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Abstract: In this work, Ni-Co layered double hydroxide (Ni–Co LDH) hollow nanostructures were
synthesized and characterized by X-ray diffraction (XRD), field emission-scanning electron mi-
croscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR) techniques. A screen-printed
electrode (SPE) surface was modified with as-fabricated Ni–Co LDHs to achieve a new sensing plat-
form for determination of sumatriptan. The electrochemical behavior of the Ni–Co LDH-modified
SPE (Ni-CO LDH/SPE) for sumatriptan determination was investigated using voltammetric methods.
Compared with bare SPE, the presence of Ni-Co LDH was effective in the enhancement of electron
transport rate between the electrode and analyte, as well as in the significant reduction of the overpo-
tential of sumatriptan oxidation. Differential pulse voltammetry (DPV) was applied to perform a
quantitative analysis of sumatriptan. The linearity range was found to be between 0.01 and 435.0 µM.
The limits of detection (LOD) and sensitivity were 0.002 ± 0.0001 µM and 0.1017 ± 0.0001 µA/µM,
respectively. In addition, the performance of the Ni-CO LDH/SPE for the determination of sumatrip-
tan in the presence of naproxen was studied. Simultaneous analysis of sumatriptan with naproxen
showed well-separated peaks leading to a quick and selective analysis of sumatriptan. Furthermore,
the practical applicability of the prepared Ni-CO LDH/SPE sensor was examined in pharmaceutical
and biological samples with satisfactory recovery results.

Keywords: Ni-Co layered double hydroxide hollow nanostructures; screen-printed electrode;
sumatriptan; naproxen

1. Introduction

Sumatripta (1-[3-(2-dimethylaminoethyl)-1H-indol-5-yl]-N-methylmethanesulfonamide)
is one of the triptan drugs medically administrated to manage cluster headache and
migraine [1,2]. Sumatriptan is a selective 5-hydroxytryptamine (5-HT1B/1D) receptor ago-
nist [3]. Its binding with serotonin type-1D receptors leads to extensively dilated cranial
vessel vasoconstriction, thus reducing migraine pain [4]. Reportedly, extra dose of triptans
can be followed by numerous complications, some of which are neck tension, seizures,
sleepiness, paralysis, hypertension, leg or arm swelling, and feeling tremor [5,6]. The
physiological significance of sumatriptan makes it necessary to quantitatively measure
sumatriptan in different specimens, particularly biological samples in the disciplines of
clinical diagnosis, pharmacology, and the life sciences. Naproxen (6-methoxy-a-methyl-2-
naphthalene acetic acid) is widely used as an anti-inflammatory drug to manage numerous
medical conditions such as degenerative joint disorder, rheumatoid arthritis, primary
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dysmenorrhea, ankylosing spondylitis, and acute gout [7]. Nevertheless, extra and long-
term naproxen use can develop some complications such as gastrointestinal hemorrhage,
stomach ulcers, nephrotoxicity, elevated heart disease risk, and kidney dysfunction [8,9].
The medical importance of naproxen in humans highlights the necessity of access to an
appropriate rapid, facile, and sensitive analytical approach. In addition, the mode of
complementary action of these two drugs suggests their combined use to obtain more
effective clinical outcomes in the treatment of acute migraine than both drugs alone. Hence,
simultaneous detection of these drugs in biological fluids and pharmaceutical formulations
is very important [10].

Many strategies, including spectrophotometry [11,12], capillary electrophoresis [13,14],
high-performance liquid chromatography [15,16], liquid chromatography–mass spec-
troscopy [17], spectrofluorimetry [18], chemiluminescence [19], and electrochemical tech-
niques [20–22] have been applied for determination of these compounds. However, the
widespread application of some of these methods has been limited by their complex opera-
tion and high cost. Electrochemical determinations have been shown to be more appropriate
for analyte analysis [23–32], owing to commendable merits such as cost-effectiveness, nar-
row LOD, higher sensitivities, wide potential window, short analysis time, and ease to
renew the surface.

