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Abstract: Formaldehyde (FA) is involved in multiple physiological regulatory processes and plays
a crucial role in memory storage. Meanwhile, FA has a notorious reputation as a toxic compound,
and it will cause a variety of diseases if its level is unbalanced in the human body. To date, there
have been numerous fluorescent probes for FA imaging reported. Among them, the probes based
on the 2−aza−Cope rearrangement have attracted the most attention, and their applications in
cell imaging have been greatly expanded. Herein, we screened the various trigger moieties of FA
fluorescent probes based on the mechanism of 2−aza−Cope rearrangement. FA−2, in which a
fluorophore is connected to a 4−nitrobenzylamine group and an allyl group, demonstrated the
highest sensitivity, selectivity, and reaction kinetics. Furthermore, FA−Lyso, derived from FA−2, has
been successfully designed and applied to monitor exogenous and endogenous FA fluctuations in
lysosomes of living cells.

Keywords: formaldehyde; fluorescent probe; 2−aza−Cope rearrangement; cell imaging

1. Introduction

As the simplest aldehyde molecule, formaldehyde (FA) is used in many fields, in-
cluding building materials, wood furniture, paint pigments, cosmetics, preservatives, and
disinfectants in medical laboratories [1]. FA is also known as a hazardous substance because
it can cause serious health problems. Nonetheless, FA can be generated endogenously
via the demethylation of N−methylated amino acid residues by demethylase and oxidase
enzymes [2]. As a result, FA maintains a concentration between 0.2–0.4 mM and acts as
a metabolic intermediate in the normal physiological environment of the brain, which
is essential for memory acquisition through the DNA demethylation cycle and cognitive
function [3–6]. When FA is overloaded, it can cause Alzheimer’s disease (AD), diabetes,
respiratory illness, cancer, and other diseases [7]. Consequently, developing robust tools to
monitor FA concentration fluctuations in living cells and tissues is critical.

Due to its high sensitivity, selectivity, and spatial and temporal resolution, fluorescent
techniques have attracted continuous attention and have been applied in the detection of
many types of biomolecules in living organisms [8–16]. To date, two primary strategies have
been reported for FA fluorescent probe design: one employs the 2−aza−Cope mechanism
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of rearrangement [17,18], and the other utilizes the condensation reaction mechanism
between amines or hydrazones [19,20]. Among these design strategies, the method based
on 2−aza−Cope mechanism has attracted much interest due to its high selectivity for FA.
However, up to now, there has been a lack of systematic screening of trigger moieties based
on the performance of selectivity, sensitivity, kinetics, etc. [21–27].

Herein, we developed a number of fluorescent probes (FA−1, FA−2, FA−3, FA−4,
FA−5) with different FA reaction units based on the same fluorescent dye to evaluate
their overall efficacy of FA detection (Scheme 1). Under the same conditions, the de-
tailed comparison study revealed that FA−2, in which the fluorophore is connected with
a 4−nitrobenzylamine group and an allyl group on the carbonyl carbon atom, demon-
strated the highest sensitivity, selectivity, and reaction kinetics. On the basis of FA−2,
FA−Lyso has been further designed and applied to monitor exogenous and endogenous
FA fluctuations in lysosomes in living cells successfully.
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2. Materials and Methods
2.1. Materials and Instruments
2.1.1. Apparatus

1H NMR and 13C NMR spectra were obtained on a Bruker 400 MHz spectrome-
ter (Bruker BioSpin, Fällanden, Switzerland). Mass spectrometry was performed with
Thermo TSQ Endura Triple Quadrupole Mass Spectrometer (Thermo Fisher, Frederick, MD,
USA). UV absorption spectra were recorded on Shimadzu UV−3600 Plus UV−VIS−NIR
Spectrophotometer (Shimadzu Corporation, Kyoto, Japan). Fluorescence spectra were
acquired with a FluoroMax−4 fluorescence photometer (Horiba Scientific, Kyoto, Japan).
Cell imaging was performed by a ZEISS LSM 800 Confocal Laser Scanning (Carl Zeiss AG,
Oberkochen, Germany) Microscope. Milli−Q water was applied in all experiments.

