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Abstract: Wearable sensors have demonstrated wide applications from medical treatment, health
monitoring to real-time tracking, human-machine interface, smart home, and motion capture because
of the capability of in situ and online monitoring. Data acquisition is extremely important for
wearable sensors, including modules of probes, signal conditioning, and analog-to-digital conversion.
However, signal conditioning, analog-to-digital conversion, and data transmission have received less
attention than probes, especially flexible sensing materials, in research on wearable sensors. Here, as
a supplement, this paper systematically reviews the recent progress of characteristics, applications,
and optimizations of transistor amplifiers and typical filters in signal conditioning, and mainstream
analog-to-digital conversion strategies. Moreover, possible research directions on the data acquisition
of wearable sensors are discussed at the end of the paper.
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1. Introduction

Wearable sensors have brought great convenience to health monitoring [1–3], medical
treatment [4], human-machine interface [5,6], and so on. As shown in Figure 1, wearable
sensors are able to monitor various human body signals, ranging from biophysical signals
(including human motions, respiration rates, bioelectricity, etc.) to biochemical signals (such
as body fluids, blood components, glucose, etc.). The target biophysical/biochemical signals
are converted to electrical signals by probes, the first component of the data acquisition
(DAQ) module. Then, the raw electrical signals are processed by the remaining two
components of the DAQ module, i.e., signal conditioning and analog-to-digital conversion
in sequence. The processed signals are eventually transmitted to terminals by the data
transmission (DT) module. Thus, signal conditioning and analog-to-digital conversion
modules are as indispensable as probes for wearable sensors. Currently, most research
on wearable sensors focuses on the development of probe materials with properties of
high stretchability [7,8], optical transparency [9], hydrophobicity [10], air permeability [11],
biocompatibility [12], conductivity [13,14], and sensitivity [15–19]. There are numerous
reviews focusing on sensor materials [20–22]; however, less research is systematically
focused on signal conditioning and analog-to-digital conversion. This paper highlights the
signal conditioning methods and the designs of the analog-to-digital convertor (ADC) in
wearable sensors (Figure 2).

Wearable sensors are mainly used to monitor a variety of human body signals which
are relatively weak (such as bioelectricity, pulse, body fluid, etc.) and are easily interfered by
high-frequency noise, electrode contact noise, power frequency, and so on [23]. Therefore, a
powerful signal conditioning unit to amplify the extracted target signals and filter the noise
is strongly desired. In this unit, an amplifier enlarges the analog signal collected by the
probe and initially suppresses common mode noise. An appropriate filter with a specific
passband and stopband is then employed to filter the noise further. After completing these
processes, the analog nature of the target signal is extracted. Nevertheless, it cannot be
directly recognized by the computer. Thus, an ADC undertakes the important task of
converting an analog signal into a recognizable digital signal. During the conversion, ADC
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is required to minimize the signal loss. After the conversion, the sensor has completed the
signal conditioning and analog-to-digital conversion, producing a valuable signal. The
signal will be transmitted to a target end, such as a computer and mobile phone, for further
processing and analysis.
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In the signal conditioning section, the discussion begins with the optimizations of the
transistor amplification circuit, including the energy efficient design and common-mode
rejection ratio (CMRR) enhancement. The following sections show three filters commonly
used in wearable sensors, summarizing their filtering characteristics and applicability,
and introduce the latest filter optimization research. In the analog-to-digital conversion
section, we highlight the most suitable successive approximation register (SAR) ADCs and
the commonly used sigma-delta ADCs for wearable devices, and review the linearization
enhancement strategies and energy efficient methods for ADCs. Finally, the discussions
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are concluded with an overview of challenges encountered in the current wearable sensor
designs and possible future directions.

2. Signal Conditioning

The signals monitored by sensors worn on the human body are often weak and
susceptible to external noise and human motion artifacts. Signal conditioning is the process
of amplifying the target signal while filtering noise and artifacts, then classifying and
extracting characteristic signals [24] which can be acquired by an ADC.

2.1. Amplification

The human body signals collected by wearable sensors are composed of analog signals
with the characteristics of low intensity, low frequency, and narrow bandwidth. These irregular,
weak, and noisy signals are difficult to be processed by subsequent modules. It requires an
amplification circuit to increase the amplitude of the raw signal. Amplification is an important
part of wearable sensors which has been systematically studied. These studies strive to
minimize the circuit area and power consumption while maximizing the CMRR.

In a wearable sensing circuit, the signal is typically amplified by transistors. The field
effect transistor (FET) is a classical transistor exhibiting good performance in biosensors [25].
A basic insulation gate FET structure has three terminals, source, gate, and drain, in which
the gate is separated from the body by an insulating SiO2 layer (Figure 3(ai)). A depletion
layer is generated between the source and drain due to the migration of electrons and holes,
and the magnitude of the drain current can be controlled by applying a voltage to the
gate. In a wearable sensor, the region between the drain and source can act as a biometric
element [25]. The shift in charge from changes in analyte concentration results in a change
in gate voltage, and this difference results in a change in drain current, converting and
amplifying chemical signals into electrical signals.

Wearable devices often require flexible, thin, and light components to fit the surface
of the body. To meet these requirements, the thin film transistor (TFT) is developed
by reducing the thickness of components in the FET. Increasing research has tapped its
potential in flexible sensors [26,27]. Amongst various TFTs, organic thin film transistors
(OTFT) and organic electrochemical transistors (OECT) are widely used.

The OTFT consists of three terminals, a dielectric layer, and an organic semiconductor
layer. Compared with its inorganic structure metal oxide FET, using organic matter instead
of metal oxide as the semiconductor layer can obtain higher flexibility and printability. By
replacing the metal oxide dielectric with an organic dielectric, the OTFT is therefore flexible
and printable. The connection between its terminal and organic semiconductor layer can
be divided into top contact and bottom contact. Figure 3(aii) shows the OTFT structure
with top contact, which has a larger charge contact area and smaller contact resistance
compared to bottom contact. The result has easier access to high electrical conductivity,
which is suitable for wearable sensors with low drive voltage.

To achieve higher transconductance and flexibility, the OECT is developed, whose
nature is an electrolyte-gated FET. The electrolyte-gated FET regulates the charge accumu-
lation in the electrolyte on the channel surface by the gate voltage, thus inducing a rapid
but not strong charge migration within the channel. The OECT consists of metal terminals,
organic semiconductor films, and electrolytes. In contrast to the electrolyte-gated FET, the
gate voltage controls the electrolyte to inject ions into the organic semiconductor film di-
rectly, thereby changing the doping state of the organic semiconductor film and regulating
the drain current (Figure 3(aiii)). Since the characteristic variation of the OECT occurs over
the volume of the entire channel, opposed to the thin surfaces of conventional FETs, it
can greatly regulate the drain current variation with a low gate voltage [28]. Although
the flow of charge through the channel inevitably deteriorates the response time of the
OECT, it gives satisfactory results when amplifying low frequency signals [28], such as
electrochemical signals [29,30].
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In general, transistor amplifiers have the advantages of low power consumption, small
size, low power supply voltage requirements. What is more, they are resistant to physical
shocks, exempt from preheating, and highly responsive to voltage change. Especially, the
TFT has the advantages of high flexibility and processibility; the OTFT has flexible and
printable characteristics, which make it suitable for sensors that fit on the surface of the
skin; the OECT with liquid electrolyte has high transconductance and ultra-high flexibility
at the expense of a reduced response speed, which makes it suitable for low frequency
signal amplification. They are widely used in wearable devices, such as the portable
electroencephalogram (EEG) measuring instrument [31], flexible electrocardiogram (ECG)
patch [32], or ultra-conformal drawn-on-skin electronics [33]. To enhance the performance
of transistors further, a lot of research (Table 1) has focused on the realization of lower
power and higher CMRR amplification circuits.
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Figure 3. Transistor structures and optimized designs. (a) The structures of three transistors. Structure of
classical insulated gate type FET (i); OTFT (ii) [34]; reproduced under the terms of the CC-BY 4.0 Creative
Commons Attribution License, Copyright 2004, The Authors, published by Elsevier; and OECT (iii) [35];
reproduced under the terms of the CC-BY 4.0 Creative Commons Attribution License, Copyright 2013,
The Authors, published by Springer Nature. (b) Sub-thermionic organic transistors. (i) False-color
cross-section transmission electron microscopy image of the transistor. (ii) Comparison of intrinsic
gain among different TFT technologies. (iii) An array of flexible devices that fit on your fingertips [36].
Reproduced under the terms of the CC-BY 4.0 Creative Commons Attribution License, Copyright 2021,
The Authors, published by Springer Nature. (c) Nanoscale flexible OECT (i) with high on/off current
ratio up to 3× 108 (ii) and sub-threshold swing down to 70 mV/decade (iii) [37]. Reproduced under the
terms of the CC-BY 4.0 Creative Commons Attribution License, Copyright 2022, The Authors, published
by AAAS. (d) Vertical OECT-based inverter. (i) Schematic cross-section of the complementary inverter.
(ii) The wiring diagram when the cofacial pair inverter amplifies the ECG voltage. (iii) Comparison of
the recorded ECG signal between from the cofacial pair inverter and from medical electrodes using a
benchtop digital multimeter [38]. Reproduced under the terms of the CC-BY 4.0 Creative Commons
Attribution License, Copyright 2021, The Authors, published by AAAS.
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Table 1. Summary of signal amplification optimizations and their pros/cons in amplification capabil-
ity for various applications.