Screen-printing technology has proven its effectiveness in making electroanalyti-
cal platforms with tailored purposes, some of which are point-of-care (POC) tools in
biomedicine [33–35], and portable sensing systems in food industries [36,37] and envi-
ronmental pollutant detection [38–40]. SPEs are potent materials for electroanalytical
(bio)sensors [41–43] owing to their inexpensiveness and easy production process, espe-
cially for the fabrication of transducers required for on-site one-point measurements. The
miniaturized SPEs are appropriate for on-site measurements during real-time analysis, and
require small amounts of reagents and samples.

The application of nanomaterials in various fields is increasing rapidly [44–49] and
offers promising prospects. In recent years, the advances in nanotechnology have been help-
ful to produce sensitive and selective (bio)sensors [50–56]. A variety of nanomaterials, such
as metal and metal oxides nanoparticles, and carbon nanostructures, have been employed
to fabricate electrochemical (bio)sensing platforms [57–65], with diverse performances such
as biomolecule labeling or immobilization, the electrochemical process catalysis, electron
transfer enhancement, and serving as reactant [66].

Layered double hydroxides (LDHs) have recently spurred extensive interest owing to
multiple specific merits such as a layered nature, huge surface area, adjustable structure,
cost-effectiveness, and environmental friendliness [67–69]. The LDHs containing transition
metals are of great significance for catalyst, energy storage, and sensing [70–73]. One of
the strategies to enhancing their electrochemical performance is the design of tunable
porous nanostructures or architecture of LDHs with huge surface area [74–76]. Hierarchical
hollow structures (HHSs) with well-defined micro- or nanostructures, mesoporous pore-
size distribution, huge surface area, more active sites, and satisfactory charge transfer could
potentially promote the electrochemical behavior of LDHs [77].

Among these materials, nickel–cobalt layered double hydroxides (Ni-Co LDHs) have
attracted particular interest in electrochemical sensors because of their low cost, good redox
activity, and eco-friendly properties. They have an inverse spinel crystal structure, where
Ni2+ is distributed at the octahedral sites and Co3+ is distributed at both tetrahedral and
octahedral sites. This composition offers higher conductivity than that of Ni-Co LDH, which
in turn enhances the electron transfer and improves the performance of electrochemical
sensors [78,79].

In this research, a simple strategy was used to design an electrochemical sensing
platform based on SPE modification with Ni-Co LDH which was employed for the de-
termination of sumatriptan in the presence of naproxen. The Ni-Co LDH-modified SPE
demonstrated better sensor features with a low LOD, high sensitivity, and wide linear
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range. The sumatriptan and naproxen sensing platform was characterized by the successful
measurement of these analytes in sumatriptan tablets, naproxen tablets, and urine samples.

2. Experimental
2.1. Equipment

A Metrohm Autolab PGSTAT 320N Potentiostat/Galvanostat Analyzer (Utrecht,
The Netherlands) with GPES (General Purpose Electrochemical System-version 4.9) soft-
ware was applied for all electrochemical determinations at ambient temperature. The
electrochemical sensors were prepared using DRP-110 SPEs (DropSens, Oviedo, Spain)
featuring a silver pseudo-reference electrode, graphite working electrode, and graphite
auxiliary electrode. A Metrohm 713 pH meter with glass electrode (Herisau, Switzerland)
was recruited to determine and adjust the solution pH. Direct-Q® 8 UV deionized water
(Millipore, Darmstadt, Germany) was used to freshly prepare all solutions.

A Panalytical X’Pert Pro X-ray diffractometer (Almelo, The Netherlands) applying a
Cu/Kα radiation (λ:1.54 Å) was used for XRD analysis, and a Bruker Tensor II spectrometer
(Karlsruhe, Germany) was employed to capture the FT-IR spectra. An MIRA3 scanning
electron microscope (Tescan, Brno, Czech Republic) was utilized for FE-SEM imaging.

