Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Development and Purification of the Anti-OTA Antibody
2.3. Preparation of OTA Calibrators
2.4. Foodstuff Treatment
2.5. OTA WLRS Sensor Assay
3. Results and Discussion
3.1. Development of the OTA Assay
3.1.1. Selection of Immunoassay Format
3.1.2. Optimization of Assay Parameters
3.2. Evaluation of Rabbit Anti-OTA Antibody Specificity
3.3. Optimization of the Sample Preparation Procedure
3.4. Accuracy and Precision of the Developed Sensor
3.5. Regeneration and Reuse of Chips
3.6. Comparison with Other OTA-Biosensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weidenbörner, M. Encyclopedia of Food Mycotoxins; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Jørgensen, K. Occurrence of ochratoxin A in commodities and processed food--a review of EU occurrence data. Food. Addit. Contam. 2005, 22 (Suppl. S1), 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021, 26, 6928. [Google Scholar] [CrossRef] [PubMed]
- Abrunhosa, L.; Paterson, R.R.; Venâncio, A. Biodegradation of ochratoxin a for food and feed decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esti, M.; Benucci, I.; Liburdi, K.; Acciaro, G. Monitoring of ochratoxin A fate during alcoholic fermentation of wine-must. Food Control 2012, 27, 53–56. [Google Scholar] [CrossRef]
- Gil-Serna, J.; Vázquez, C.; González-Jaén, M.T.; Patiño, B. Wine Contamination with Ochratoxins: A Review. Beverages 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Welke, J.E. Fungal and mycotoxin problems in grape juice and wine industries. Curr. Opin. Food Sci. 2019, 29, 7–13. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1993. [Google Scholar]
- Duarte, S.C.; Lino, C.M.; Pena, A. Mycotoxin food and feed regulation and the specific case of ochratoxin A: A review of the worldwide status. Food Addit. Contam. A 2010, 27, 1440–1450. [Google Scholar] [CrossRef]
- World Health Organization. Safety Evaluation of Certain Food Additives and Contaminants; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- European Commission. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1881 (accessed on 2 May 2022).
- Skarkova, J.; Ostry, V.; Malir, F.; Roubal, T. Determination of Ochratoxin A in Food by High Performance Liquid Chromatography. Anal. Let. 2013, 46, 1495–1504. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Hu, X.; Zhang, Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: Current status and prospects. Mass Spectrom. Rev. 2013, 32, 420–452. [Google Scholar] [CrossRef]
- Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; García-Campaña, A.M.; Gámiz-Gracia, L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3405–3420. [Google Scholar] [CrossRef] [PubMed]
- Meulenberg, E.P. Immunochemical Methods for Ochratoxin A Detection: A Review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef]
- Alhamoud, Y.; Yang, D.; Fiati Kenston, S.S.; Liu, G.; Liu, L.; Zhou, H.; Ahmed, F.; Zhao, J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens. Bioelectron. 2019, 141, 111418. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Liao, X.; Fang, L.; Jia, B.; Liu, M.; Li, D.; Zhou, L.; Kong, W. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trend Anal. Chem. 2021, 136, 116193. [Google Scholar] [CrossRef]
- Li, R.; Wen, Y.; Wang, F.; He, P. Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. J. Anim. Sci. Biotechnol. 2021, 12, 108. [Google Scholar] [CrossRef]