Optimizations Pros Cons Applications Ref.

OTFT
Sub-thermionic High gain;

energy saving Complicated operation Healthcare; Human-machine
interface [36]

Electron beam
lithography

Low off current;
quick switch Low preparation efficiency Healthcare; Emotion

recognition [37]

OECT Cofacial vertical
alignment

High gain;
energy saving

Complicated operation;
lot cost

Healthcare; Emotion
recognition [38,39]

Current Multiplexing Technology Energy saving Complicated operation Healthcare [40–42]

Post-mismatch compensation technology Transistor mismatch
reduction Complicated operation Healthcare [43]

Common-mode feed-forward technique CMRR improving Complex structure Healthcare; Emotion
recognition [44]

Time division multiplexing Impedance mismatch
reduction

Accurate clock source
needed

Healthcare; Environmental
analysis [45–47]

Copper stabilization technique Low frequency noise
reduction Noise frequency limitation Human-machine interface [48,49]

Fully differential difference amplifier Transistor mismatch
reduction Area needed Healthcare [50]

2.1.1. Energy Efficient Design

A large amount of energy is consumed by the amplification circuit in wearable sensors
in order to enlarge the weak signal of interest [51]. Therefore, the amplification circuit
studies of wearable sensors pay special attention to minimize power consumption while
not affecting gain.

Wearable sensors are often powered by tiny, low-voltage batteries. However, in
practical applications such as location tracking, healthcare, environmental monitoring, etc.,
wearable devices are often needed to meet the demand for a certain amount of battery life.
It challenges the ability of amplification circuits to operate at low voltages. Despite the
good flexibility of OTFTs, the inherent low mobility and suboptimal switching properties
of organic semiconductors make OTFTs require large drive voltages. However, the losses
generated in the amplifier circuit increase as the drive voltage rises. Therefore, these losses
can be reduced by lowering the drive voltage while keeping the gain constant. Exploring
transistors with higher transconductance can effectively reduce the driving voltage and
thus the power consumption. For example, Zhongzhong Luo et al. proposed an ultra-
high gain OTFT that was optimized in terms of the material and process to obtain high
transconductance [36]. This OTFT is made with Au as the electrode material, HZO/Al2O3
as the dielectric, and p-type 2,9-didecyl dinaphtho [2,3-b:2′,3′-f]thieno [3,2b]thiophene
(C10-DNTT) as the channel material (Figure 3(bi)). Firstly, the HZO/Al2Oe gate dielectric
is an extremely conductive material. Secondly, the C10-DNTT monolayer film made by
a special shearing technique is highly crystalline, which will minimize the loss during
the conductivity. Finally, the integrity of the monolayer organic film is preserved by the
proposed solvent-free low-energy OTFT preparation process. These three points together
result in the ultra-high electron mobility of the fabricated OTFT. Compared with the
existing TFT fabrication process, the OTFT prepared by this process has ultra-high gain
(Figure 3(bii)). Its ultra-thin, flexible nature makes it suitable for device arrays that fit on
the surface of the skin (Figure 3(biii)) [36].

In addition to the OTFT based on the printing process, Ute Zschieschang et al.
proposed an OTFT based on the electron beam lithography process [37]. This OTFT has
three parts (Figure 3(ci)), a patterned aluminum gate, gold source, and gold drain; an
aluminum oxide (AlOx) dielectric; and a phosphonic acid self-assembled monolayer
(SAM). Among them, the SAM coating reduces the electron capture by the -OH group
of the metal oxide layer, allowing higher electron mobility. Electrolithography is an
advanced patterning technique, which was used for the first time in this study to prepare
the OTFT on flexible substrates. The OTFT contact resistance, channel length, and gate-
contact overlap obtained using this technique are extremely small. In addition, the results
of previous studies [52] show that small values of these three metrics indicate that the
obtained OTFT transmission is strong. The OTFT proposed in this study has an excellent
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on/off current ratio. The p-channel transistors have on/off current ratios as large as
4 × 109 (Figure 3(cii)) and subthreshold swings as small as 70 mV/decade (Figure 3(ciii)),
and the n-channel transistors have on/off ratios up to 108 and subthreshold swings as
low as 80 mV/decade. The high on/off current ratio indicates the high electron mobility
of this OTFT, while the high subthreshold swing indicates that this OTFT switches
rapidly between the on and light states. As of April 2022, it has the largest on/off current
ratio among nanoscale OTFTs [37].

In addition to exploring high energy efficient transistors, a more compact transistor
arrangement can also significantly reduce drive voltage and thus reduce energy loss. The
ambipolar inverter composed of organic electrochemical transistor pairs with a coplanar
vertical structure proposed by Reem B. Rashid et al. provides a new solution for low
power consumption and weak physiological signal amplification [38]. These inverters
convert low-voltage direct current into an elegant alternating current. Using a previously
reported dry peel-off process [53], they deposited a first layer of Au, a parylene C (PaC)
insulating layer, a second layer of Au, and a final insulating layer step by step on a glass
slide. The ambipolar complementary inverter (Figure 3(ci)) has a vertical structure and a
higher integration level per unit area than a planar structure. At the same time, the higher
channel thickness makes it possible to control the drain current effectively with only a very
small gate voltage; only 0.26 V can make about ten times the magnification (Figure 3(ciii))
of the ECG signal obtained from electrodes (Figure 3(cii)). Similar studies discussed the
ability of the vertical OECT for low amplitude micro-organ signals and concluded that the
OECT is well suited for amplifying tiny physiological signals [39].

Power consumption can also be reduced through current reuse technology [54]. Based
on the fully differential current reuse amplifier design [55,56], Fatemeh Karami Horestani
et al. proposed an ultra-low power amplifier suitable for collecting low-frequency biological
signals [40]. In conventional structures, the input signal is injected into the gate of the
negative metal oxide semiconductor (NMOS) transistor, and the positive metal oxide
semiconductor (PMOS) transistor alone acts an active load. In the structure proposed in
this study, two complementary transistors were simultaneously driven and operated as
amplifiers. This design enables the amplifier to achieve two times higher transconductance
at the same input voltage, meaning less power consumption for the same task. This
technology is widely used in neural sensing [41], EEG monitoring [42], and self-powered
devices [57].

2.1.2. CMRR Enhancements

In the raw signals, the target signal is the differential mode while the noise signal
consists of the differential mode part and common mode part. A high-performance
amplifier can amplify more of the differential mode target signal in the raw signal to
distinguish it from the noise, playing an important role in initial noise filtering. The
CMRR is the ratio of the differential-mode gain to common-mode gain. The high CMRR
represents a strong ability to suppress common mode noise. In wearable sensors, the
amplification circuit faces common mode noises not only from the complex environments
but also from its own mismatches.

The noise of the transistor amplifier itself originates from the mismatch between the
individual transistors. For example, the aforementioned OTFT has limitations in practical
medical treatment and healthcare due to the electrical mismatch between OTFTs. Therefore,
Masahiro Sugiyama et al. proposed an ultra-flexible organic differential amplifier [58]
based on post-mismatch compensation (PMC) technology [43]. The differential pairs in the
differential amplifier consist of parallel transistors. First, a top insulating layer which con-
sists of polyethylene terephthalate produces electrical isolation of the paralleled transistors.
Then, through-holes through the insulating layer and interconnecting metal wires provide
electrical connections between the selected transistors (Figure 4(ai)). In the PMC process,
the output characteristics of each parallel transistor are measured separately. Accordingly,
the transistors are selected separately in the left and right groups to minimize the mismatch
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between the differential pairs (Figure 4(aii)). Finally, the results of Figure 4(aiii) show that
the output characteristics of the OTFTs in the left differential pair (ML+) are much closer to
those on the right (ML-).
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Figure 4. CMRR enhancement approaches of amplifiers. (a) PMC technology to reduce OTFT
mismatch. (i) The parallel transistors are electrically isolated prior to connection, and electrical
connection is provided by interconnecting metal lines through the insulating layer. (ii) The PMC
process which is based on the compensation method in ref [43]. (iii) Output characteristics of two-
sided OTFTs before and after PMC [58]. Reproduced with permission, Copyright 2019, Springer
Nature. (b) CMFF compensated bias current design. (i) First stage of fully differential amplifier. (ii)
Second stage differential to single ended amplifier. (iii) Schematic diagram of the replica bias circuit
used to set the common mode current of the input stage [44]. Adapted under the terms of the CC-BY
4.0 Creative Commons Attribution License. Copyright 2020, The Authors, published by MDPI.