2.2. Solvents and Chemicals

All solvents and chemicals applied in our protocol were of analytical grade and
obtained from Merck and Sigma-Aldrich. Phosphate-buffered solution (PBS) was prepared
using phosphoric acid and adjusted by NaOH to the desired pH value.

2.3. Synthesis of Ni-Co Layered Double Hydroxide Hollow Nanostructures

The Stöber method, with slight modification, was followed to prepare monodispersed
silica (SiO2) spheres [80]. To this end, tetraethyl orthosilicate (TEOS) (6 mL) was dissolved
drop by drop in a solution containing ethanol (75 mL), deionized water (10 mL), and
aqueous ammonia (3.15 mL), followed by stirring at an ambient temperature for 5 h. The
centrifugation was performed to extract the SiO2 spheres from the suspension, followed by
rinsing by ethanol/deionized water. Finally, the obtained white precipitate was oven dried
under vacuum condition at 65 ◦C for 12 h. Subsequently, the SiO2@Ni-Co LDH core–shell
structures were produced by following the protocol reported by Li and coworkers [77]. In
brief, 200 mg of pre-synthesized silica spheres were dispersed in 100 mL ethanol under
ultrasonication for 1 h. Then, 3 mmol Ni(NO3)2.6H2O (2.5 g) and 1.5 mmol Co(NO3)2.6H2O
(5 g) were dissolved into the above suspension. After that, 23 mL of aqueous ammonia
solution was dispersed drop by drop in the suspension containing SiO2 spheres and metal
salts while magnetically stirring for 1 h at room temperature. The co-precipitation process
was carried out for deposition of hierarchical Ni-Co LDH nanosheets on SiO2 sphere
surface. The centrifugation was performed to extract the resulting precipitate, followed by
thoroughly rinsing by ethanol/deionized water. The obtained precipitate was oven-dried
at 80 ◦C for 12 h. Finally, Ni-Co LDH hollow structures were formed after removal of silica
cores by etching SiO2@Ni-Co LDH in 0.5 M KOH solution at for 1 h. The resulting product
was centrifuged and rinsed thoroughly. The prepared Ni-Co LDH hollow structures were
dried at 60 ◦C for 12 h.

2.4. Preparation of the Ni-Co LDH/SPE Sensor

A drop-casting technique was followed to fabricate the Ni-Co LDH/SPE. Thus, a
certain amount of as-prepared Ni-Co LDH hollow nanostructures (1 mg) was subsequently
dispersed in deionized water (1 mL) under 20 min ultrasonication. Then, the dispersed
suspension (4 µL) was coated dropwise on the SPE surface and dried at the laboratory
temperature.
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2.5. Real Samples Preparation

Five sumatriptan tablets (labeled 50 mg of sumatriptan) purchased from a local phar-
macy in Kerman (Iran) were pulverized together, and then 50 mg was dissolved in water
(25 mL) under ultrasonication to prepare a sumatriptan solution. Then, variable volumes of
diluted solution were poured into a 25 mL volumetric flask and brought to the final volume
with PBS (pH = 7); the analyses were performed using a modified electrode.

Five naproxen tablets (labeled 500 mg of naproxen) purchased from a local pharmacy
in Kerman (Iran) were pulverized together, and then 500 mg was dissolved in water (25 mL)
under ultrasonication to prepare a naproxen solution. Then, variable volumes of diluted
solution were poured into a 25 mL volumetric flask and brought to the final volume with
PBS (pH = 7); the analyses were performed using modified electrode.

Moreover, 10 mL of refrigerated urine specimens were centrifuged at 1500 rpm for
20 min, followed by filtering the supernatant via 0.45 µm filter. Next, variable supernatant
solution contents were placed in 25 mL volumetric flasks and diluted to the marks using
PBS at the pH value of 7. Variable sumatriptan and naproxen contents were applied to
spike the diluted urine specimens. At last, a standard addition method was followed to
quantify the sumatriptan and naproxen.