2.1.2. Reagents

All reagents were purchased from commercial suppliers and used as received un-
less otherwise noted. 6−hydroxy−2−naph−thaldehyde, trifluoromethanesulfonic an-
hydride, allylboronic acid pinacol ester, 4−(2−aminoethyl) morpholine, BINAP, and
sodium borohydride were bought from Bidepharm (Bide Pharmatech Co., Ltd., Shanghai,
China). Pyrrolidine and NH3 (7 M in methanol) were purchased from J&K Chemical (J&K
Chemical Ltd., Beijing, China). Cs2CO3, palladium (II) acetate, 2,4−dinitrobenzaldehyde,
4−nitrobenzaldehyde, anhydrous DCM, and methanol were obtained from Adamas−beta®

(Titan Scitific Co. Ltd., Shanghai, China). Milli−Q water was applied for the experiment
and the preparation of all the buffer.

2.2. Synthesis

FA−1, FA−2, FA−3, FA−4, FA−5, and FA−Lyso were synthesized according to the
route illustrated in Scheme S1 with satisfied reaction yields. Compounds A, B, C, and D
were reported by our group or other research groups and synthesized as in the literature
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accordingly [24,28–30]. All the characterizations of products were performed by 1H NMR,
13C NMR, and ESI−MS and shown in Supplementary Materials.

Synthesis of compound E
Palladium (II) acetate (23 mg, 0.102 mmol) and BINAP (54 mg, 0.87 mmol) were

added into the mixture of compound D (500 mg, 1.7 mmol), 4−(2−aminoethyl) morpholine
(1140 µL, 8.7 mmol) and cesium carbonate (848 mg, 2.6 mmol) in toluene under N2 and
stirred at 110 ◦C for 4 h. After that, the reaction was cooled to room temperature and
water and ethyl acetate were added for extraction. Then, the combined organic phase was
washed with saturated NaCl, dried over MgSO4, filtered, and concentrated. Compound E
was purified by flash chromatography on silica (petroleum ether: ethyl acetate = 1:1) as
light−yellow solid (243 mg, 49%). 1H NMR (400 MHz, CDCl3) δ 10.00 (s, 1H), 8.12 (s, 1H),
7.82 (dd, J = 8.5, 1.7 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 8.6 Hz, 1H), 6.97 (dd, J = 8.8,
2.4 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H), 4.87 (t, J = 4.9 Hz, 1H), 3.74 (t, J = 4.6 Hz, 4H), 3.31 (q,
J = 5.1 Hz, 2H), 2.71 (t, J = 6.8 Hz, 2H), 2.51 (t, J = 4.44 Hz, 4H). 13C NMR (100 MHz, CDCl3)
δ 192.03, 148.95, 139.23, 134.80, 130.96, 130.82, 126.72, 126.18, 123.96, 118.89, 104.00, 67.07,
56.82, 53.42, 39.48.

Synthesis of compound F
NH3 solution (300 µL, 7.0 N in CH3OH, 18 mmol) was added into the solution of

compound A (500 mg, 1.8 mmol) in anhydrous dichloromethane (DCM) in an ice bath
under N2. After stirring for 30 min, allylboronic acid pinacol ester (411 µL, 2 mmol) was
added and the solution was warmed to room temperature and stirred overnight. Then,
the solvent was removed under reduced pressure, and the crude product was further
purified by silica column chromatography to gain the compound F (91 mg, 15%). 1H NMR
(400 MHz, CDCl3) δ 7.63 (d, J = 3.28 Hz, 2H), 7.60 (d, J = 2.76 Hz, 1H), 7.37 (dd, J = 8.48,
1.68 Hz, 1H), 6.93 (dd, J = 8.80, 2.32 Hz, 1H), 6.80 (d, J = 2.12 Hz, 1H), 5.78−5.88 (m, 1H),
5.17 (d, J = 17.2 Hz, 1H), 5.13 (d, J = 11.1 Hz, 1H), 4.83 (t, J = 6.56 Hz, 1H), 3.74 (m, 4H), 3.28
(t, J = 5.76 Hz, 2H), 2.7 (t, J = 6.04 Hz, 2H), 2.59 (t, J = 7.1 Hz, 2H), 2.51 (m, 4H). 13C NMR
(100 MHz, CDCl3) δ 146.38, 134.93, 134.36, 129.12, 127.35, 126.55, 125.69, 125.30, 118.54,
118.50, 104.38, 67.08, 57.13, 55.75, 53.50, 42.20, 40.05.

