Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin
Abstract
:1. Introduction
2. Experimental Details
2.1. Chemicals and Reagents
2.2. Synthesis of P-CN
2.3. Synthesis of ZnO HPs
2.4. Synthesis of ZnO HPs/P-CN Composite
2.5. Instrumentations and Methods
2.6. Fabrication of Electrode
3. Results and Discussion
3.1. Physical Characterization of ZnO HPs/P-CN Composite
3.2. Electrochemical Performance of ZnO HPs/P-CN Composite
3.2.1. Electrochemical Characterization
3.2.2. Electrochemical Behavior of Electrodes
3.2.3. Effects of Concentration, pH, and Scan Rate
3.2.4. Electrochemical Detection of the Sensor
3.2.5. Specificity and Stability of the Sensor
3.2.6. Detection in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Yang, W. Analysis of Nano-Silicon Dioxide Modified Waste Building Brick Materials in the Application of Adsorption and Removal of Water Pollutants. Sci. Adv. Mater. 2021, 13, 2393–2402. [Google Scholar] [CrossRef]
- Qin, Y.; Li, W.; Akpinar, I.; Hang, C.; Huang, L.; Wang, L.; Gu, W.; Wu, J. Zeolitic Imidazolate Framework-8 (ZIF-8) and Its Derivative Nanomaterials for Antibiotics Adsorption in Contaminated Water. J. Nanoelectron. Optoelectron. 2021, 16, 1851–1860. [Google Scholar] [CrossRef]
- Tan, X.; Zheng, Z.; Peng, B.; Wu, X.; Huang, X.; Chen, X. Simultaneous Degradation of p-Nitrophenol and Recovery of Copper from Wastewater in Electrochemical Reactor Under High Salinity. Sci. Adv. Mater. 2021, 13, 2450–2459. [Google Scholar] [CrossRef]
- Gai, S.; Zhang, J.; Fan, R.; Xing, K.; Chen, W.; Zhu, K.; Zheng, X.; Wang, P.; Fang, X.; Yang, Y. Highly stable zinc-based metal-organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water. ACS Appl. Mater. Interfaces 2020, 12, 8650–8662. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Chen, H.; Xu, L.; Ai, W.; Lin, B.; Feng, Q.; Cai, K. Kernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopy. Sci. Total Environ. 2020, 714, 136765. [Google Scholar] [CrossRef]
- Li, X.-L.; Liang, Y.-L.; Li, M.-X.; Xin, L. Development of a Polyaluminum Ferric Titanium Chloride for Phosphorous Removal in Water. Sci. Adv. Mater. 2021, 13, 2287–2294. [Google Scholar] [CrossRef]
- Yan, J.; Wei, Y.; Wen, Y.; Cai, H.; Xiao, J.; Wu, S.; Jin, S. Adsorption and Migration Characteristics of Fluorine in Ash-Sluicing Water in Soils. Sci. Adv. Mater. 2021, 13, 705–717. [Google Scholar] [CrossRef]
- Guo, R.; Liu, H.; Yang, K.; Wang, S.; Sun, P.; Gao, H.; Wang, B.; Chen, F. β-cyclodextrin polymerized in cross-flowing channels of biomass sawdust for rapid and highly efficient pharmaceutical pollutants removal from water. ACS Appl. Mater. Interfaces 2020, 12, 32817–32826. [Google Scholar] [CrossRef]
- Jin, C.; Li, W.; Chen, Y.; Li, R.; Huo, J.; He, Q.; Wang, Y. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and k-doped exfoliated g-c3n4 nanosheets. Ind. Eng. Chem. Res. 2020, 59, 2860–2873. [Google Scholar] [CrossRef]
- Cook, S.M.; Vanduinen, B.J.; Love, N.G.; Skerlos, S.J. Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ. Sci. Technol. 2012, 46, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Diab, R.; Ghazvini, K.; Bazzaz, B.S.F. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016, 95, 32–42. [Google Scholar] [CrossRef]