3. Results and Discussion
3.1. Characterization of Ni-Co Layered Double Hydroxide Hollow Nanostructures

The surface morphologies of SiO2 spheres, SiO2@Ni-Co LDH core–shell structures, and
Ni-Co LDH hollow structures were explored using FE-SEM. Figure 1a shows the FE-SEM
images of SiO2 spheres. The SiO2 spherical particles showed good monodispersity, with a
uniform size of approximately 170 nm. According to the FE-SEM images captured from
SiO2@Ni-Co LDH core–shell structures, it is clearly evident that, after the co-precipitation
process, the hierarchical Ni-Co LDH nanosheets were well deposited on the surface of the
silica spheres (Figure 1b). Subsequently, after KOH etching process to remove the SiO2
cores, the Ni-Co LDH hollow structures were obtained and showed an obvious hollow
structure (Figure 1c,d).

Figure 1. FE-SEM images of SiO2 spheres (a), SiO2@Ni-Co LDH core–shell structures (b), and Ni-Co
LDH hollow structures (c,d).
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The XRD pattern of Ni-Co LDH hollow structures is presented in Figure 2, showing
the well-defined diffraction peaks observed at 2θ values of 11.4◦, 23.0◦, 34.2◦, and 60.9◦ can
be related to plane reflections of (003), (006), (012), and (110) for the hydrotalcite-like LDH
phase. The XRD pattern of the synthesized sample is consistent with the XRD patterns
reported in previous papers [81,82].

Figure 2. XRD pattern of Ni-Co LDH hollow structures.

FT-IR spectroscopy is a well-equipped tool to study the functional groups of the pre-
pared samples. Figure 3 depicts the FT-IR spectra of SiO2@Ni-Co LDH core–shell structures
and Ni-Co LDH hollow structures. According to the FT-IR spectra captured from SiO2@Ni-
Co LDH, the distinctive adsorption peaks of SiO2 were found at 467 cm−1, 805 cm−1,
and 1101 cm−1, corresponding to the bending vibration of Si–O–Si, stretching vibration
of Si–O–Si, and asymmetric stretching vibration of Si–O–Si [83]. Below, the existence of
characteristic absorption bands of Ni-Co LDH is mentioned. The broad vibration of hy-
droxyl groups (O–H stretching) of water molecules in the interlayer space of LDH was
confirmed at 3459 cm−1. The peak at 1637 cm−1 relates to the bending vibration of OH
groups. The characteristic FT-IR band at 1383 cm−1 is generally assignable to the vibration
of interlayer anions (CO3

2− and NO3
−) [82,84]. In addition, the peak at 642 cm−1 relates

to the characteristic absorption band of M–O (metal-oxygen) vibrations. According to the
FT-IR spectra captured for Ni-Co LDH hollow structures, following the etching process,
disappearing of Si–O–Si characteristic peaks highlighted the silica template removal.

Figure 3. FT-IR spectra of (a) SiO2@Ni-Co LDH, and (b) Ni-Co LDH.
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3.2. Studying the Influence on the Structures on Voltammetric Detection of Sumatriptan Oxidation

The electrochemical response of sumatriptan oxidation in 0.1 M PBS adjusted to
variable pH values (2.0 to 9.0) was explored to determine the influence of electrolyte
solution pH. As shown in Figure 4, its electrochemical oxidation was dependent on the
pH value of the solution, such that it reached a maximum with increasing pH up to 7.0
and then decreased with further pH values (Figure 5). Hence, the pH value of 7.0 was
considered to be the optimum for subsequent electrochemical determinations.

Figure 4. Proposed oxidation mechanism for sumatriptan.

Figure 5. Plot of Ip vs. pH obtained from DPVs of Ni-Co LDH/SPE in a solution containing 100.0 µM
of sumatriptan in 0.1 PBS with different pH (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0).