Additionally, to meet the demands of low-voltage operation, traditional amplifier
structures often have to make trade-offs between the number of differential pairs in the
current mirror and the CMRR. A common-mode feed-forward (CMFF) technique [44] is
proposed to solve this problem. The traditional bias current generator was removed, and
the circuit shown in Figure 4(bi,bii) was proposed as the input stage of the amplifier. One
output of the first stage (Figure 4(bi)) is applied directly to the gate of the PMOS device,
while the other produces the current mirror after NMOS co-sourcing, which is in the
red box of Figure 4(biii). The second stage amplification circuit (Figure 4(bii)) changes
the differential output of the first stage to a single-ended output to provide higher gain.
Such compensation techniques improve the CMRR of the bias stage. According to its
small signal model, the CMRR achieved by the proposed structure satisfies Equation (1).
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CMRR =
1
2
× gmb1 + gmb3

gmb1
× gm1

gds1 + gds3
× gm5gm8 + gm7gm9

gm5gm8 − gm7gm9
(1)

This is the result when the approximation is generally assumed to be gm >> gmb and
gm >> gds, where gm, gmb, and gds, represent the gate transconductance, bulk transcon-
ductance, and output conductance of the different transistors. Obviously, when gm5
× gm8 is close to gm7 × gm9, the CMRR is close to infinity. The CMFF design makes
the amplifier exhibit excellent common mode rejection, and it is suitable for wearable
sensor amplification circuits.

In a multi-channel analog front end, assigning a dedicated reference to each channel
is an effective solution to the CMRR degradation caused by impedance mismatches
between differential inputs, but this increases power consumption significantly. There-
fore, a 16-channel analog front-end application specific integrated circuit (AFE ASIC)
using time division multiplexing (TDM) technology shares a second stage amplifier
among eight channels, solving the impedance mismatch problem at low voltage [45].
Such a design is widely used in EEG and photoplethysmography (PPG) monitoring [46],
infrared spectroscopy monitoring [47], and has the prospect of being applied to vari-
ous biosensors [59]. The chopper stabilization technique is a traditional and effective
amplifier linearization boosting technique that amplifies the signal by modulating it
to a higher frequency free of noise, and then demodulates the amplified signal back to
the baseband to reduce low-frequency noise [48]. This traditional technique was also
optimized in recent studies. For example, a chopping control technology is proposed
to solve the problem that the noise near the chopping frequency and its multiples is
difficult to eliminate [49]. An excellent amplification circuit can suppress common-mode
signals, but a single amplification circuit is not ideal for noise removal, which requires a
filter circuit to further processing.

In fields such as motion capture, healthcare, and human-machine interface, motion
artifacts are an almost unavoidable source of noise. Minimizing the effects of motion
artifacts, especially in PPG monitoring [60], is critical to improving signal accuracy. To
solve this problem, a direct-current-coupled (DC-coupled) structure is often used in
amplifiers, which connect the input directly to the gate of the transistor to achieve an
input impedance far exceeding that of AC-coupled structure. However, the capacitance
mismatch of the conventional three-amplifier DC-coupled circuit has a negative impact
on the CMRR of the amplification. Therefore, a fully differential difference amplifier
(FDDA) which can replace the three-amplifier topology [50] was proposed to improve
the direct-current-coupled amplifiers’ CMRR. The proposed circuit employs cascaded
current mirrors to increase impedance to suppress tail current mismatch and larger
size transistors to reduce transistor mismatch. In general, a larger transistor size will
occupy the space of the radio capacitance and lead to the deterioration of the CMRR.
This study proposes a parasitic capacitance reuse technique to mitigate this deterioration
by using parasitic capacitance to share a portion of the specific capacitance. A similar
design [61] compresses the three operational amplifiers’ (OPAMP) circuit and replaces
it with two single-stage operational transconductance amplifiers (OTA), realizing a
differential difference amplifier (DDA) circuit. The bias current of the OTA is shared in
the superposition method, and the self-stabilizing current is distributed to the common
mode feedback (CMFB) circuit through the MOS pseudo-resistor, thereby improving the
CMRR of the circuit.

2.2. Filtering

Wearable sensors are often adversely affected by different sources of noise. For
example, when performing ECG signal acquisition, they are not only subject to motion
artifact interference and myoelectric clutter interference, but also to power line inter-
ference (such as 50 Hz or 60 Hz noise from the power line) [62]. In order to remove
the noise and retain the signal of interest to the greatest extent [63], the filter needs to
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be selected according to the characteristics of the noise and the requirements for the
filtering result.

According to the form of the target signal that can be processed by the filter, filters
can be divided into analog filters and digital filters. Using the characteristics of inductors
to pass through high-frequency signals and capacitors to block low-frequency signals,
an easy-to-implement analog filter can be made. By adjusting the size and layout of the
inductor and capacitor, the analog filter can only allow signals in a certain frequency range
to pass through to achieve the effect of filtering out spurious waves. The digital filter
is an algorithm or device composed of an adder, a digital multiplier, and a delay unit.
Unlike analog filters, digital filters do not use the electrical characteristics of electronic
components for filtering, but modify the digital code of the input discrete signal for the
purpose of changing the frequency of the signal. Compared with analog filters, digital
filters are smaller in size and more complex in design. In addition, its filtering efficiency
would not be affected by the aging of the circuit, so its filtering accuracy is far higher than
the corresponding analog filter [24].

Many types of filters have been proposed that can perform segmentation with different
characteristics for target signals in various frequency bands. Depending on the parameters
of the filters, each filter has different orders. The characteristics of the filter become apparent
as the order increases, but the difficulty of implementation increases as well.

2.2.1. Filter Type

According to the frequency response function achieved by the filter, the com-
mon filters in wearable sensors can be divided into three types: Butterworth filter,
Chebyshev filter, and Elliptic filter, which can segment the target signal with different
characteristics. It is worth noting that the three types are not fixed analog or digital
filters, and the conversion between analog filters and the corresponding digital filters
can be achieved through algorithms (such as the impulse invariance method or bilinear
transform) [64].

Butterworth Filter

The characteristics of the output frequency band of the Butterworth filter are shown
in Figure 5(ai). As one of the most mainstream filters, the Butterworth filter has the
characteristic that the frequency has good stability both inside and outside the pass
frequency range, and the frequency band is maximally flat in the pass band. However,
Butterworth filters have the disadvantage of a slow descent in the stop band, resulting
in a long equivalent transition band. If the signal of interest happens to be within the
transition band, it is prone to distortion. This disadvantage can be overcome as the
filter order increases. The decay of the resistance band accelerates with increasing order,
resulting in more accurate processing results. Based on the above characteristics, the
Butterworth filter is suitable for cases where the passband and stopband ripples are
small, and the requirements for the transition band signal are low [65]. The frequency
response of the Butterworth filter satisfies Equation (2).

Gn(ω) =
1√

1 + ω2n
(2)

where ω is the corner frequency of the filter, and n is the order of the filter. Depending on
the accuracy requirements of the desired results, developers can choose different orders of
Butterworth filters.
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Figure 5. Characteristics and applications of three different types of filters. (a) Filter frequen-
cies of Butterworth filter (i), Elliptic filter (ii), Chebyshev I filter (iii), and Chebyshev II filter (iv).
(b) Wearable devices with different orders of Butterworth filters. (i) Gait and dynamic balance sensors
using second-order Butterworth filters [66]. Reproduced under the terms of the CC-BY 4.0 Creative
Commons Attribution License. Copyright 2019, The Authors, published by IEEE. (ii) Eye-tracking
device with third-order Butterworth filter [67]. Reproduced under the terms of the CC-BY 4.0 Creative
Commons Attribution License. Copyright 2020, The Authors, published by AAAS. (iii) Physiological
monitoring clothing for firefighters using a fourth-order Butterworth filter [68]. Reproduced with
permission. Copyright 2018, IEEE. (iv) In-ear PPG monitoring device with a fourth-order Butterworth
filter. (v) Heart rate estimation during slow walking [69]. Reproduced with permission. Copyright
2020, IEEE. (c) An ambulatory ECG monitoring system. (i) Front view of the electrocardiograph.
ii. The response of Chebyshev filter at high pass filtering [70]. Reproduced under the terms of the
CC-BY 4.0 Creative Commons Attribution License. Copyright 2021, The Authors, published by MDPI.
(d) Biopotential signal detection front-end with Elliptic filter. The block diagram (i), magnitude
response of the proposed notch filter (ii), and low pass filter (iii) [71]. Reproduced with permission,
Copyright 2020, IEEE.