- Shokoohi, R.; Ghobadi, N.; Godini, K.; Hadi, M.; Atashzaban, Z. Antibiotic detection in a hospital wastewater and comparison of their removal rate by activated sludge and earthworm-based vermifilteration: Environmental risk assessment. Process Saf. Environ. Prot. 2020, 134, 169–177. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, C.; Zhu, Y.; Wang, Q.; Geng, L. Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites. Electrochim. Acta 2021, 393, 139054. [Google Scholar] [CrossRef]
- Zarei, K.; Ghorbani, M. Fabrication of a new ultrasensitive AuNPs˗MIC˗based sensor for electrochemical determination of streptomycin. Electrochim. Acta 2019, 299, 330–338. [Google Scholar] [CrossRef]
- Chelliah, K.; Vinothkumar, V.; Chen, S.M.; Sangili, A. Highly sensitive electrode materials for voltammetric determination of nitrofurantoin based zinc cobaltate nanosheet. New J. Chem. 2020, 44, 12036–12047. [Google Scholar] [CrossRef]
- He, B.; Li, J. A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite. Anal. Methods 2019, 11, 1427–1435. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Tang, X.; Cheng, Z.; Liu, H. Tunable plasmonics of hollow raspberry-like nanogold for robust raman scattering detection of antibiotic on portable Raman spectrometer. Analyst 2020, 145, 5854–5860. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Hsu, Y.F.; Wang, S.F.; George, M.; Veerakumar, P.; Lin, K.C. Electrochemical sensor-based barium zirconate on sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide (anticancer drug). J. Electroanal. Chem. 2021, 901, 115782. [Google Scholar] [CrossRef]
- Kummari, S.; Kumar, V.S.; Gobi, K.V. Facile Electrochemically reduced graphene oxide-multi-walled carbon nanotube nanocomposite as sensitive probe for in-vitro determination of nitrofurantoin in biological fluids. Electroanalysis 2020, 32, 2452–2462. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Chen, S.M. Robust and selective electrochemical detection of antibiotic residues: The case of integrated lutetium vanadate/graphene sheets architectures. J. Hazard. Mater. 2019, 384, 121304. [Google Scholar] [CrossRef] [PubMed]
- Kokulnathan, T.; Wang, T.J. Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: An efficient catalyst for the electrochemical detection of nitrofurantoin. Compos. Part B Eng. 2019, 174, 106914. [Google Scholar] [CrossRef]
- Annalakshmi, M.; Sumithra, S.; Chen, S.M.; Chen, T.W.; Zheng, X.H. Facile synthesis of ultrathin NiSnO3 nanoparticles for enhanced electrochemical detection of an antibiotic drug in water bodies and biological samples. New J. Chem. 2020, 44, 10604–10612. [Google Scholar] [CrossRef]
- Alrassol, K.S.A.; Qasim, Q.A.; Ahmed, G.S.; Al-Salman, H.N.K. A modified and credible methods to estimate nitrofurantoin in the standard of substances and pharmaceutical dosage. Int. J. Pharm. Res. 2019, 11, 1057–1072. [Google Scholar] [CrossRef]
- Huo, J.C.; Yang, H.X.; Ma, Y.; Bai, J. Lightweight, Flexible and Hydrophobic Cotton Fiber/Silica Aerogel Composite by Freeze-Drying for Organic Solvent/Water Separation and Thermal Insulation. Sci. Adv. Mater. 2021, 13, 1820–1824. [Google Scholar] [CrossRef]
- Huttner, E.; Verhaegh, M.; Harbarth, S.; Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother. 2015, 70, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- Hang, C.; Akpinar, I.; Qin, Y.; Huang, L.; Wang, L.; Li, W.; Wu, J. A Review on Adsorption of Organic Pollutants from Water by UiO-67 and Its Derivatives. J. Nanoelectron. Optoelectron. 2021, 16, 1861–1873. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Zhuang, Q.; Ni, Y. Label-free photoluminescence assay for nitrofurantoin detection in lake water samples using adenosine-stabilized copper nanoclusters as nanoprobes. Talanta 2018, 179, 409–413. [Google Scholar] [CrossRef]