Synthesis of FA−1
NH3 solution (370 µL, 7.0 M in MeOH, 22 mmol) was added into the solution of

compound A (500 mg, 2.2 mmol) in anhydrous DCM in an ice bath under N2. After
stirring for 30 min, allylboronic acid pinacol ester (502 µL, 2.4 mmol) was added and the
solution was warmed to room temperature and stirred overnight. The solvent was removed
under reduced pressure, and the crude product was further purified by silica column
chromatography to gain the product FA−1 (112 mg, 19% yield). 1H NMR (400 MHz,
CDCl3) δ 7.66 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 4.0 Hz, 1H), 7.60 (d, J = 3.5 Hz, 1H), 7.34 (dd,
J = 8.6, 1.6 Hz, 1H), 6.98 (dd, J = 8.9, 2.4 Hz, 1H), 6.73 (d, J = 2.2 Hz, 1H), 5.80–5.70 (m, 1H),
5.14–5.10 (d, J = 17.1 Hz, 1H), 5.07–5.04 (d, J = 10.2 Hz, 1H), 4.11–4.07 (m, 1H), 3.39 (m, 4H),
2.58–2.46 (m, 2H), 2.33 (s, 2H), 2.06–2.03 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 146.00,
138.47, 135.89, 134.66, 128.81, 126.19, 125.24, 124.62, 117.54, 115.99, 104.78, 55.58, 47.98, 44.15,
25.61. ESI−MS: calcd. for C18H23N2 [M + H]+ 267.1861, found 267.1850.

Synthesis of the probe FA−2 and FA−3
FA−1 (1 eq) and 4−nitrobenzaldehyde/2,4−dinitrobenzaldehyde (1.2 eq) were dis-

solved in chloroform and stirred at room temperature for 3 h. Then, MeOH was added as
solvent and NaBH4 (10 eq) was added into the mixture in batches within 3 h at 0 ◦C. After
stirring overnight at 0 ◦C, the solvent was removed by reduced pressure and the residue
was separated by silica gel column to provide the products.

FA−2 (53% yield). 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.7 Hz, 2H), 7.66 (d,
J = 9.0 Hz, 1H), 7.63 (d, J = 8.6 Hz, 1H), 7.54 (s, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.35 (dd, J = 8.5,
1.7 Hz, 1H), 7.00 (dd, J = 8.9, 2.4 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 5.83–5.68 (m, 1H), 5.11
(d, J = 17.1 Hz, 1H), 5.05 (d, J = 10.1 Hz, 1H), 3.77 (d, J = 14.4 Hz, 1H), 3.73 (d, J = 6.2 Hz,
1H), 3.68 (d, J = 14.5 Hz, 1H), 3.40 (t, J = 6.6 Hz, 4H), 2.56–2.42 (m, 2H), 2.09–2.03 (m, 4H).
13C NMR (100 MHz, CDCl3) δ 148.86, 147.06, 146.13, 135.69, 134.94, 128.84, 128.74, 126.45,
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126.22, 126.15, 125.45, 123.65, 117.69, 116.07, 104.82, 62.04, 50.76, 48.02, 43.03, 25.63. ESI−MS:
calcd. for C25H28N3O2 [M + H]+ 402.2182, found 402.2179.

FA−3 (49% yield). 1H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 2.3 Hz, 1H), 8.23 (dd,
J = 8.5, 2.3 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H),
7.48 (s, 1H), 7.28 (dd, J = 8.08, 1.68 Hz, 1H), 6.98 (dd, J = 8.9, 2.4 Hz, 1H), 6.71 (d, J = 2.2 Hz,
1H), 5.83–5.67 (m, 1H), 5.11 (d, J = 17.2 Hz, 1H), 5.07 (d, J = 10.2 Hz, 1H), 4.06 (d, J = 15.5 Hz,
1H), 3.95 (d, J = 15.5 Hz, 1H), 3.73 (dd, J = 7.8, 5.9 Hz, 1H), 3.39 (t, J = 6.6 Hz, 4H), 2.55–2.41
(m, 2H), 2.08–2.03 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 148.95, 146.63, 146.16, 143.54,
135.34, 135.13, 134.99, 132.76, 128.71, 126.80, 126.46, 126.36, 125.99, 125.39, 120.09, 117.96,
116.11, 104.71, 62.75, 48.47, 47.98, 42.83, 25.62. ESI−MS: calcd. for C25H27N4O4 [M + H]+