When choosing the Butterworth filter order, accuracy and complexity should be
balanced. For example, in a wearable foot sensor for gait and dynamic balance sensing
(Figure 5(bi)), the designer uses a second-order Butterworth filter to finish the low-pass
filtering task [66]. In a wearable device for real-time detection of eye vergence in a virtual
reality (Figure 5(bii)), a third-order Butterworth filter is used for band-pass filtering [67].
In a wearable sensing device (Figure 5(biii)) that monitors the physiological signs of
firefighters in real time, a fourth-order Butterworth filter is used for low-pass filtering of
the accelerometer [68]. In the wearable gait evaluation, after considering the complexity
and steepness (rate of descent) of the design, a fourth-order Butterworth filter is chosen
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by compromise. Combined with the filtered output frequency band, the characteristics of
the flat passband of the Butterworth filter can be further recognized. When performing
in-ear continuous PPG monitoring, a fourth-order Butterworth low-pass filter with a
cutoff frequency of 10 Hz was selected as the low-pass filter [69]. Figure 5(biv) shows the
appearance of the in-ear PPG monitor, and Figure 5(bv) shows the beats per minute under
normal walking. In the period from 70 s to 170 s, several abnormal heartbeat frequencies
are higher than the actual value but are well suppressed after filtering. The fourth-order
Butterworth low-pass filter used by the device shows a good filtering ability on the high-
frequency noise. The results of these studies show that Butterworth filters can effectively
filter out signals outside the passband and flatten the frequency.

Chebyshev Filter

Compared with the Butterworth filter, the same order Chebyshev filter drops faster in
the stop band, but the response in the pass band fluctuates. Chebyshev filters are further
divided into two types: Chebyshev I filters which have equal ripple in the pass band and
flat in the stop band; Chebyshev II filters which have flat in the pass band and equal ripple
in the stop band. The characteristics of the output frequency band of the Chebyshev I
filter and Chebyshev II filter are shown in Figure 5a.iii and Figure 5(aiv), respectively. The
frequency response of the Chebyshev I filter satisfies the Equation (3), and the frequency
response of the Chebyshev type II filter satisfies the Equation (4).

Gn(ω) =
1√

1 + ε2Tn2(ω0/ω)
(3)

Gn(ω) =
1√

1 + 1
ε2Tn2(ω0/ω)

(4)

Tn(Ω) = cos(n ∗ arccosx); 0 ≤ x ≤ 1 (5)

Among them, ω is the angular frequency of the filter, and n is the order of the filter,
satisfying Equation (5). The x indicates ω0/ω.

As reflected in an IoT-assisted ambulatory ECG monitoring system with arrhythmia
detection (Figure 5(ci)) [70], the rapid drop in the stopband is an advantage of the Cheby-
shev filter in general. This study proposes a wearable arrhythmia monitor that sets up
four-stage filtering in the first round of filtering in which three stages use Chebyshev II
filters. In the first stage, it uses a second-order Chebyshev high-pass filter with a cutoff
frequency of 0.5 Hz. In the second and third stages, a second-order band stop Chebyshev II
filter that provides a 10 Hz notch at 50 Hz is used. Figure 5(cii) shows the programmable
embedded system-on-chip (PSoC) response of the Chebyshev II filter through the first
stage. This finding shows that the frequency profile decreases rapidly from 0.5 Hz to 0 Hz,
indicating that the second-order Chebyshev high-pass filter has a good filtering effect in
the first stage. However, sometimes too rapid a drop can also have an adverse effect on
the results. For example, the rapid drop in the stopband of a Chebyshev I filter gives it a
narrower transition band than a Chebyshev II filter, which can adversely affect its ability to
filter out anomalously correlated signals [72].

Elliptic Filter

Elliptic filters, also known as Cauer filters, are equiripple in both passband and
stopband; from Figure 5(aii), we can see these characteristics. It is different from the
Butterworth filter with a flat passband and an equal ripple in the stopband, and the
Chebyshev I filter with an equal ripple in the passband and a flat stopband. Comparing with
the filters mentioned before, at the same order, Elliptic filters have the smallest passband
and stopband fluctuations, as well as the narrowest transition band. Elliptic filters require
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only a lower order to achieve the same accuracy as Butterworth and Chebyshev filters. The
frequency response of the Elliptic filter satisfies Equation (6).

Gn(ω) =
1√

1 + ε2R2
n(ω)

(6)

where ω is the angular frequency of the filter; n is the order of the filter; and Rn is the
Jacobian Elliptic function of n.

Elliptic filters have the significant features of a narrow transition band and fast attenu-
ation. Accordingly, Maha S. Diab et al. adopted Elliptic filters in a general front-end for
biopotential signal detection [71]. The front end can be used for EEG, ECG, and EMG signal
acquisition, which is further processed by a filter after passing through a variable gain
amplifier (VGA) (Figure 5(di)). In this research, a second-order trap elliptic filter was used
to reduce 50 Hz power line interference, and a fourth-order low-pass elliptic filter was used
to filter out high frequency noise above 24 Hz. The results show that the designed filter can
accurately reduce power line interference at 50 Hz (Figure 5(dii)), and the low-pass filter
shows fast attenuation in the operating range (Figure 5(diii)).

The simplicity of the structure is an essential advantage of Elliptic filters. In a study [73]
which needs an active bandpass filter for the fifth-order OTA, the stopband frequencies of
different orders of the Butterworth filter, Chebyshev filter, and Elliptic filter were measured.
When reaching the same stopband frequency, the order required by the Elliptic filter is much
smaller than that of the Butterworth filter and slightly smaller than that of the Chebyshev
filter. Therefore, this study selects the Elliptic filter for further design in order to minimize
power consumption.

2.2.2. Applications and Innovation of Filters

Depending on the differences in operating characteristics, each structure of the filter
is suitable for processing specific types of signals. Meanwhile, the proposed new filtering
strategies provide solutions for more accurate and effective noise filtering (Table 2).

Table 2. Summary of noise filtering optimizations and their pros/cons in filtering capability for
various applications.

Optimizations Pros Cons Applications Ref.

Butterworth filter Passband flat Long stopband Healthcare Motion capture [74–77]
Chebyshev filter Short stopband Passband ripple Healthcare Emotion recognition [78–81]
Elliptic filter Short stopband Passband ripple Healthcare Human-machine interface [82–84]

Adaptive filter structure Large filter range
Targeted noise filtering Complex algorithms Healthcare [85]

Particle filter Precise filtering Complex algorithms Location tracking [86,87]

Kalman filter Multi-sensor fusion Complex algorithms Healthcare Emotion recognition
Human-machine interface [88,89]

In terms of popularity, Butterworth filters have stronger generalizability compared
to Chebyshev filters and Elliptic filters. In the field of motion recognition, Butterworth
filters can not only be used with accelerometers and EMG sensors to complete a motion
evaluation of the spine [74] and gait [75], but also can be combined with machine vision to
recognize human behavior [76]. In addition, Butterworth filters can be used to deal with
low frequency noise in ECG [77] and high frequency noise in EEG [77]. The possible reason
is that the flat passband of the Butterworth filter highlights the transient changes of the
EMG, but the longer transition band of the Butterworth filter blurs the details of the ECG
and EEG. In general, Butterworth filters are suitable for processing signals that require low
stopband decay rates and are particularly suitable for myoelectric signals.