- Karachaliou, C.-E.; Koukouvinos, G.; Goustouridis, D.; Raptis, I.; Kakabakos, S.; Livaniou, E.; Petrou, P. Recent Developments in the Field of Optical Immunosensors Focusing on a Label-Free, White Light Reflectance Spectroscopy-Based Immunosensing Platform. Sensors 2022, 22, 5114. [Google Scholar] [CrossRef]
- Tsounidi, D.; Koukouvinos, G.; Christianidis, V.; Legaki, E.; Giogli, V.; Panagiotopoulou, K.; Taka, S.; Ekaterinidi, Z.; Kakabakos, S.; Raptis, I.; et al. Development of a Point-of-Care System Based on White Light Reflectance Spectroscopy: Application in CRP Determination. Biosensors 2021, 11, 268. [Google Scholar] [CrossRef]
- Livaniou, E.; Mihelic, M.; Evangelatos, G.P.; Haritos, A.; Voelter, W. A thymosin beta 4 ELISA using an antibody against the N terminal fragment thymosin beta 4 [1-14]. J. Immunol. Method 1992, 148, 9–14. [Google Scholar] [CrossRef]
- Perosa, F.; Carbone, R.; Ferrone, S.; Dammacco, F. Purification of human immunoglobulins by sequential precipitation with caprylic acid and ammonium sulphate. J. Immunol. Method 1990, 128, 9–16. [Google Scholar] [CrossRef]
- Sorensen, K.; Brodbeck, U. A sensitive protein assay method using micro-titer plates. Experientia 1986, 42, 161–162. [Google Scholar] [CrossRef]
- Prieto-Simón, B.; Karube, I.; Saiki, H. Sensitive detection of ochratoxin A in wine and cereals using fluorescence-based immunosensing. Food Chem. 2012, 135, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Karczmarczyk, A.; Reiner-Rozman, C.; Hageneder, S.; Dubiak-Szepietowska, M.; Dostálek, J.; Feller, K.H. Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR. Anal. Chim. Acta 2016, 937, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kizis, D.; Vichou, A.-E.; Natskoulis, P.I. Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. Sustainability 2021, 13, 2537. [Google Scholar] [CrossRef]
- Oliveira, C.A.F.d.; Corassin, C.H.; Corrêa, B.; Oswald, I.P. Animal health: Mycotoxins. In Encyclopedia of Agriculture and Food Systems; Elsevier: San Diego, CA, USA, 2014; Volume 1. [Google Scholar]
- Available online: https://food.r-biopharm.com/products/ridascreen-ochratoxin-a-30-15/ (accessed on 10 August 2022).
- Amirahmadi, M.; Shoeibi, S.; Rastegar, H.; Elmi, M.; Mousavi Khaneghah, A. Simultaneous analysis of mycotoxins in corn flour using LC/MS-MS combined with a modified QuEChERS procedure. Toxin Rev. 2018, 37, 187–195. [Google Scholar] [CrossRef]
- Joshi, S.; Segarra-Fas, A.; Peters, J.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W.F. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016, 141, 1307–1318. [Google Scholar] [CrossRef]
- Joshi, S.; Annida, R.M.; Zuilhof, H.; van Beek, T.A.; Nielen, M.W. Analysis of Mycotoxins in Beer Using a Portable Nanostructured Imaging Surface Plasmon Resonance Biosensor. J. Agric. Food Chem. 2016, 64, 8263–8271. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Geana, I.; Bourigua, S.; Rotariu, L.; Bala, C.; Errachid, A.; Jaffrezic-Renault, N. Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators B Chem. 2011, 159, 178–184. [Google Scholar] [CrossRef]
- Yuan, J.; Deng, D.; Lauren, D.R.; Aguilar, M.I.; Wu, Y. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Anal. Chim. Acta 2009, 656, 63–71. [Google Scholar] [CrossRef]
- Zhu, Z.; Feng, M.; Zuo, L.; Zhu, Z.; Wang, F.; Chen, L.; Li, J.; Shan, G.; Luo, S.-Z. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens. Bioelectron. 2015, 65, 320–326. [Google Scholar] [CrossRef]