447.2032, found 447.2027.
Synthesis of the probe FA−4 and FA−5
Compound A (1.2 eq) and compound B/C (1 eq) were dissolved in CHCl3 and stirred

at room temperature for 3 h. Then, MeOH was added as solvent and NaBH4 (10 eq) was
added into the mixture in batches within 3 h at 0 ◦C. After stirring overnight at 0 ◦C, the
solvent was removed by reduced pressure, and the residue was separated by silica gel
column to provide the products.

FA−4 (53% yield). 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 8.8 Hz, 2H), 7.64 (d,
J = 8.9 Hz, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.45 (s, 1H), 7.23 (dd, J = 8.4,
1.7 Hz, 1H), 7.00 (dd, J = 8.9, 2.4 Hz, 1H), 6.75 (d, J = 2.2 Hz, 1H), 5.73–5.61 (m, 1H), 5.09
(s, 1H), 5.07–5.04 (m, 1H), 3.87–3.82 (m, 1H), 3.76 (d, J = 13.2 Hz, 1H), 3.58 (d, J = 13.2 Hz,
1H), 3.40 (t, J = 6.6 Hz, 4H), 2.43–2.36 (m, 2H), 2.09–2.03 (m, 4H). 13C NMR (100 MHz,
CDCl3) δ 152.15, 147.28, 146.05, 134.64, 134.46, 132.49, 128.67, 128.34, 126.87, 126.58, 126.26,
126.12, 123.82, 118.61, 116.05, 104.76, 61.08, 51.88, 47.96, 43.04, 25.62. ESI−MS: calcd. for
C25H28N3O2 [M + H]+ 402.2181, found 447.2177.

FA−5 (49% yield). 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 2.3 Hz, 1H), 8.35 (dd,
J = 8.7, 2.3 Hz, 1H), 8.20 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.9 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H),
7.35 (s, 1H), 7.15 (dd, J = 8.4, 1.5 Hz, 1H), 6.97 (dd, J = 8.9, 2.4 Hz, 1H), 6.69 (d, J = 2.1 Hz, 1H),
5.82–5.71 (m, 1H), 5.15 (d, J = 5.9 Hz, 1H), 5.11 (d, J = 13.8 Hz, 1H), 4.36 (dd, J = 8.8, 4.1 Hz,
1H), 3.63 (s, 2H), 3.39 (t, J = 6.5 Hz, 4H), 2.58–2.64(m, 1H), 2.25–2.33 (m, 1H), 2.08–2.02 (m,
4H). 13C NMR (100 MHz, CDCl3) δ 149.61, 146.75, 146.44, 146.13, 134.68, 133.91, 131.22,
128.67, 126.86, 126.83, 126.35, 125.93, 119.60, 119.47, 116.12, 104.69, 56.93, 52.84, 47.94, 42.30,
29.84, 25.64. ESI−MS: calcd. for C25H27N4O4 [M + H]+ 447.2032, found 447.2021.

Synthesis of the probe FA−Lyso
Compound F (90 mg, 0.3 mmol) and 4−nitrobenzaldehyde (55 mg, 0.36 mmol) were