Cyclic voltammetry (CV) was performed to clarify the electrochemical behavior of
sumatriptan on unmodified (bare) and modified SPE surfaces. Figure 6 compares the bare
SPE and Ni-Co LDH/SPE for 100.0 µM sumatriptan oxidation in 0.1 M PBS at the pH value
of 7.0. The sumatriptan oxidation displayed a tiny and wide peak (2.9 µA) at the potential
of 800 mV on the bare SPE surface. The Ni-Co LDH-modified SPE exhibited a shift in the
peak current toward more negative potentials (610 mV) by raising the amount of current
(11.8 µA). Such an improvement could have appeared because of the appreciable catalytic
impact of Ni-Co LDH hollow nanostructures for sumatriptan oxidation.
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Figure 6. Cyclic voltammograms captured for oxidation of sumatriptan (100.0 µM) in PBS (0.1 M;
pH = 7.0) on (a) unmodified SPE and (b) Ni-Co LDH/SPE with a scan rate of 50 mV/s.

3.3. Effect of Scan Rate

The linear sweep voltammograms (LSVs) were recorded for the oxidation of suma-
triptan (100.0 µM) on the Ni-Co LDH/SPE under variable scan rates (Figure 7). There
was an apparent gradual elevation in the oxidation peak by raising scan rate ranging from
10 to 400 mV/s. As seen in Figure 7 (Inset), the anodic peak current (Ipa) had a linear
association with the scan rate square root (V1/2). The regression equation was obtained as
Ipa (µA) = 1.117 V1/2 (mV·s−1)1/2 + 2.8278 (R2 = 0.9986), indicating a controlled diffusion
process of sumatriptan oxidation on the Ni-Co LDH/SPE.

Figure 7. LSVs captured for the oxidation of sumatriptan (100.0 µM) on the Ni-Co LDH/SPE under
variable scan rates (a–g: 10, 30, 50, 100, 200, 300, and 400 mV/s). Inset: correlation of Ipa with V1/2.
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A Tafel plot (Figure 8 (inset)) was achieved on the basis of data related to the rising
domain of current–voltage curve at a low scan rate (10 mV/s) for sumatriptan (100.0 µM)
to explore the rate-determining step. The linearity of the E vs. log I plot clarifies the
involvement of electrode process kinetics. The slope from this plot could present the count
of transferred electrons during the rate-determining step. On the basis of Figure 8 (inset),
the Tafel slope was estimated to be 0.1393 V for the linear domain of the plot. The Tafel slope
value revealed that the rate-limiting step was the one-electron transfer process considering
a transfer coefficient (α) of 0.58.

Figure 8. LSV for sumatriptan (100.0 µM) at the scan rate of 10 mV/s. Inset: The Tafel plot from the
rising domain or the respective voltammogram.

3.4. Chronoamperometric Analysis

Chronoamperometry was recruited to explore the sumatriptan catalytic oxidation on
the Ni-Co LDH/SPE surface. Chronoamperometric analysis was performed for variable
sumatriptan contents on Ni-Co LDH/SPE at the working electrode potential of 660 mV. The
chronoamperograms captured for variable sumatriptan contents on the Ni-Co LDH/SPE
are shown in Figure 9. Cottrell’s equation explains the current (I) for electrochemical
reaction of an electroactive material with a D value (diffusion coefficient) under a mass
transport limited condition. Figure 9A shows a linear relationship of the I value with t−12

for the oxidation of variable sumatriptan contents. The slopes from the obtained straight
lines were plotted against variable sumatriptan contents (Figure 9B). The plotted slope and
Cottrell equation estimated the D value to be 8.2 × 10−5 cm2/s for sumatriptan.
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Figure 9. Chronoamperometric behavior of Ni-Co LDH/SPE in PBS (0.1 M; pH = 7.0) at potential
of 660 mV for variable sumatriptan contents (a–h: 0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.7, and 2.0 mM). Insets:
(A) Plots of I vs. t−1/2 and (B) plots of the slopes from the straight lines vs. sumatriptan level.