- Meng, M.; Qin, N.; Sun, L.; Chen, Y.; Xu, K.; Zhang, Y.; Liu, M.; Du, S.; Liu, K.; Feng, Y.; et al. Lightweight 3D-TiO2 Nanotube Arrays on Ti Mesh for Promoted Photoelectrochemical Water Splitting. J. Nanoelectron. Optoelectron. 2021, 16, 1342–1347. [Google Scholar] [CrossRef]
- Harrison, J.; Lewis, D.A.; Ancill, R.J. The spectrophotometric determination of nitrofurantoin in blood and urine. Analyst 1973, 98, 146. [Google Scholar] [CrossRef] [PubMed]
- Mazzara, F.; Patella, B.; Aiello, G.; O’Riordan, A.; Torino, C.; Vilasi, A.; Inguanta, R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim. Acta 2021, 388, 138652. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Kumar, E.A.; Ahmed, F. Construction of nickel cobalt-layered double hydroxide/functionalized–halloysite nanotubes composite for electrochemical detection of organophosphate insecticide. Chem. Eng. J. 2021, 433, 133639. [Google Scholar] [CrossRef]
- Joseph, X.B.; Baby, J.N.; Wang, S.-F.; Sriram, B.; George, M. Interfacial superassembly of Mo2C@NiMn-LDH frameworks for electrochemical monitoring of carbendazim fungicide. ACS Sustain. Chem. Eng. 2021, 9, 14900–14910. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Wang, S.F.; Hsu, Y.F.; Sherlin, V.A.; George, M. Well-designed construction of yttrium orthovanadate confined on graphitic carbon nitride sheets: Electrochemical investigation of dimetridazole. Inorg. Chem. 2021, 60, 13150–13160. [Google Scholar] [CrossRef] [PubMed]
- Muthukutty, B.; Ganesamurthi, J.; Chen, S.M.; Arumugam, B.; Maochang, F.; Wabaidur, S.M.; Othman, Z.A.A.L.; Altalhi, T.; Ali, M.A. Construction of novel binary metal oxides: Copper oxide–tin oxide nanoparticles regulated for selective and nanomolar level electrochemical detection of anti-psychotic drug. Electrochim. Acta 2021, 386, 138482. [Google Scholar] [CrossRef]
- Mehta, S.K.; Singh, K.; Umar, A.; Chaudhary, G.R.; Singh, S. Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochim. Acta 2012, 69, 128–133. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.; Kong, Q.; Wang, X.; Guo, X.; Li, W.; Jiao, K. Shape-controllable ZnO nanostructures based on synchronously electrochemically reduced graphene oxide and their morphology-dependent electrochemical performance. Electrochim. Acta 2015, 182, 1037–1045. [Google Scholar] [CrossRef]
- Dong, Q.; Ryu, H.; Lei, Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta 2021, 370, 137744. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Es’haghi, Z. Electrochemical biosensing platform based on molecularly imprinted polymer reinforced by ZnO–graphene capped quantum dots for 6-mercaptopurine detection. Electrochim. Acta 2018, 283, 1170–1177. [Google Scholar] [CrossRef]
- Saritha, D.; Koirala, A.R.; Venu, M.; Reddy, G.D.; Reddy, A.V.B.; Sitaram, B.; Madhavi, G.; Aruna, K. A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochim. Acta 2019, 313, 523–531. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing. Microchim. Acta 2018, 185, 358. [Google Scholar] [CrossRef]