For overlapping parts of the signal of interest and noise, the Chebyshev filter has
a stronger decoupling capability than the Butterworth filter at the same order. Theresa
Roland et al. screened them when designing an ultra-low-power filter module [78] for
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isolated EMG sensors (Figure 6(ai)). EMG signals are susceptible to power line interference
and motion artifacts. Since the common power line frequency is 50 Hz, the study compared
the processing capabilities of the two filters for EMG signals around 50 Hz. Taking a
cutoff frequency of 5 Hz as an example, the Butterworth filter performs better as it exhibits
less overshoot (Figure 6(aii)). The results of the Chebyshev filter are characterized by
high gain at the edge of the passband (Figure 6(aiii)), which adversely affects power line
frequency fluctuations. The reason for this result is that the passband and transition band
of the Butterworth filter are flat. Since the low-frequency motion artifact signal is close to
the EMG signal during contraction (Figure 6(aiv)), the filter needs to preserve the EMG
signal while filtering out coincident motion artifacts as much as possible. At this time, the
high-pass Chebyshev filter can maximize the differentiation of these two types of signals
(Figure 6(av)).
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Figure 6. Application and innovation of filters. (a) Insulated EMG sensing. (i) The myoelectric sensor
is fixed on the human forearm through a cuff. Butterworth-filtered (ii) and Chebyshev-filtered (iii)
signal at contracted muscle. (iv) Qualitative sketches of systolic EMG and typical motion artifacts
in the lower range. (v) Difference between artifact and EMG signal losses [78]. Reproduced under
the terms of the CC-BY 4.0 Creative Commons Attribution License. Copyright 2019, The Authors,
published by MDPI. (b) Optimal filter selection in PPG. (i) SQI for all types of filters. The excellent (ii)
and unfit (iii) PPG signal processing comparison between Butterworth filter (blue) and Chebyshev
filter (red) [79]. Reproduced under the terms of the CC-BY 4.0 Creative Commons Attribution License.
Copyright 2018, The Authors, published by Springer Nature. (c) The use of PPG for assessing
hypertension. Difference between PAT and PTT (i) and the filters’ impact on PPG morphology (ii) [90].
Adapted under the terms of the CC-BY 4.0 Creative Commons Attribution License. Copyright 2021,
The Authors, published by Springer Nature. (d) EMG signal processing instrument (i) with adaptive
filter. Comparison of EMG signal before (ii) and after (iii) processing and noisy EMG signal before
(iv) and after processing (v) [85]. Reproduced with permission, Copyright 2019, IEEE.

The Chebyshev filter is also the most advantageous filter for PPG measurements
where high accuracy is often required for PPG signals to obtain the pulse arrival time
(PAT) and pulse transmission time (PTT) with the reference value (Figure 6(ci)). Yongbo
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Liang et al. explored the most suitable filters for PPG signals and compared the three
filters mentioned in this paper [79]. First, by comparing the filtered signal quality index
(SQI), an important indicator for evaluating filter capacity, it found that Chebyshev II filter
and Butterworth filter have obvious advantages in normalization processing (Figure 6(bi)).
Then, the study compared the effectiveness of the Chebyshev type II filter and Butterworth
filter for processing different qualities of the raw signal. The conclusion shows that the
Chebyshev II filter can improve the quality of the signal more effectively than other types,
regardless of whether it is a high-quality signal (Figure 6(bii)) or an unsatisfactory signal
(Figure 6(biii)). Among them, the four order Chebyshev II filter has the highest quality.
Since the Butterworth filtering result is flat and has a long transmit band, it weakens the
dicrotic notch in the PPG signal (Figure 6(cii)), which is an important indicator in PPG
measurements [91]. At present, many studies affirmed the ability of the Chebyshev II filter
to filter high frequency noise in PPG [80,81].

In the field of wearable sensors, Elliptic filters are not as popular as the other two
types of filters, and most studies on Elliptic filters focus on its ability to handle ECG signals.
In 2018, Navdeep Prashar et al. proposed a removal of electromyography noise from ECG
for high-performance biomedical systems [82]. The researchers compared the Butterworth
filter, the Chebyshev I filter, and the Elliptic filter in terms of noise filtering in the high-
frequency part of the ECG, and the result is shown in Table 3. At the same time, this article
also lists similar research work on noise removal in ECG signals, and compares the filtering
effect of the wearable device with their effect. The final conclusion of this article is that the
signal-to-noise ratio (SNR) of the Elliptical filter is improved the most, while the power
spectral density (PSD) of the Elliptical filter is reduced the most, so the Elliptical filter has
the best effect of low-pass filtering among all the filters in the case of high-frequency noise
generated. Moreover, because the Elliptical filter transition band is so narrow, ECG sensors
often use it precisely to eliminate 50 Hz or 60 Hz power line interference [83,84].

Table 3. The improvement of the SNR and the PSD by the three types of filters.

Filter SNR before Filtering (dB) SNR after Filtering (dB) PSD before Filtering
(dB/Hz)

PSD after Filtering
(dB/Hz)

Butterworth filter −5.5313 11.8139 −54.8834 −68.5366
Chebyshev I filter −5.5313 9.0951 −54.8834 −70.3884
Elliptic filter −5.5313 12.2930 −54.8834 −70.9543

However, due to the complex and changeable environment in which wearable sensors
are located, noise often exists in multiple frequencies and changes constantly, and filters
with fixed coefficients are difficult to cope with such a complex environment. The adaptive
filter structure for EMG sensors (Figure 6(di)) proposed by Muhammad Zaka Jamal et al.
can deal with this problem [85]. This structure adopts an adaptive weighting algorithm,
which continuously adjusts the weight of the filter coefficients according to the result of
the feedback after filtering to remove different noises. Since the power line interference in
the United States is 60 Hz, when the human body touches the surface of the power supply,
battery, etc., the EMG signal will be interfered by 60 Hz and its harmonics (Figure 6(dii)).
By using adaptive filters, the interference signals concentrated at 60 Hz and 300 Hz are
effectively suppressed (Figure 6(diii)). For severely disturbed EMG signals (Figure 6(div)),
the filter can also effectively filter out the main noise components at 60 Hz, 180 Hz, and
300 Hz (Figure 6(dv)), and has a higher SNR than common instrument circuits.

Furthermore, many ingenious algorithms have been proposed to solve the problem
of unsatisfactory filtering accuracy, and the particle filter is a typical example. Based on
statistics and probability, it treats the raw signal as a set of particles (also called samples),
and assigns weights to each particle and predicts its changes [92]. The accuracy of particle
filters decays rapidly with increasing dimensionality, and the particle filter codes working
in low-dimensional conditions have a simple structure and scalability [86]. These features
make them suitable for wearable positioning [86,87]. However, highly integrated sensors
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are becoming mainstream, especially in the fields of emotion recognition and motion
capture. They require the fusion of multiple signals and the minimization of complex noise
interference. Sensor fusion techniques [93] using different filtering algorithms, such as
complementary filtering (CF), extended Kalman filtering (EKF), and unscented Kalman
filtering (UKF), can centrally process data from multiple sensors. The algorithm of CF
sensor fusion technology is simple and reliable [94], without a divergence problem, but
it can only be used when the sensor frequency characteristics are complementary [95].
Kalman filters are more efficient and accurate, and UKFs are particularly suitable for
heavily nonlinear signal processing, such as accurate wearable heading tracking [88] and
human joint angle estimation [89].

3. Analog-to-Digital Conversion

The physiological signals (such as bioelectricity, pulse, respiratory rate, etc.) are all
collected by the wearable sensor in the form of analog signals. However, the analog
signals cannot be directly recognized by the computer. Therefore, an ADC is required to
convert continuous analog signals into discrete digital signals. A high-performance ADC
can accomplish this process accurately and minimize the additional noise introduced. In
wearable sensors, the performance of the ADC will be evaluated in terms of linearity and
energy efficiency. We will first briefly introduce five mainstream ADCs and then highlight
the strategies of enhancing linearity and energy efficiency.

3.1. ADC Types

According to the device structure, the mainstream ADCs can be typed as flash ADC,
pipeline ADC, SAR ADC, dual slope ADC, and sigma-delta ADC.

3.1.1. Flash ADC

Among these five types of ADCs, the flash ADC has the fastest operating speed. It
adopts a linear voltage ladder structure as shown in Figure 7i. During the operation of the
flash ADC, each node is connected to 2N-1 comparators to compare the input voltage with
a continuous reference voltage. Multiple comparators need to work in parallel, resulting in
fast operation speed and huge power consumption.

Biosensors 2022, 12, x FOR PEER REVIEW 16 of 31 
 

3. Analog-to-Digital Conversion 

The physiological signals (such as bioelectricity, pulse, respiratory rate, etc.) are all 

collected by the wearable sensor in the form of analog signals. However, the analog sig-

nals cannot be directly recognized by the computer. Therefore, an ADC is required to con-

vert continuous analog signals into discrete digital signals. A high-performance ADC can 

accomplish this process accurately and minimize the additional noise introduced. In wear-

able sensors, the performance of the ADC will be evaluated in terms of linearity and en-

ergy efficiency. We will first briefly introduce five mainstream ADCs and then highlight 

the strategies of enhancing linearity and energy efficiency. 

3.1. ADC Types 

According to the device structure, the mainstream ADCs can be typed as flash ADC, 

pipeline ADC, SAR ADC, dual slope ADC, and sigma-delta ADC. 

3.1.1. Flash ADC 

Among these five types of ADCs, the flash ADC has the fastest operating speed. It 

adopts a linear voltage ladder structure as shown in Figure 7i. During the operation of the 

flash ADC, each node is connected to 2N-1 comparators to compare the input voltage with 

a continuous reference voltage. Multiple comparators need to work in parallel, resulting 

in fast operation speed and huge power consumption. 

 

Figure 7. Block diagrams of five types of ADCs. i. Flash ADC [96]. ii. Pipelined ADC. iii. Dual slope 

ADC. iv. N-order SAR ADC [96]. Reproduced with permission. Copyright 2016, IEEE v. Sigma-

delta ADC. 