- Park, J.H.; Byun, J.Y.; Mun, H.; Shim, W.B.; Shin, Y.B.; Li, T.; Kim, M.G. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens. Bioelectron. 2014, 59, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Park, J.H.; Byun, J.Y.; Kim, J.H.; Kim, M.G. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A. Biosens. Bioelectron. 2018, 102, 504–509. [Google Scholar] [CrossRef] [PubMed]
Toxin | Structure | IC50 (ng/mL) | % CR |
---|---|---|---|
Ochratoxin A | 75 | 100 | |
Ochratoxin B | 18,750 | 0.4 | |
Ochratoxin C | 173 | 43.3 | |
Deoxynivalenol | ND | - | |
Aflatoxin B1 | ND | - | |
Fumonisin B1 | ND | - |
Food Sample | Spiked Concentration (ng/mL) | Determined Concentration (ng/mL) | % Recovery |
---|---|---|---|
Wheat flour | 5 | 5.4 ± 0.3 | 108 |
25 | 23.9 ± 1.5 | 95.6 | |
60 | 61.1 ± 3.0 | 102 | |
Corn flour | 5 | 4.6 ± 0.1 | 92.0 |
25 | 22.3 ± 1.1 | 89.2 | |
60 | 57.6 ± 2.8 | 96.0 | |
White wine | 5 | 4.9 ± 0.2 | 98.0 |
25 | 26.4 ± 1.0 | 106 | |
60 | 54.2 ± 2.2 | 90.3 | |
Red wine | 5 | 5.6 ± 0.2 | 111 |
25 | 26.3 ± 1.3 | 105 | |
60 | 52.3 ± 2.5 | 87.2 |
Sample Number | LC-MS/MS (μg/kg) | WLRS Immunosensor (μg/kg) | % Deviation |
---|---|---|---|
1 | 7.44 | 8.9 ± 0.42 | 19.6 |
2 | 1.02 | 1.2 ± 0.08 | 17.6 |
3 | 11.6 | 13.1 ± 0.65 | 12.9 |
Sensing Principle | Recognition Element | Sample Type | LOD | Dynamic Range | Assay Duration | Reference |
---|---|---|---|---|---|---|
WLRS | antibody | buffer | 0.03 ng/mL | 0.06–200 ng/mL | 25 min | this work |
Cereals (corn, wheat) | 0.3 ng/g | 0.6–2000 ng/g | ||||
wine | 0.3 ng/mL | 0.6–2000 ng/mL | ||||
SPR | antibody | wine | 0.19 ng/mL | 0.68–100 ng/mL | 55 min | [26] |
SPR (6-plex) | antibody | barley | 3.0 ng/g | 13–320 ng/g | 4 min | [31] |
SPR (2-plex) | antibody | beer | 7.0 ng/mL | 10–120 ng/mL | 7 min | [32] |
SPR | antibody | corn/wheat | 1.27 ng/mL | 1.98–28.22 ng/mL | 13 min | [33] |
SPR | antibody | white wine | 0.94 ng/mL in buffer | 1–50 ng/mL in buffer | - | [34] |
SPR | antibody | oat, corn, wine, grape juice, apple juice | 0.3 ng/g in oat 0.5 ng/g in corn 0.4 ng/mL in wine | 1–100 ng/mL a | <10 min | [35] |
SPR | aptamer | red wine, peanut oil | 0.005 ng/mL in buffer | 0.094–10 ng/mL in buffer | 5 min | [36] |
LSPR | aptamer | corn | <0.4 ng/g | 0.4–40 ng/g | <20 min | [37] |
fiber-optic LSPR | aptamer | grape juice | 0.0096 ng/mL | 0.0096–96 ng/mL | <30 min | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachaliou, C.-E.; Koukouvinos, G.; Zisis, G.; Kizis, D.; Krystalli, E.; Siragakis, G.; Goustouridis, D.; Kakabakos, S.; Petrou, P.; Livaniou, E.; et al. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. Biosensors 2022, 12, 877. https://doi.org/10.3390/bios12100877
Karachaliou C-E, Koukouvinos G, Zisis G, Kizis D, Krystalli E, Siragakis G, Goustouridis D, Kakabakos S, Petrou P, Livaniou E, et al. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. Biosensors. 2022; 12(10):877. https://doi.org/10.3390/bios12100877
Chicago/Turabian StyleKarachaliou, Chrysoula-Evangelia, Georgios Koukouvinos, Grigoris Zisis, Dimosthenis Kizis, Evangelia Krystalli, George Siragakis, Dimitris Goustouridis, Sotirios Kakabakos, Panagiota Petrou, Evangelia Livaniou, and et al. 2022. "Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform" Biosensors 12, no. 10: 877. https://doi.org/10.3390/bios12100877
APA StyleKarachaliou, C. -E., Koukouvinos, G., Zisis, G., Kizis, D., Krystalli, E., Siragakis, G., Goustouridis, D., Kakabakos, S., Petrou, P., Livaniou, E., & Raptis, I. (2022). Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. Biosensors, 12(10), 877. https://doi.org/10.3390/bios12100877