dissolved in chloroform and stirred at room temperature for 3 h. Then, MeOH was added
as solvent and NaBH4 (113.2 mg, 3 mmol) was added into the mixture in batches within 3 h
at 0 ◦C. After stirring overnight at 0 ◦C, the solvent was removed by reduced pressure, and
the residue was chromatographed on a silica gel column to provide the probe FA−Lyso
(56 mg, 40%). 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 5.7 Hz,
1H), 7.60 (d, J = 6.0 Hz, 1H), 7.55 (s, 1H), 7.42 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H),
6.95 (dd, J = 8.8, 2.1 Hz, 1H), 6.82 (s, 1H), 5.83–5.65 (m, 1H), 5.11 (d, J = 17.1 Hz, 1H), 5.06
(d, J = 10.2 Hz, 1H), 3.79–3.72 (m, 6H), 3.67 (d, J = 14.4 Hz, 1H), 3.28 (t, J = 5.8 Hz, 2H),
2.70 (t, J = 5.9 Hz, 2H), 2.56–2.43 (m, 6H). 13C NMR (100 MHz, CDCl3) δ 148.77, 147.04,
146.29, 136.54, 135.57, 134.89, 128.85, 128.82, 127.42, 126.54, 126.28, 125.64, 123.67, 118.46,
117.84, 104.50, 67.13, 61.96, 57.13, 53.50, 50.78, 43.07, 40.14. ESI−MS: calcd. for C27H33N4O3
[M + H]+ 461.2553, found 461.2550.

2.3. General Procedure for Absorption and Fluorescent Measurement

Firstly, 5 mM stock solution of probe FA−1~FA−5 were prepared in appropriate
DMSO. Cys, Hcy, and GSH were dissolved in PBS buffer (pH 7.4, 50 mM) to form 500 mM
stock solution. CaCl2, ZnCl2, FeCl2, FeCl3, CuCl2, KNO3, NaNO2, NaHSO3, Na2SO3, and
NaSH were prepared as 500 mM stock solution in water. Glyoxal, 4−hydroxybenzaldehyde,
benzaldehyde, crotonaldehyde, and 4−nitrobenzaldehyde were prepared as 500 mM stock
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solution in DMSO. Concentrations of H2O2 and HOCl were detected by UV absorption
experiment by Beer–Lambert Law. Specifically, the extinction coefficient (ε) of −OCl and
H2O2 were 350 M−1 cm−1 and 43.6 M−1 cm−1 as well as the determined absorption was at
292 nm and 240 nm, respectively [31,32].

The stock solution of probe FA−1, FA−2, FA−3, FA−4, and FA−5 were added into
a 5 mL volumetric flask of PBS solution (pH 5, 10 mM) and diluted to 5 µM as the final
concentration. The different analytic species were then added, and the resulting solutions
were incubated for 60 min at 37 ◦C. After that, the absorption and fluorescence experiments
were conducted.

2.4. Cells Imaging

WI−38 cells were cultured in DMEM medium with 10% FBS and 1% antibiotics (peni-
cillin and streptomycin) at 37 ◦C under 5% CO2 atmosphere and seeded in a glass−bottomed
confocal dish (35 mm). After 24 h, NaHSO3 pretreated WI−38 cells were incubated with
probe FA−2 for 30 min. Then, FA was added into the medium for 1 h incubation. After
washing with DPBS, the dishes were placed on a confocal microscope and fluorescence
images were taken.

For colocalization imaging, the cells were treated with FA−Lyso for 30 min incubation
firstly. Then, FA was added into the medium for another 30 min incubation. After that,
cells were incubated with Lyso−Tracker Red and Mito−Tracker Deep Red for 15 min
respectively. A confocal fluorescence image was taken of the dishes in the end.

The WI38 cell line and HeLa cell line were obtained from Dr. Yongguang Jia in SCUT.

3. Result and Discussion

To begin with, the fluorophore of 6−(pyrrolidine−1−yl)−2−naphthaldehyde (FA-A)
was chosen as the basic building block due to its extraordinary features, including high
quantum yield, facile modification, and moderate stability towards ROS, RNS, and RSS.
Meanwhile, five recognition groups for FA were introduced into FA-A. All of the probes
were synthesized successfully with satisfied yields. The synthesis routes and chemical
structure characterizations (1H NMR, 13C NMR, and ESI−MS) were shown in Scheme S1
(Supplementary Materials).

