Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of a Colorimetric Three-Layered Film Sensor
2.2. Preparation of Urea Base Agar Media
2.3. Detection of Urease Enzyme Activity
2.4. Colorimetric Detection of Ureolytic Bacteria Using the Produced Sensor
2.5. Verification of the Performance of the Sensor
2.6. Effects of Non-Ureolytic Bacteria on the Colorimetric Detection of the Urease Activity of Klebsiella Pneumoniae
2.7. Reusability of the Sensor
3. Results and Discussion
3.1. Design of the Colorimetric Film Sensor for the Detection of Ureolytic Microbes
3.2. Validation of the Sensor for the Detection of Urease
3.3. Colorimetric Detection of Ureolytic Microbes using the Sensor
3.4. Verification of the Detection of Urease Activity by the Sensor
3.5. Selective Detection of Urease-Producing Microbes in the Presence of Non-Ureolytic Bacteria
3.6. Reusability of the Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzei, L.; Musiani, F.; Ciurli, S. The structure-based reaction mechanism of urease, a nickel dependent enzyme: Tale of a long debate. J. Biol. Inorg. Chem. 2020, 25, 829–845. [Google Scholar] [CrossRef] [PubMed]
- Mobley, H.L.; Island, M.D.; Hausinger, R.P. Molecular biology of microbial ureases. Microbiol. Rev. 1995, 59, 451–480. [Google Scholar] [CrossRef] [PubMed]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef]
- Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical aspects, catalytic, and non-catalytic properties—A review. J. Adv. Res. 2018, 13, 3–17. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Bio/Technol. 2018, 17, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, J.C. The emerging role of urease as a general microbial virulence factor. PLoS Pathog. 2014, 10, e1004062. [Google Scholar] [CrossRef] [Green Version]
- Mora, D.; Arioli, S. Microbial urease in health and disease. PLoS Pathog. 2014, 10, e1004472. [Google Scholar] [CrossRef] [Green Version]
- Cabanel, N.; Rosinski-Chupin, I.; Chiarelli, A.; Botin, T.; Tato, M.; Canton, R.; Glaser, P. Evolution of VIM-1 producing Klebsiella pneumoniae isolates from a hospital outbreak reveals the genetic bases of the loss of the urease-positive identification character. mSystems 2021, 6, e0024421. [Google Scholar] [CrossRef]
- Eaton, K.A.; Brooks, C.L.; Morgan, D.R.; Krakowka, S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 1991, 59, 2470–2475. [Google Scholar] [CrossRef]
- De Koning-Ward, T.F.; Robins-Browne, R.M. Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect. Immun. 1995, 63, 3790–3795. [Google Scholar] [CrossRef] [Green Version]
- Rózalski, A.; Sidorczyk, Z.; Kotełko, K. Potential virulence factors of Proteus bacilli. Microbiol. Mol. Biol. Rev. 1997, 61, 65–89. [Google Scholar]
- Maier, R.; Benoit, S. Role of nickel in microbial pathogenesis. Inorganics 2019, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.M.; Mukherjee, J.; Cole, G.T.; Casadevall, A.; Perfect, J.R. Urease as a virulence factor in experimental Cryptococcosis. Infect. Immun. 2000, 68, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Bishai, W.R.; Timmins, G.S. Potential for breath test diagnosis of urease positive pathogens in lung infections. J. Breath Res. 2019, 13, 032002. [Google Scholar] [CrossRef]
- Searle, P.L. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984, 109, 549–568. [Google Scholar] [CrossRef]
- Uotani, T.; Graham, D.Y. Diagnosis of Helicobacter pylori using the rapid urease test. Ann. Transl. Med. 2015, 3, 9. [Google Scholar] [CrossRef]
- Graham, D.Y.; Miftahussurur, M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J. Adv. Res. 2018, 13, 51–57. [Google Scholar] [CrossRef]
- Noh, C.K.; Lee, G.H.; Park, J.W.; Roh, J.; Han, J.H.; Lee, E.; Park, B.; Lim, S.G.; Shin, S.J.; Cheong, J.Y.; et al. Diagnostic accuracy of “sweeping” method compared to conventional sampling in rapid urease test for Helicobacter pylori detection in atrophic mucosa. Sci. Rep. 2020, 10, 18483. [Google Scholar] [CrossRef]
- Siavoshi, F.; Saniee, P.; Khalili-Samani, S.; Hosseini, F.; Malakutikhah, F.; Mamivand, M.; Shahreza, S.; Sharifi, A.H. Evaluation of methods for H. pylori detection in PPI consumption using culture, rapid urease test and smear examination. Ann. Transl. Med. 2015, 3, 11. [Google Scholar] [CrossRef]
- Santopolo, G.; Domenech-Sanchez, A.; Russell, S.M.; de la Rica, R. Ultrafast and ultrasensitive naked-eye detection of urease-positive bacteria with plasmonic nanosensors. ACS Sens. 2019, 4, 961–967. [Google Scholar] [CrossRef]
- Lee, S.; Lee, E.-H.; Lee, S.-W. A flexible and attachable colorimetric film sensor for the detection of gaseous ammonia. Biosensors 2022, 12, 664. [Google Scholar] [CrossRef]
- Jo, B.; Lerberghe, L.M.V.; Motsegood, K.M.; Beebe, D.J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 2000, 9, 76–81. [Google Scholar] [CrossRef]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Ann. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef]
- McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef]
- Maroncle, N.; Rich, C.; Forestier, C. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res. Microbiol. 2006, 157, 184–193. [Google Scholar] [CrossRef]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol. Spectr. 2016, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rosenstein, I.J.; Hamilton-Miller, J.M.; Brumfitt, W. Role of urease in the formation of infection stones: Comparison of ureases from different sources. Infect. Immun. 1981, 32, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.L.; Kamm, M.A.; Ng, S.C.; Morrison, M. Proteus spp. as putative gastrointestinal pathogens. Clin. Microbiol. Rev. 2018, 31, e00085-17. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Mulrooney, S.B.; Hausinger, R.P. Biosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins. J. Bacteriol. 2005, 187, 7150–7154. [Google Scholar] [CrossRef] [Green Version]
- Chapman, P.; Forde, B.M.; Roberts, L.W.; Bergh, H.; Vesey, D.; Jennison, A.V.; Moss, S.; Paterson, D.L.; Beatson, S.A.; Harris, P.N.A. Genomic investigation reveals contaminated detergent as the source of an extended-spectrum-β-lactamase-producing Klebsiella michiganensis outbreak in a neonatal Unit. J. Clin. Microbiol. 2020, 58, e01980-19. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, H.; Stindl, S.; Ludwig, W.; Stumpf, A.; Mehlen, A.; Monget, D.; Pierard, D.; Ziesing, S.; Heesemann, J.; Roggenkamp, A.; et al. Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. J. Clin. Microbiol. 2005, 43, 3297–3303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guentzel, M.N. Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Domínguez-Bello, M.G.; Reyes, N.; Teppa-Garrán, A.; Romero, R. Interference of Pseudomonas strains in the identification of Helicobacter pylori. J. Clin. Microbiol. 2000, 38, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.T.; Nicholson, E.B.; Jones, B.D.; Lynch, M.J.; Mobley, H.L. Morganella morganii urease: Purification, characterization, and isolation of gene sequences. J. Bacteriol. 1990, 172, 3073–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhu, J.; Hu, Q.; Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. Int. J. Infect. Dis. 2016, 50, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fang, L.; Wan, Y.; Gu, Z. Pathogenic detection and phenotype using magnetic nanoparticle-urease nanosensor. Sens. Actuators B Chem. 2018, 259, 428–432. [Google Scholar] [CrossRef]
- Singh, P.; Kakkar, S.; Bharti; Kumar, R.; Bhalla, V. Rapid and sensitive colorimetric detection of pathogens based on silver-urease interactions. Chem. Commun. 2019, 55, 4765–4768. [Google Scholar] [CrossRef]
- Hou, Y.; Tang, W.; Qi, W.; Guo, X.; Lin, J. An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens. Bioelectron. 2020, 157, 112160. [Google Scholar] [CrossRef]
- Werkmeister, F.X.; Koide, T.; Nickel, B.A. Ammonia sensing for enzymatic urea detection using organic field effect transistors and a semipermeable membrane. J. Mater. Chem. B 2016, 4, 162–168. [Google Scholar] [CrossRef]
Strain | Resource No. | Inoculum (CFU/mL) | Reaction Time (h) | Urease Activity a |
---|---|---|---|---|
Bacillus subtilis subsp. | FBCC-B1550 | 1.5 ± 0.4 × 108 | 23 h | ++ |
Citrobacter freundii | FBCC-B1527 | 8.6 ± 2.0 × 108 | 25 h | ++ |
Citrobacter koseri | FBCC-B1520 | 2.2 ± 0.1 × 109 | − | − |
Enterobacter hormaechei subsp. | FBCC-B414 | 7.7 ± 0.7 × 108 | 72 h | + |
Enterobacter roggenkampii | FBCC-B4 | 1.3 ± 0.2 × 109 | 72 h | + |
Escherichia coli | KCTC 2791 | 9.3 ± 4.0 × 108 | − | − |
Klebsiella michiganensis | FBCC-B1517 | 6.2 ± 1.0 × 108 | − | − |
Klebsiella pneumoniae subsp. | FBCC-B674 | 4.2 ± 2.0 × 108 | 10 h | +++ |
Klebsiella quasipneumoniae subsp. | FBCC-B673 | 1.1 ± 0.1 × 109 | 26 h | ++ |
Morganella morganii subsp. sibonii | FBCC-B1534 | 1.1 ± 0.2 × 109 | 26 h | ++ |
Proteus terrae | FBCC-B448 | 1.4 ± 0.2 × 109 | 3 h | +++ |
Providencia alcalifaciens | FBCC-B1524 | 2.2 ± 0.2 × 109 | − | − |
Pseudomonas aeruginosa | FBCC-B567 | 9.5 ± 3.0 × 108 | 24 h | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Park, T.-E.; Lee, S.-W.; Lee, E.-H. Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor. Biosensors 2022, 12, 886. https://doi.org/10.3390/bios12100886
Chang Y, Park T-E, Lee S-W, Lee E-H. Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor. Biosensors. 2022; 12(10):886. https://doi.org/10.3390/bios12100886
Chicago/Turabian StyleChang, Yunsoo, Tae-Eon Park, Seung-Woo Lee, and Eun-Hee Lee. 2022. "Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor" Biosensors 12, no. 10: 886. https://doi.org/10.3390/bios12100886
APA StyleChang, Y., Park, T. -E., Lee, S. -W., & Lee, E. -H. (2022). Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor. Biosensors, 12(10), 886. https://doi.org/10.3390/bios12100886