- Napi, M.L.M.; Sultan, S.M.; Ismail, R.; How, K.W.; Ahmad, M.K. Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials 2019, 12, 2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokulnathan, T.; Wang, T.-J. Vanadium carbide-entrapped graphitic carbon nitride nanocomposites: Synthesis and electrochemical platforms for accurate detection of furazolidone. ACS Appl. Nano Mater. 2020, 3, 2554–2561. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Hu, X.; Liu, Y.; Wang, G. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim. Acta 2019, 317, 341–347. [Google Scholar] [CrossRef]
- Ponnaiah, S.K.; Prakash, P.; Vellaichamy, B.; Paulmony, T.; Selvanathan, R. Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets. Electrochim. Acta 2018, 283, 914–921. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Chen, S.M. Praseodymium vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: The role of a synergistic electrocatalyst for the detection of metronidazole. ACS Appl. Mater. Interfaces 2019, 11, 7893–7905. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Wang, S.F.; Govindasamy, M.; George, M.; Jothiramalingam, R. Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Microchim. Acta 2020, 187, 654. [Google Scholar] [CrossRef]
- Li, J.; Qi, Y.; Mei, Y.; Ma, S.; Li, Q.; Xin, B.; Yao, T.; Wu, J. Construction of phosphorus-doped carbon nitride/phosphorus and sulfur co-doped carbon nitride isotype heterojunction and their enhanced photoactivity. J. Colloid Interface Sci. 2020, 566, 495–504. [Google Scholar] [CrossRef]
- Su, J.; Geng, P.; Li, X.; Zhao, Q.; Quan, X.; Chen, G. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance. Nanoscale 2015, 7, 16282–16289. [Google Scholar] [CrossRef]
- Li, B.; Si, Y.; Fang, Q.; Shi, Y.; Huang, W.Q.; Hu, W.; Pan, A.; Fan, X.; Huang, G.F. Hierarchical self-assembly of well-defined louver-like p-doped carbon nitride nanowire arrays with highly efficient hydrogen evolution. Nano-Micro Lett. 2020, 12. [Google Scholar] [CrossRef]
- Kesavan, T.; Partheeban, T.; Vivekanantha, M.; Prabu, N.; Kundu, M.; Selvarajan, P.; Umapathy, S.; Vinu, A.; Sasidharan, M. Design of p-doped mesoporous carbon nitrides as high-performance anode materials for li-ion battery. ACS Appl. Mater. Interfaces 2020, 12, 24007–24018. [Google Scholar] [CrossRef]
- Ren, J.T.; Wang, Y.S.; Chen, L.; Gao, L.J.; Tian, W.W.; Yuan, Z.Y. Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 2020, 389, 124408. [Google Scholar] [CrossRef]
- Liu, B.; Ye, L.; Wang, R.; Yang, J.; Zhang, Y.; Guan, R.; Tian, L.; Chen, X. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and Product Selectivity. ACS Appl. Mater. Interfaces 2018, 10, 4001–4009. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Miao, Y.; Feng, G.; Zhang, R. Facet-selective photodeposition of gold nanoparticles on faceted ZnO crystals for visible light photocatalysis. J. Colloid Interface Sci. 2016, 475, 112–118. [Google Scholar] [CrossRef]
- Hussain, S.K.; Yu, J.S. Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chem. Eng. J. 2019, 361, 1030–1042. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Hsu, Y.F.; Wang, S.F.; Joseph, X.B.; George, M.; Veerakumar, P.; Lin, K.C. MnCo2O4 microflowers anchored on P-dopedg-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl. Electron. Mater. 2021, 3, 3915–3926. [Google Scholar] [CrossRef]
- Ma, T.Y.; Dai, S.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. 2014, 126, 7409–7413. [Google Scholar] [CrossRef]