After synthesis and characterization, initial absorption and fluorescence emission
experiments were performed. The absorbance variation of all probes in the presence and
absence of FA can be observed via UV−vis absorption spectrum (Figure S1 in Supplemen-
tary Materials). As a result of reaction with FA, FA−1, FA−2, and FA−3 showed a notable
enhancement and slight red−shift from 360 nm to 395 nm. However, FA−4 exhibited
just a mild increase in the presence of FA. As to FA−5, a remarkable and broad enhanced
absorbance has been observed after the reaction with FA. Using the absorption results, we
can conclude that all the probes showed the feasibility to react with FA in PBS buffer. This
result strengthened our confidence in subsequent studies of the fluorescence performance.

Next, we systematically investigated the reaction behavior of all probes towards FA
by time−dependent fluorescence profiles under the different pH values. As shown in
Figure 1 and Figure S2, FA−1 itself possessed remarkable fluorescence and the maximum
emission wavelength at 442 nm. After treatment with FA, the fluorescence signal at 442 nm
declined, and a new emission at 530 nm occurred simultaneously. Despite that FA−1
exhibited an increased ratio with the reaction of FA and a relatively optimal value at
pH 7, the increased ratio was relatively low (<6−fold), which limited its application as
the fluorescent probe (Figure 1 and Figure S2 in Supplementary Materials). For FA−2,
the reaction kinetics were significantly fast, and the fluorescence at 530 nm was sharply
increased (ca. 280−fold) in 1 h at pH 4 and 5 (Figure 1). The fluorescence response of FA−2
with FA increased when pH value decreased, whereas no fluorescence enhancement was
observed between pH 8–10 (Figure S3 in Supplementary Materials). FA−3 also showed a
similar response at 530 nm from pH 4 to 10 (Figure S4 in Supplementary Materials). Unlike
FA−2, however, the fluorescence of FA−3 increased by a much lower factor (Figure 1). For
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FA−4, the strong fluorescence signal was observed at around 442 nm after treating with FA
under pH 4 and 5 (Figure 1, Figure S5 in Supplementary Materials). Similar fluorescence
responses were obtained with FA−5 and FA−4 at the same pH value (Figure 1, Figure S6
in Supplementary Materials).
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Figure 1. Systematic comparison of the response performance of five probes for FA sensing. Fluores-
cence intensity ratio (F/F0) of probes (FA−1–FA−5) before and after FA treatment in the pH range of
4−10; 5 µM probes were incubated with 2 mM FA in the experiment; For FA−1, data was collected
at 442 and 530 nm correspondingly due to the ratiometric property of FA−1. For FA−2 and FA−3,
data was collected at 530 nm. For FA−4 and FA−5, data was collected at 442 nm.

The obvious difference on maximum emission wavelength between FA−2 and FA−4
is due to the difference of reaction products. The reaction of FA−2 and FA produces FA-A,
which contains aldehyde compound as the electron−withdrawing group in the fluorophore
(Scheme S2 in Supplementary Materials), while FA−4 produces 4−nitrobenzaldehyde and
FA-P, which is an alkylamine compound (Scheme S3 in Supplementary Materials) [17,24].
As the literature reported, higher electron−withdrawing effect in ICT fluorophore in-
duces the redshift of emission wavelength, as well as the increase of fluorescence quan-
tum yield [28,33]. To confirm the above theory, we synthesized fluorophore FA-A and
FA-P and tested the fluorescence intensity in PBS buffer (pH 5, 10 mM). The result
showed that FA-P, the reaction product of FA−4/FA−5 with FA displayed the maxi-
mum emission wavelength at 442 nm with the fluorescent quantum yield of 0.11. How-
ever, the maximum emission wavelength of FA-A, which is the product of FA−2/FA−3
and FA, is red−shifted to 530 nm with the fluorescent quantum yield of 0.25
(Figure S7 in Supplementary Materials) [22,28]. These results confirmed that FA−2′s flu-
orescence response is extraordinary for FA probe design based on the mechanism of
2−aza−Cope rearrangement.