3.1.2. Pipeline ADC 

The pipelined ADC has a better balance between performance and power consump-

tion than the flash ADC. A pipelined ADC consists of multiple stages, each containing a 

sub-ADC, a digital-to-analog converter (DAC), as shown in Figure 7ii. The data quantized 

by the ADC is fed to the DAC for processing, and the analog input is then subtracted from 

the sampled input, resulting in a residual voltage that goes through the accumulator (G) 

to the next stage. The pipeline ADC has a high conversion rate and low power consump-

tion, which is widely used in high-speed and high-precision fields such as wireless com-

munication and digital video [97]. However, its complex bias structure and high circuit 

Figure 7. Block diagrams of five types of ADCs. (i) Flash ADC [96]. (ii) Pipelined ADC. (iii) Dual
slope ADC. (iv) N-order SAR ADC [96]. Reproduced with permission. Copyright 2016, IEEE (v)
Sigma-delta ADC.



Biosensors 2022, 12, 889 16 of 30

3.1.2. Pipeline ADC

The pipelined ADC has a better balance between performance and power consump-
tion than the flash ADC. A pipelined ADC consists of multiple stages, each containing a
sub-ADC, a digital-to-analog converter (DAC), as shown in Figure 7ii. The data quantized
by the ADC is fed to the DAC for processing, and the analog input is then subtracted from
the sampled input, resulting in a residual voltage that goes through the accumulator (G) to
the next stage. The pipeline ADC has a high conversion rate and low power consumption,
which is widely used in high-speed and high-precision fields such as wireless communica-
tion and digital video [97]. However, its complex bias structure and high circuit process
requirements, as well as the delay in the signal traversal through the digital circuit [98],
make it unsuitable for simple, sensitive wearable sensors.

3.1.3. Dual Slope ADC

The dual-slope ADC has the advantages of high accuracy and low power consumption,
but its operating speed is much lower than that of SAR ADCs [99]. It consists of an
integrator, comparator, timer, and binary counter, as shown in Figure 7iv. When the dual
slope ADC starts working, the binary counter, timer, and integrator import an unknown
analog voltage (VA), and the comparator output is positive. When the counter reaches a
fixed count, the timer is cleared; a negative reference voltage (Vref) is introduced; and the
timing starts again. When the comparator output is negative, VA can be digitized from the
reference voltage value and two timings. Dual slope ADCs do not require DACs, nor do
they require as many comparators as other ADCs, which helps simplify the design [100].

The dual-slope ADC owns high conversion accuracy and can achieve a high-quality
analog-to-digital conversion by using a long conversion time under the condition of a low
sampling rate. This characteristic makes it suitable for target signals with small bandwidths.
As in PPG monitoring, dual-slope light-to-digital converters (LDC) enable high-precision
conversion at low sampling rates [101], which require very low power consumption to
complete the task.

3.1.4. SAR ADC

The SAR ADC is one of the ADCs that this paper will focus on, and it is the most
common ADC in the analog-to-digital conversion of wearable sensors. It consists of SAR,
DAC, and voltage comparators, as shown in Figure 7iii. The resolution of the SAR ADC is
generally between 8 bits and 16 bits. Its sampling rate is generally below 5 MS/s, which is
not suitable for application scenarios requiring high precision and a high sampling rate.
However, SAR ADC has significantly low energy consumption and can be dynamically
tuned compared to the other four types of ADCs. At the same time, it requires far less of a
silicon area than a pipelined ADC to achieve its equivalent capability. Thus, it is considered
to be the most suitable device for biomedical applications [102].

The superiority of SAR ADC dynamic regulation deserves to be further emphasized.
Faced with different usage scenarios of PPG monitoring [103], the ADC can run at 45 nA at a
250 S/s sampling rate or 90 nA at a 500 S/s sampling rate, which means it can not only meet
high-load working conditions but also guarantee battery life under low-load conditions. As
another example, the SAR ADC module adopted in the gesture recognition system [104] has
rich tunable levels. It allows easy adjustment of the sample rate by dynamic voltage and has
different resolution options to meet various conversion requirements. Among such devices,
the SAR ADC exhibits its flexibility with multi-level adjustability and excellent power
control ability. At present, a lot of research efforts are dedicated to provide low-power and
high-performance ADC for wearable sensors.

3.1.5. Sigma-Delta ADC

The sigma-delta ADC is extremely accurate, with conversion rates between SAR ADCs
and dual-slope ADCs and higher power consumption than the SAR ADC [105]. It consists
of a differential amplifier, an integrator, and a comparator (Figure 7v), operated at a rate
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well above the bandwidth of the analog signal to provide oversampling. The analog signal
is differentially compared with the feedback signal, and the result is fed into the integrator.
Next, the result of the integrator is received by the comparator. The comparator will
generate a feedback signal and send it to the differential amplifier, and simultaneously
output the digital result.

The features of low speed and high accuracy make the sigma-delta ADC suitable
for sensors with a narrow target signal bandwidth and high precision requirements, such
as EEG monitoring [106] and knee joint activity monitoring [107]. In addition, it can be
combined with the SAR ADC to produce an ADC structure with superior performance,
which will be introduced later.

3.2. ADC Optimization Strategy

Since the SAR ADC and sigma-delta ADC are widely used in the field of wearable
sensors, this paper focuses on their optimization strategies (Table 4). These strategies can
be divided into two aspects. The first is how to maximize the linearity of the ADC without
sacrificing the sampling rate and resolution. Linearity is an important indicator to describe
the static characteristics of the sensor which shows similarity between actual and ideal results
obtained by the ADC. The spurious-free dynamic range (SFDR) and signal-to-noise distortion
ratio (SNDR) are commonly used to reflect the linearity of an ADC. The SFDR is the ratio
of the maximum signal component to the next largest noise component, and the SNDR is
the ratio of all undesirable frequency components to the input frequency. The second is to
minimize power consumption without compromising its performance as much as possible,
which is similar to the efficient design of the amplification circuit mentioned earlier.

Table 4. Summary of analog to digital conversion optimizations and their pros/cons in converting
capability for various applications.

Optimizations Pros Cons Applications Ref.

mini-c-DAC assist leakage current reduction Complex structure Human-machine
interface [108]

Tracking algorithm and NSU dither
jitter injection method Noise and capacitance mismatch Complex algorithms and structure

Healthcare
Human-machine
interface

[109]

Capacitor reorganization method Nonlinear reduction Energy consumption increased Healthcare [110]
Minimum error algorithm Nonlinear reduction Complex algorithms Healthcare [111]

Sigma-delta modulation combining Nonlinear reduction;
Resolution improvement Complex algorithms and structure

Healthcare Emotion
recognition
Human-machine
interface

[112–115]

Compressive sensing Sampling frequency reduction Slow sampling Healthcare Emotion
recognition [116]

Bypass-switched structure MSB conversions reduction Slow sampling Healthcare [117]
LSB priority algorithms Low precision ADC Complex algorithms Emotion recognition [118,119]
Multi-channel exchange arrangement Reduce power consumption of cables Complex equipment Healthcare [120]
Dynamic Capacitive Switching Intermittent work Complex structure; Low precision Healthcare [121,122]

Adaptive threshold algorithm Intermittent work Complex algorithms;
Slow sampling

Healthcare
Emotion recognition
Motion capture

[123,124]

Adaptive resolution algorithm Low resolution conversion noise Complex algorithms
Low noise signals only Healthcare [125,126]

Power minimization algorithm Low resolution for high
accuracy conversion

Complex algorithms
Slow sampling
Complex structure

Healthcare [127,128]

3.2.1. Linearity Enhancement

The ADC, as an active unit to undertake the task of signal conditioning and connect
the DT, is vulnerable to various adverse effects such as power supply noise, capacitor
mismatch, current leakage, and so on. The negative effects introduced by these factors
make it difficult to achieve high-precision versions of conventional ADCs without or with
less use of large calibration circuits and large cell capacitors. Low-precision ADCs, on
the other hand, are insufficient for applications such as emotion recognition [129] and
human-machine interfaces [130]. Therefore, many studies have explored ways to improve
the linearity of the ADC without increasing the circuit area.
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In conventional SAR ADC structures, the leakage current that will inevitably be
generated by the voltage difference between the base and collector of the transistor (VM
and VCTOP) is an important issue that deteriorates the linearity of the ADC. To solve this
problem, a voltage-optimized design [108] added a mini-c-DAC to assist the main DAC
to complete the conversion process. The presence of the mini-c-DAC reduces the voltage
at VM to bring the two voltages closer, thereby significantly reducing the leakage current.
In a study to eliminate spectral spurs [109], a complete scheme to improve ADC linearity
with an emphasis on DAC optimization was proposed. First, the study proposes a tracking
algorithm, which improves the SNR and achieves a stable error correction during high-
speed operation by repeating eight least significant bit (LSB) comparisons and averaging
the results. Then, the DAC is filtered to reduce the noise generated by the comparison stage.
Finally, in order to reduce the error caused by the mismatch of the DAC capacitors, this
research proposes a Noise-Shaped-Uniform (NSU) dither jitter injection method based on
the ADC dithering method [131]. After this series of optimized designs, the proposed ADC
achieves a SNDR of 71 dB and a SFDR of 85 dB.

