, 12, 11853–11869. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Strasser, R.J.; Govindjee. Experimental in vivo measurements of light emission in plants: A perspective dedicated to David Walker. Photosynth. Res. 2012, 114, 69–96. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, W.; Wang, J.; Xing, D. Study on the Relationship between Delayed Fluorescence and Photosynthetic Capability at Elevated Temperature in Higher Plants. J. Phys. Conf. Ser. 2011, 277, 012020. [Google Scholar] [CrossRef] [Green Version]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Weis, E.; Berry, J.A. Plants and high temperature stress. Symp. Soc. Exp. Biol. 1988, 42, 329–346. [Google Scholar]
- Guy, C. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1999, 1, 231–242. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Oukarroum, A.; Goltsev, V.; Strasser, R.T. Temperature Effects on Pea Plants Probed by Simultaneous Measurements of the Kinetics of Prompt Fluorescence, Delayed Fluorescence and Modulated 820 nm Reflection. PLoS ONE 2013, 8, e59433. [Google Scholar] [CrossRef]
- Cajanek, M.; Stroch, M.; Lachetova, I.; Kalina, J.; Spunda, V. Characterization of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. Photochem. Photobiol. B Biol. 1998, 47, 39–45. [Google Scholar] [CrossRef]
- Murkowski, A. Heat Stress and Spermidine: Effect on Chlorophyll Fluorescence in Tomato Plants. Biol. Plant. 2001, 44, 53–57. [Google Scholar] [CrossRef]
- Chen, Z.; Galli, M.; Gallavotti, A. Mechanisms of temperature-regulated growth and thermotolerance in crop species. Curr. Opin. Plant Biol. 2022, 65, 102134. [Google Scholar] [CrossRef] [PubMed]
- Melcarek, P.K.; Brown, G.N. Effects of Chill Stress on Prompt and Delayed Chlorophyll Fluorescence from Leaves. Plant Physiol. 1977, 60, 822–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, R.K. Characteristics of prompt and delayed fluorescence from spinach chloroplasts. Biophys. J. 1969, 9, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Kan, X.; Chen, J.; Hua, H.; Li, Y.; Ren, J.; Feng, K.; Liu, H.; Deng, D.; Yin, Z. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environ. Exp. Bot. 2019, 158, 51–62. [Google Scholar] [CrossRef]
- Alemu, S.T. Photosynthesis limiting stresses under climate change scenarios and role of chlorophyll fluorescence: A review article. Cogent Food Agric. 2020, 6, 1785136. [Google Scholar] [CrossRef]
- Kannan, N.D.; Kulandaivelu, G. Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J. Med. Plant Res. 2011, 5, 3929–3935. [Google Scholar]
- Holzapfel, C.; Haug, A. Time course of microsecond delayed light emission from Scenedesmus Obiquus at intermittent illumination. Photochem. Photobiol. 1975, 21, 209–211. [Google Scholar] [CrossRef]
- Nemallapudi, M.V.; Gundacker, S.; Lecoq, P.; Auffray, E. Single photon time resolution of state of the art SiPMs. J. Instrum. 2016, 11, P10016. [Google Scholar] [CrossRef]
- Salvatori, E.; Fusaro, L.; Gottardini, E.; Pollastrini, M.; Goltsev, V.; Strasser, R.J.; Bussotti, F. Plant stress analysis; application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments. Plant Physiol. Biochem. 2014, 85, 105–113. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Morgun, V.N.; Rock, B.N.; Williams, D.L. Chlorophyll fluorescence and delayed fluorescence as potential tools in remote sensing: A reflection of some aspects of problems in comparative analysis. Remote Sens. Environ. 1994, 47, 98–105. [Google Scholar] [CrossRef]
- Yağmur, H.; Bayari, C.; Filizi, T.; Ertatligül, B.; Serbest, K. Conceptual Design of a Novel Roadable Flying Car. J. Smart Syst. Res. 2021, 2, 111–134. [Google Scholar]
- Kuznetsov, E. Temperature-compensated silicon photomultiplier. Nucl. Inst. Methods Phys. Res. A 2018, 912, 226–230. [Google Scholar] [CrossRef]
- Allen, C.H.; Hansson, B.; Raiche-Tanner, O.; Murugkar, S. Coherent anti-Stokes Raman scattering imaging using silicon photomultipliers. Opt. Lett. 2020, 45, 2299–2302. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Suganuma, Y.; Dhirani, A. Low-Cost, High-Performance Lock-in Amplifier for Pedagogical and Practical Applications. J. Chem. Educ. 2020, 97, 1167–1171. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
Prunus virginiana | Coleus amboinicus | ||||
---|---|---|---|---|---|
Conditions (°C) | Conditions (°C) | ||||
21 | 20.8 ± 0.7 | 96.4 ± 4.0 | 21 | 17.2 ± 0.6 | 60.9 ± 0.7 |
40 | 15.9 ± 0.6 | 105.1 ± 2.8 | 40 | 21.1 ± 0.7 | 67.1 ± 2.1 |
50 | 11.6 ± 0.7 | 135.3 ± 3.6 | 50 | 6.5 ± 0.2 | 55.1 ± 1.6 |
50, return 21 | 8.8 ± 0.5 | 119.4 ± 2.9 | 50, return 21 | 7.2 ± 0.3 | 57.1 ± 1.70 |
Spinacia oleracea | Coleus amboinicus | ||||
---|---|---|---|---|---|
Conditions (°C) | Conditions (°C) | ||||
21 | 52.4 ± 0.3 | - * | 21 | 22.0 ± 1.3 | 70.8 ± 1.6 |
3.0 | 50.4. ± 0.7 | 243.6 * ± 52.7 | 3.0 | 12.6 ± 0.6 | 97.0 ± 1.1 |
−17 | 5.3 ± 0.3 | 100.9 ± 4.6 | −17 | 5.4 ± 0.3 | 116.9 ± 7.9 |
−17, return 21 | 10.1 ± 1.0 | 156.2 ± 7.5 | −17, return 21 | 4.9 ± 0.3 | 107.4 ± 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietro, W.J.; Mermut, O. A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing. Biosensors 2022, 12, 817. https://doi.org/10.3390/bios12100817
Pietro WJ, Mermut O. A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing. Biosensors. 2022; 12(10):817. https://doi.org/10.3390/bios12100817
Chicago/Turabian StylePietro, William J., and Ozzy Mermut. 2022. "A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing" Biosensors 12, no. 10: 817. https://doi.org/10.3390/bios12100817
APA StylePietro, W. J., & Mermut, O. (2022). A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing. Biosensors, 12(10), 817. https://doi.org/10.3390/bios12100817