To further compare the integrated capability towards FA detection, the selectivity
experiment was carried out in PBS buffer (pH 5.0, 10 mM). The probes were treated with
different biological species such as H2O2, HOCl, GSH, Hcy, Cys, Ca2+, Fe2+, Fe3+, etc.
In addition, we also included several aldehyde compounds, crotonaldehyde, acralde-
hyde, butyraldehyde, propionaldehyde, benzaldehyde, p−hydroxybenzaldehyde, and
4−nitrobenzaldehyde, to examine whether these probes show the reactivity to other alde-
hyde groups or not. In general, all of the probes (5 µM)) were treated with different analytes
(500 µM) and FA (500 µM) for one hour, and then the fluorescence spectrum was measured.
As shown in Figures S8 and S9, although FA−1 provided the ratiometric result, its reac-
tivity and selectivity towards FA are less than satisfactory, especially for NO2

−, which
could form diazonium salt with the amine group in FA−1 (Figure S8 in Supplementary
Materials). For FA−5, there is also no acceptable result obtained because of its low kinetic
and reactivity (Figures S16 and S17 in Supplementary Materials). In the reactions of FA−3
(Figures S12 and S13 in Supplementary Materials) and FA−4 (Figures S14 and S15 in
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Supplementary Materials) with FA, although the tolerable selectivity has been achieved,
the fluorescence intensity increment was relatively low, which was about 12 and 15−folds.
With regards to FA−2, it exhibited the best selectivity for FA and other competitive species,
which was more than 200−fold (Figure 2, Figures S10 and S11 in Supplementary Materials).
Taking these results together, FA−2 demonstrated the outstanding performance in terms
of reaction kinetic and selectivity upon the reaction with FA, suggesting that FA−2 could
serve as an excellent candidate in cell imaging.
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and various aldehyde compounds (500 µM). For FA−1, F/F0 is the fluorescence intensity ratio of
I530/I442. For FA−2–FA−5, the fluorescent intensity at maximum wavelength was used.

To evaluate the sensitivity of FA−2 towards FA, the titration experiments were con-
ducted in PBS buffer and monitored by fluorescence spectrum. As shown in Figure 3a and
Figure S18, the free probe FA−2 (5 µM) showed negligible fluorescence due to the PET
effect in PBS buffer (pH 5, 10 mM), while the fluorescence was increased gradually upon
the addition of FA. The fluorescence intensity at 530 nm matched well with added FA con-
centration from 0 to 1 mM, and the maximum intensity was reached when FA concentration
was up to 2 mM. Specifically, FA−2 also displayed a good linear relationship (R2 = 0.997)
with 0.65 µM of the limit of detection of and 2.56 µM of the limit of quantification. How-
ever, for FA−1, FA−3, FA−4, FA−5, the detection limit was 28.64 µM, 15.58 µM, 3.75 µM,
and 89.55 µM, respectively (Figures S19–S22 in Supplementary Materials). FA−2 also
displayed good recovery efficiency with different FA concentration using the standard
curves (Table S1 in Supplementary Materials). The above result suggested that FA−2 is
sensitive enough to detect low concentration of FA in aqueous solution.
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To further validate the pH effect on FA−2, the fluorescence intensity at 530 nm was
recorded when the pH value was switched between 5.0 and 7.4. As shown in Figure 3b, the
fluorescence signal at 530 nm gradually increased at pH 5.0. The reaction kinetics, however,
was almost stopped when the pH was adjusted to 7.4 in the same reaction solution. Upon
adjusting the pH back to 5.0, the fluorescence continued to increase again. By converting
pH three times, the same result was obtained. Based on these results, FA−2 performed
better in recognizing FA in acidic media than in neutral and basic media, indicating that
FA−2 or its modified probe can be used to monitor FA fluctuation in lysosomes in living
cells since the pH of the lysosome ranges from 4.0 to 6.0.

Having established that FA−2 can sense FA in vitro, we next evaluated its ability to
monitor FA concentration in living cells. Firstly, we modified probe FA−2 to FA−Lyso,
in which we rationally introduce a morpholine group for lysosomal targeting purposes.
After synthesis and structure characterization, the fluorescence response properties of
FA detection were studied. The result indicates that FA−Lyso maintains fast kinetics
and excellent sensitivity as FA−2 (Figure S23 in Supplementary Materials). On the basis
of the above results, the ability of FA−Lyso to monitor FA in living cells was assessed.
Firstly, cytotoxicity of FA−Lyso was evaluated after 24 h of incubation with cells, and no
obvious cytotoxicity was observed (Figure S24 in Supplementary Materials). To evaluate its
capability of monitoring FA, different concentrations of FA (0, 1.0, 2.0 mM) were incubated
with FA−Lyso in living cells for one hour, and the fluorescence was imaged by confocal
microscopy. As shown in Figure 4, the cells incubated with FA−Lyso only displayed
negligible fluorescence. In contrast, significant fluorescence signals can be observed in
the cells containing FA−Lyso and exogenous FA. In addition, the fluorescence intensity
enhanced gradually along with FA concentration increase (Figure 4c,e), demonstrating that
FA−Lyso was capable of imaging exogenous FA in living cells.