What is more, the optimized capacitive arrangement is also an important research
direction in the improvement of ADC linearity. Figure 8(ai) shows a 14-bit SAR ADC
structure consisting of a combination of capacitors and resistors. This multi-capacitor, high-
resolution ADC is prone to accumulating errors from capacitor mismatch, which affects
the linearity of the ADC. Therefore, a study applied a capacitor reorganization method
by introducing 64 new capacitors for screening [110]. The proposed capacitive array can
change the original integral nonlinear results. Compared with the traditional structure
(Figure 8(aii)), the integral non-linearity (INL) range achieved by the new array is greatly
reduced (Figure 8(aiii)). Taking the capacitance mismatch of σu = 2% as an example, the
SNDR of the proposed SAR ADC (Figure 8(av)) is improved compared with the traditional
structure (Figure 8(aiv)) under various conditions.

Algorithm optimization is the most common way to improve ADC linearization.
Since the method mentioned above [110] introduced 64 additional capacitors, some of
researchers achieved better results in another study by implementing the minimum error
algorithm [111] instead of introducing additional capacitors. First, the original capacitor
array was disassembled and divided into four groups to form the newly proposed structure
(Figure 8(bii)). Next, three different alternative calculation strategies for minimizing error
terms are preset. Finally, four capacitor groups obtain the minimum error term after
completing six comparisons and “XNOR” operations (Figure 8(biii)). Taking the capacitance
mismatch of σu = 2% as an example, the SNDR of the proposed SAR ADC (Figure 8(bv)) is
improved compared with the traditional structure (Figure 8(biv)) under various conditions,
which is also superior than the structure [110] mentioned before.

In addition to the above mainstream methods, there are many other ways to improve
the linearity of the ADC. In order to ensure the linearity of the sampling switch, it is
important that the on resistance of the transistor is stable across the voltages. Studies
show that transistors with larger aspect ratios have less resistance change in the face of
voltage changes and are more conducive to improving the linearity of the ADC [132].
Mohammad Tohidi et al. proposed a neural-signal-specific ADC suitable for wearable
neural signal monitoring [112]. The ADC proposed in this study can discriminate the
target signal from clutter and perform a higher precision analog-to-digital conversion of the
target signal to achieve the effect of noise reduction. We found that not much research has
focused on improving the linearity of sigma-delta ADCs directly, but combining sigma-delta
modulation with SAR ADCs can have the effect of improving linearity. Since conventional
SAR ADCs require complex on-chip linearization techniques in order to achieve resolutions
above 12 bits, Ahmad AlMarashli et al. applied sigma-delta modulation to the DAC unit
of conventional SAR ADCs [113]. Converting a full-resolution (N-bit) digital word in
SAR logic to a coarsely quantized output is accomplished with high precision, taking
advantage of its simplicity and insensitivity to capacitance mismatch. After this research,
the researchers proposed a similar design in 2017, using the inherent linearity of the



Biosensors 2022, 12, 889 19 of 30

sigma-delta DAC to replace the traditional DAC to complete the calibration step in the
SAR ADC [114]. In a high-resolution ADC design for biosensor arrays, the SAR ADC is
used to encode sigma-delta modulation, which combines SAR ADCs’ fast rate and sigma-
delta modulation’s high precision [115]. In conclusion, the combination of sigma-delta
modulation and SAR ADC is an ADC linearity optimization strategy that can take into
account the conversion rate, power consumption, and high resolution.
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Figure 8. ADC linearity enhancement and energy efficient design. (a) Capacitor mismatch solution with
a SAR ADC structure which has 14-bit capacitor and resistor combination (i) that break the original
INL (ii) for a smaller margin of error (iii). In addition, the improvement in SNDR (iv) and SFDR (v) it
brings is considerable [110]. Reproduced with permission, Copyright 2018, The Authors, published
by IEEE. (b) On the basis of (a), the capacitor allocation is improved (ii), and the optimization strategy
is added (iii). In addition, it shows more ideal SNDR (iv) and SFDR (v) [111]. Reproduced under the
terms of the CC-BY 4.0 Creative Commons Attribution License, Copyright 2018, The Authors, published
by IEEE. (c) Special CS design. DAC array with 12-bit CS-SAR ADC, with sampling cycles from ϕ1
to ϕ4 (i) and quantization cycle ϕ5 (ii), achieved the power consumption; (iv) is much lower than
that of Nyquist mode (iii) [116]. Reproduced with permission, Copyright 2017, IEEE. (d) SAR ADC
structure (i) with dynamic comparator, bypass-switching process (ii), and code recovery operation. Both
bypass-switching technology (iii) and dynamic comparison technology (iv) can significantly improve
energy efficiency [117]. Reproduced with permission, Copyright 2018, IEEE.

3.2.2. Energy Efficient Design

Although the SAR ADC has the feature of energy-saving, it does not stop scholars
from exploring more energy-efficient ADC circuits. The energy loss of the ADC mainly
comes from the switch discharge and capacitor discharge. Therefore, existing research
efforts have focused on reducing the number of capacitors by circuit rationalization or
minimizing the discharge frequency of existing switches and capacitors.

Conventional sampling protocols based on Nyquist’s theorem have high requirements
for data acquisition rates, which must be at least twice the signal bandwidth. Part of the
physiological signals collected by wearable sensors are sparse, and over-sampling due to
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Nyquist’s theorem consumes additional energy. Compressive sensing (CS) was proposed to
recover sparse signals from measurements well below the Nyquist rate accurately. Ordinary
CS encoders require the OTA for continuous integration or low-pass filtering, which bring
additional energy consumption. Wenjuan Guo et al. proposed a CS-SAR ADC structure
that uses a fully passive switched capacitor circuit without the OTA to save energy, as
shown in Figure 8(ci) [116]. Among these capacitors, C1 to C4 constitute the most significant
bit (MSB), and C5 constitutes the LSB. During operation, ϕ1 to ϕ4 are sampling stages
(Figure 8(ci)), and ϕ5 is the quantization stage (Figure 8(cii)). Four equally weighted
samples take place at ϕ1 to ϕ4, each sampling only a quarter of the total capacitance, and
then ϕ5 quantifies the average result of the four samples. Such a design sacrifices a certain
operating speed, but can make the proposed input buffer power (Figure 8(civ)) as low as
one-fourth of the traditional structure (Figure 8(ciii)).

Additionally, for sparse ECG signals, Tzu-Yun Wang et al. proposed a bypass-switched
SAR (BSSA) ADC with a dynamic proximity comparator [117]. Most of the sampled
ECG signals are close to the common-mode level. If the SAR ADC can detect whether
the sampled signal is close to the common mode level, and skip several previous MSB
conversion steps, it can effectively save switching energy. First, it determines whether the
input signal is within the bypass window by means of a dynamic proximity comparator
with a current correlator. Second, the size of the bypass window can be changed by
adjusting the charging speed of the Vbump and Vdiff nodes (Figure 8(di)). Next, the input
signal passes through the bypass switch. In the first four conversion stages, as long as the
comparator input voltage falls within the bypass window, the conversion process jumps
directly to the sixth stage and skips the intermediate stages (Figure 8(dii)). In order to
obtain the complete binary code after skipping the MSB step, four full adders are used
to restore the final output bits of the first five MSBs. The proposed BSSA logic provides
more than a 10% energy saving improvement (Figure 8(diii)), while the dynamic proximity
comparator further improves the energy saving by 20% (Figure 8(div)).