3.5. DPV Analysis of Sumatriptan

DPV analysis was performed for variable sumatriptan contents to explore the linear
dynamic range, LOD, and sensitivity of the Ni-Co LDH/SPE under optimized experimental
circumstances (Figure 10). As expected, the elevation in sumatriptan level enhanced
the peak current. Figure 10 (Inset) shows a linear proportionality of the oxidation peak
currents to variable sumatriptan contents (0.01 µM to 435.0 µM) with a linear regression
equation of Ipa (µA) = 0.1017 ± 0.0001 Csumatriptan + 0.6849 (R2 = 0.9995), and a sensitivity
of 0.1017 µA/µM. In the equations of LOD = 3Sb/m and LOQ = 10Sb/m, the Sb is the
standard deviation of the response for blank solution, and m is the slope from the standard
graph. The LOD and LOQ were estimated at 0.002 ± 0.0001 and 0.007 ± 0.0001 µM for
sumatriptan determination on Ni-Co LDH/SPE.

Table 1 compares the efficiency of the sumatriptan sensor prepared by the Ni-Co
LDH-modified SPE and other reported works.
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Figure 10. DPVs captured for the oxidation of variable sumatriptan contents on the Ni-Co LDH/SPE
under variable contents (a–p: 0.01, 1.0, 2.5, 7.5, 15.0, 30.0, 45.0, 75.0, 100.0, 150.0, 200.0, 250.0,
300.0, 350.0, 400.0, and 435.0 µM). Inset: Calibration curve of voltammetric response (Ipa) against
sumatriptan level.

Table 1. Comparison of the efficiency of the Ni-Co LDH/SPE sensor with other reported modified
electrodes for sumatriptan determination.

Electrochemical Sensor Electrochemical
Method Linear Range LOD Ref.

CuO/SPE DPV 0.33–3.54 µM 0.066 µM [4]
Cu nanoparticles

(NPs)/poly-melamine/glassy
carbon

electrode

DPV 0.08–0.58 and
0.58–6.5 µM 0.025 µM [85]

Multiwalled carbon nanotube
(MWCNTs)decorated with

silver NPs/pyrolytic graphite
electrode

CV 0.08–100.0 µM 0.04 µM [86]

MWCNTs and cobalt
methyl-salophen

complex/carbon paste
electrode

DPV 1.0–1000.0 µM 0.3 µM [21]

MWCNTs and polypyrrole
doped with new coccine/glassy

carbon electrode
LSV 0.02–10.0 µM 0.006 µM [20]

Overoxidized
poly(p-aminophenol)

modified glassy carbon
electrode

Square wave
voltammetry 1.0–100.0 µM 0.294 µM [87]

Ni-Co LDH/SPE DPV 0.01–435.0 µM 0.002 µM This work
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3.6. DPV Analysis of Sumatriptan in the Presence of Naproxen

To confirm the ability of Ni-Co LDH/SPE for codetection of sumatriptan and naproxen,
the electrochemical responses of these analytes were detected by simultaneously changing
the concentration of both analytes in PBS at pH 7.0. As seen in Figure 11, with a concurrent
change in their concentrations, two noninterference peaks were found on DPV curves. The
peak currents of both sumatriptan and naproxen oxidation displayed a linear elevation
with the respective concentrations (sumatriptan concentration range between 1.0 µM and
400.0 µM, and naproxen concentration range between 1.0 µM and 400.0 µM) (Figure 11A,B).
The intensity of peak current showed good linearity with the target concentration change,
highlighting the possibility of detecting sumatriptan and naproxen in the blended solution.

Figure 11. DPVs of Ni-Co LDH/SPE in 0.1 M PBS (pH 7.0) with various concentrations of sumatriptan
(a–l: 1.0, 7.5, 15.0, 45.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 350.0, and 400.0 µM) and naproxen
(a–l: 1.0, 10.0, 20.0, 45.0, 75.0, 100.0, 125.0, 175.0, 225.0, 325.0, 350.0, and 400.0 µM). Insets: (A) The
plot of peak current versus sumatriptan concentration, (B) the plot of peak current versus naproxen
concentration.

3.7. Repeatability, Reproducibility, and Stability

The Ni-Co LDH/SPE was examined for repeatability through the measurement of the
response of 40.0 µM sumatriptan on the surface of the same electrode 15 times. The relative
standard deviation (RSD) of 3.9% for the current response of sumatriptan demonstrated
the good repeatability of the proposed electrode.