To further validate the fluorescence signal was generated from the specific reaction
between FA−Lyso and FA, we performed inhibition experiment with NaHSO3, which
could act as an excellent scavenger through reacting with FA at the central carbonyl
group [20,34]. The fluorescence signal in WI−38 cells, which were treated with FA−Lyso
with FA showed a statistically significant difference. In the cells pretreated with NaHSO3,
however, the fluorescence intensity obviously decreased. In addition, the fluorescence
intensity decreased accordingly with the increasing NaHSO3 concentration, proving the
capability of FA−Lyso to monitor FA fluctuation in living cells (Figure 4g–k).

Encouraged by the above results, we further evaluated the capability of FA−Lyso to
detect endogenous FA in living cells. We chose HeLa cells for our experiments as this cell
line has been reported to overexpress FA [35,36]. First, with the addition of FA−Lyso alone,
significantly enhanced fluorescence was observed (Figure 5a,b). However, when cells were
pretreated with NaHSO3 and then incubated with FA−Lyso, the fluorescence intensity was
dramatically decreased, indicating that FA in living cells has been depleted (Figure 5c,d).
Subsequently, cells were sequentially preincubated with NaHSO3, FA, and FA−Lyso, the
recovered fluorescence signal can be observed again (Figure 5e,f). Collectively, these
studies demonstrate that FA−Lyso is capable of detecting endogenous FA fluctuation in
living cells.

Subsequently, we further evaluated whether the targeted organelle of FA−Lyso is
lysosomes. WI−38 cells were incubated with FA−Lyso and commercially available dye
Lyso−Tracker Red (lysosome dye) or Mito−Tracker Deep Red (mitochondrial dye) in
the presence of FA for 1 h. As shown in Figure S25, bright yellow fluorescence was
observed in the merged image of WI38 cells treated with FA−Lyso and Lyso−Tracker Red
(Figure S25c in Supplementary Materials). In contrast, cells incubated with FA−Lyso and
Mito−Tracker Deep Red did not show significant overlap in green and red color regions
(Figure S25h in Supplementary Materials). Meanwhile, the fluorescence intensity profiles
of the regions of interest displayed synchronous changes in the presence of FA−Lyso and
Lyso−Tracker Red (Figure S25i in Supplementary Materials). In contrast, in the case of
Mito−Tracker Deep Red, no obvious synchronous changes were observed (Figure S25j in
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Supplementary Materials). Taken together, these results proved that FA−Lyso can be used
to monitor exogenous and endogenous FA levels in lysosomes in living cells.
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FA. (a,b) Cells were incubated with FA−Lyso (20 µM) for 60 min. (c,d) Cells were incubated with
NaSHO3 (2 mM) and FA−Lyso (20 µM) for 60 min. (e,f) Cells were incubated with NaSHO3 (2 mM),
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4. Conclusions

In summary, using 2−aza−Cope rearrangement strategy, five fluorescent probes,
FA−1, FA−2, FA−3, FA−4, and FA−5, were designed from the same fluorophore to
systemically screen their sensing ability of FA in aqueous buffer and living cells. Experi-
ment results demonstrated that among all five probes, FA−2 achieved improved kinetics,
selectivity, and sensitivity under weak acid condition. Furthermore, the probe FA−Lyso,
derived from FA−2, exhibited excellent ability to visualize exogenous and endogenous
FA fluctuations in lysosomes in living cells. Taken together, this study offers an attractive
design strategy for FA probes based on 2−aza−Cope rearrangement. Moreover, this design
strategy has been applied successfully for FA detection in living cells, demonstrating its
robust utility.
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