- Gutul, T.; Rusu, E.; Condur, N.; Ursaki, V.; Goncearenco, E.; Vlazan, P. Preparation of poly(N-vinylpyrrolidone)-stabilized zno colloid nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Xin, L.; Jia, F.; Xie, J.; Li, W. Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction. Langmuir 2016, 32, 12569–12578. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Guan, J.; Jiang, Y.; Hou, T.; Mu, X. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater. Res. Bull. 2013, 48, 3485–3491. [Google Scholar] [CrossRef]
- Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem. 2016, 128, 1862–1866. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Y.; Wang, Y.; Fang, J.; Qi, Y.; Zhou, Y.; Bu, X.; Zhuo, S. Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 616, 152–162. [Google Scholar] [CrossRef] [PubMed]
- deLima-Neto, P.; Correia, A.N.; Portela, R.R.; Julião, M.d.; Linhares-Junior, G.F.; deLima, J.E.S. Square wave voltammetric determination of nitrofurantoin in pharmaceutical formulations on highly boron-doped diamond electrodes at different boron-doping contents. Talanta 2010, 80, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Hwa, K.Y.; Sharma, T.S.K. Nano assembly of NiFe spheres anchored on f-MWCNT for electrocatalytic reduction and sensing of nitrofurantoin in biological samples. Sci. Rep. 2020, 10, 12256. [Google Scholar] [CrossRef] [PubMed]
- Baby, J.N.; Sriram, B.; Wang, S.F.; George, M. Effect of various deep eutectic solvents on the sustainable synthesis of MgFe2O4 nanoparticles for simultaneous electrochemical determination of nitrofurantoin and 4-nitrophenol. ACS Sustain. Chem. Eng. 2020, 8, 1479–1486. [Google Scholar] [CrossRef]
Electrode Materials | Quantitative Method | Linear Range (µM) | Sensitivity (μA μM−1 cm−2) | LOD (µM) | Ref. |
---|---|---|---|---|---|
ErGO-CNT | i-t | 0.005–2.81 | 36.3 | 0.0187 | [9] |
LuV/GR | i-t | 0.008–256 | 1.709 | 0.001 | [10] |
NiSnO | i-t | 0.0066–466.6 | – | 0.003 | [12] |
rGO/Fe3O4 NRs | DPV | 0.1–100 | – | 0.083 | [14] |
NiO/BCN | i-t | 0.05–230 | 1.15 | 0.01 | [15] |
BDDFE | SWV | 0.497–5.66 | – | 0.0082 | [21] |
NiFe/f-MWCNT | DPV | 0.1–352.4 | 11.45 | 0.03 | [22] |
MgFe2O4 | DPV | 3–302 | – | 0.033 | [23] |
ZnO HPs/P-CN | i-t | 0.01–111 | 4.62 | 0.002 | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.; Kokulnathan, T.; Umar, A.; Akbar, S.; Kumar, S.; Shaalan, N.M.; Arshi, N.; Alam, M.G.; Aljaafari, A.; Alshoaibi, A. Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin. Biosensors 2022, 12, 856. https://doi.org/10.3390/bios12100856
Ahmed F, Kokulnathan T, Umar A, Akbar S, Kumar S, Shaalan NM, Arshi N, Alam MG, Aljaafari A, Alshoaibi A. Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin. Biosensors. 2022; 12(10):856. https://doi.org/10.3390/bios12100856
Chicago/Turabian StyleAhmed, Faheem, Thangavelu Kokulnathan, Ahmad Umar, Sheikh Akbar, Shalendra Kumar, Nagih M. Shaalan, Nishat Arshi, Mohd Gulfam Alam, Abdullah Aljaafari, and Adil Alshoaibi. 2022. "Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin" Biosensors 12, no. 10: 856. https://doi.org/10.3390/bios12100856
APA StyleAhmed, F., Kokulnathan, T., Umar, A., Akbar, S., Kumar, S., Shaalan, N. M., Arshi, N., Alam, M. G., Aljaafari, A., & Alshoaibi, A. (2022). Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin. Biosensors, 12(10), 856. https://doi.org/10.3390/bios12100856