To test the reproducibility, five Ni-Co LDH/SPE produced using the same procedures
were applied to measure 40.0 µM sumatriptan under identical circumstances; the obtained
RSD of 3.5% demonstrated commendable reproducibility.

To test the Ni-Co LDH/SPE stability, the current responses of sumatriptan were
measured following 14 day storage of the sensor at ambient temperature. The decrease
in peak current of sumatriptan to 4.2% of its original response demonstrated appreciable
stability.
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3.8. Selectivity Studies

The effects of some organic and inorganic species which commonly existed in pharma-
ceuticals and biological samples were examined on the analytical response of the proposed
sensor (Ni-Co LDH/SPE). Therefore, a 50.0 µM solution of sumatriptan in the supporting
electrolyte (PBS) was prepared. Various amounts of the interfering species were added to
the sumatriptan solution. The voltammogram (DPV) of the sample was recorded in the
presence of interfering species. The tolerance limit was defined as the maximum concentra-
tion of the interfering substance that caused an approximately ±5% relative error in the
determination. The results revealed that 500-fold concentrations of Na+, Mg2+, Ca2+, NH4

+,
and SO4

2-, 300-fold concentrations of fructose, glucose, and lactose, 100-fold concentrations
of histidine, phenyl alanine, methionine, and cysteine, and 20-fold concentrations of lev-
odopa and uric acid did not show interference in determination (Table S1, Supplementary
Materials). These results confirmed the suitable selectivity of the proposed sensor for
determination.

3.9. Analysis of Real Specimens

The practical applicability of Ni-Co LDH/SPE was tested by sensing sumatriptan and
naproxen in sumatriptan tablets, naproxen tablets, and urine specimens using the DPV
procedure and a standard addition method, the results of which can be seen in Table 2. The
recovery rate was between 96.4% and 102.5%, and all RSD values were ≤3.6%. According
to the experimental results, the Ni-Co LDH/SPE sensor possesses a high potential for
practical applicability.

Table 2. Voltammetric sensing of sumatriptan and naproxen in real specimens using Ni-Co LDH/SPE.
All concentrations are in µA (n = 3).

Sample Spiked (µM) Found (µM) Recovery (%) RSD (%)

Sumatriptan Naproxen Sumatriptan Naproxen Sumatriptan Naproxen Sumatriptan Naproxen

Sumatriptan
Tablet

0 0 4.0 - - - 3.3 -

1.0 4.0 4.9 4.1 98.0 102.5 1.9 2.3

3.0 6.0 7.1 5.8 101.4 96.7 2.8 3.0

Naproxen
Tablet

0 0 - 5.0 - - - 2.9

5.0 1.0 5.1 5.9 102.0 98.3 3.0 2.2

7.0 3.0 6.9 8.3 98.6 103.7 1.8 3.6

Urine

0 0 - - - - - -

4.5 5.5 4.6 5.3 102.2 96.4 2.5 2.8

6.5 7.5 6.3 7.6 96.9 101.3 3.1 1.9

4. Conclusions

In this work, we reported the sensing application of Ni-Co LDH hollow nanostructures
for electrochemical determination of sumatriptan. The sensing platform was fabricated
via drop casting of a Ni-Co LDH hollow nanostructures dispersion on bare SPE. The
electrochemical studies demonstrated efficient electrocatalytic activity of Ni-Co LDH hol-
low nanostructure-modified SPE for sensitive detection of sumatriptan. DPV findings
showed an increase in the anodic peak currents with elevating sumatriptan contents
(0.01–435.0 µM), with an LOD of 0.002 ± 0.0001 µM. Furthermore, for sensing sumatriptan
in the presence of naproxen, the obtained voltammograms exhibited a desirable peak
separation of about 300 mV potential differences. Moreover, the prepared sensor (Ni-Co
LDH/SPE) was efficiently applied to detect sumatriptan and naproxen in in pharmaceutical
and biological samples.
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