Traditional SAR ADCs use the MSB priority during the DAC, and such N-bit ADCs
need to perform N-time comparisons to achieve conversion. For weak signals such as
cardinal signals, an algorithm based on a LSB priority was proposed [118]. It achieves N-bit
effects at less than N times calculations by predicting signal change trends. On its basis, the
common voltage (Vcm) was introduced [133] as an improvement, which halves the number
of capacitors. For frequently triggered, slowly changing neural signals, a six-bit SAR ADC
can be used to replace the eight-bit SAR ADC and achieve the same result of eight bits by
restoring the results of the six-bit SAR ADC with a four-bit DAC. This structure can reduce
the number of capacitors to one-fourth of the original structure, which can achieve an 80%
power saving effect [119]. Multi-channel exchange arrangements with electrodes connected
to ADCs via wires were often used in low-power ADCs, which were difficult to achieve a
dynamic range with the medical reference value [134]. As an improvement, a multi-channel
frequency modulated ADC (FM-ADC) was proposed [120]. Before being acquired by a
single ADC, based on FM and frequency division multiplexing (FDM) techniques, the N
switched channels are aggregated onto a single line by summing resistive current patterns.
Through the multi-channel structure, the number of cables and ADCs was reduced, which
in turn leads to a significant reduction in power consumption. A recent study [121] further
improved the method of using Vcm for low-power processing, because the use of Vcm needs
an additional low dropout regulator (LDO) which introduces additional power dissipation.
Therefore, this research proposes a split capacitor-based switching scheme that requires less
reference voltages than the traditional structure. This scheme reduces switching energy by
99.74% and saves the capacitor area by 48.44% compared to the traditional structure using
Vcm. Although this scheme significantly reduced the switching energy of the ADC, the
researchers were not content with this. In another study [122], they proposed a switching
scheme that comprehensively used a split capacitor array structure, MSB split method,
and monotonic switching technique with bridge capacitors. As an improvement of the
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previous work, it saves 99.9% of the energy and reduces the number of capacitors by 96.9%
compared with the traditional structure.

Adaptive algorithms can also effectively improve SAR ADC energy efficiency [123].
Unlike the general ADC, this device only outputs samples when the intensity of the signal
exceeds a threshold. In this paper, a novel adaptive threshold algorithm is proposed, which
can set the threshold level at an appropriate position within the dynamic range of the signal.
It is called asynchronous because the sampling is non-uniform, and the sampling frequency
depends on the number of quantization levels and changes with the amplitude of the input
signal. The proposed SAR ADC compares the input signal with a threshold Ln every ts
seconds, where Ln belongs to the set {L1, L2, ... Ln/V}.(

X(m−1)ts − Ln

)
(Xmts − Ln) < 0 (7)

Q(si) = (m− 1)ts + ts/2 (8)

λi = Ln (9)

When the Equation (7) is satisfied, the circuit detects the occurrence of crossover, which
means that the crossover of the input signal and the threshold signal are the input in the
period between (m− 1)ts and mts. At this time, the quantized value Q(si) (Equation (8)) of
the time interval and the signal λi (Equation (9)) that generates the crossover are recorded.
Thus, this algorithm allows the ADC to achieve equivalent analog-to-digital conversion
results while taking fewer samples under the same conditions, leading to lower power
consumption and a smaller circuit area. Similar to this research, a dynamic circuit configu-
ration method [124] was proposed for slowly changing single-channel signals such as the
single-lead ECG and respiratory signals. In addition to the dynamic sampling frequency,
adaptive resolution SAR ADCs can also be used [125]. It adopted the adaptive resolution
ADC based on the fuzzy logic algorithm for the ADC in the wearable ECG monitoring
system, which effectively reduces the circuit complexity and power consumption of the
ADC. A similar design was employed in an EEG monitoring system [126].

The above strategies were targeted at the SAR ADC; a power minimization algorithm
was proposed to lower the power consumption of the sigma-delta ADC [127]. It first
confirms the oversampling rate that satisfies the dynamic range, and then finds the dc
gain and stability time constant of the OPAMP by means of a behavioral simulator [135].
At the same time, the preset point of the minimum power can be deduced through the
noise-and-settling constrained power minimization (NSCPM) algorithm. Further, simple
sigma-delta ADCs with pipelined ADCs’ linear structure can perform complex work tasks.
In the first conversion, the samples to be processed are input to the sigma-delta modulator.
After the cycle, the MSB is extracted by the digital filter, while the residue enters the second
conversion, and the LSB is obtained. Such a structure eliminates the need for the inter-stage
amplification required by pipelined ADCs and achieves the desired resolution by digitally
combining the MSB and LSB of the two conversion stages. Thus, two low-resolution,
low-power sigma-delta modulators can also achieve high-resolution conversion using this
architecture [128].

4. Conclusions and Outlook

In this review, we systematically summarize research on wearable sensors in the DAQ,
which can be further divided into signal conditioning and analog-to-digital conversion. In
the signal conditioning, amplifiers and filters are used to enlarge the target signal and mini-
mize noise/artifacts, respectively. Recent amplifier designs pursue high positive feedback
on differential mode signals while suppressing the common mode interference to achieve a
higher CMRR, and utilize the characteristics of transistors operating in the subthreshold
region to obtain high transconductance at low voltages. Three filters were used in different
scenarios, such as to obtain a flat frequency spectrum through the Butterworth filter, to
capture more details through the Chebyshev filter, and to reduce energy cost through the
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Elliptical filter. In addition, the adaptive filtering technology can effectively reduce the
power consumption of the filtering circuit, and the sensor fusion algorithm centralizes
the multi-sensor information to achieve the noise reduction effect. In the analog-to-digital
conversion, reducing the capacitance mismatch and leakage current can effectively improve
the linearity of the ADC, and various algorithms can reduce the number of capacitors or
the electronic component discharging times to make ADCs more efficient.

It is worth mentioning that the signal conditioning unit and analog-to-digital conversion
unit both play essential roles in the sensing system, but not each of them is indispensable.
For example, the ADC can be replaced by specific algorithms. An ADC-free architecture was
proposed in an ultra-low-power face recognition system [136]. In this structure, an analog con-
volution processor was used to perform the first layer quantization of the convolutional neural
network (CNN), which can replace the traditional ADC to achieve the process. Compared
with the traditional ADC structure, it can achieve similar results with a 15.7% reduction in
power consumption. The similar design was demonstrated in other works [137,138]. However,
such a structure has higher requirements on algorithms and circuits while only achieving
limited improvement in energy efficiency. With the continuous improvement of the algorithm,
this approach may become more efficient in the future.

There are research concerns to power consumption issues for every unit in the sensing
system. Adoption of more advanced manufacturing processes [139–142], a simplified
circuit [119,122], and other methods can significantly reduce the power of a certain unit
of the sensing system. However, from the overall perspective of the sensing device, such
improvement is relatively small. Taking the studies mentioned above as examples [143,144],
they can bring microwatt levels of power reduction, while the power consumption of
portable sensors is often at the milliwatt level. Alternatively, enhancing the power supply
can solve the energy problem including using batteries with a high energy density [145] and
fast charging capability [146,147], as well as applying self-powered designs that sensors
obtain energy from the behavior of wearer [148,149], body temperature [150,151], body
fluids [152], friction[153], raindrop [154], and sunlight [155]. In addition to using high-
performance batteries, power management strategies provide support to improve the
battery life of compact wearable sensors further [156]. Established power management
strategies allow for waking up specific nodes of the sensor network [157] or turning
on data transmission under ideal conditions [158]. They can also adaptively adjust the
discharge power with the concentration of the object to be measured [159], and setting
up non-volatile memory with sensor feedback from the object to be measured to extend
the dormancy time [160]. In particular, self-powered batteries combined with power
management strategies can maximize the reception of external energy and rationalize the
output. For example, solar cells are partitioned according to the different body locations
where the sensors are located to run all electricity at close to the maximum power point [161].
By analyzing the energy that self-powered loads receive from the outside world, the surplus
is charged to the battery when there is enough energy, and the remaining battery energy
is called to drive the sensor when there is not enough [162]. Meanwhile, the safety and
portability of wearable sensors would not be compromised when the power consumption
problem is solved.

Wearable sensors have broad development prospects and feasible research directions
in terms of the DAQ. The large demand in health care, medical treatment, human-machine
interface, and other fields will attract increasing attention in developing economical, effi-
cient, and multifunctional wearable sensing devices.
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Abbreviations

DAQ Data acquisition
DT Data transmission
ADC Analog-to-digital convertor
CMRR Common-mode rejection ratio
SAR Successive approximation register
FET Field effect transistor
TFT Thin film transistor
OTFT Organic thin film transistors
OECT Organic electrochemical transistors
EEG Electroencephalogram
ECG Electrocardiogram
SAM Self-assembled monolayer
PaC Parylene C
NMOS Negative metal oxide semiconductor
PMOS Positive metal oxide semiconductor
PMC Post-mismatch compensation
CMFF Common-mode feed-forward
TDM Time division multiplexing
AFE ASCI Analog front-end application specific integrated circuit
PPG Photoplethysmography
FDDA Fully differential difference amplifier
OPAMP Operational amplifier
OTA Operational transconductance amplifier
DDA Differential difference amplifier
CMFB Common mode feedback
PSoC Programmable embedded system-on-chip
VGA Variable gain amplifier
SNR Signal-to-noise ratio
CF Complementary filtering
DAC Digital-to-analog converter
SFDR Spurious-free dynamic range
SNDR Signal-to-noise distortion ratio
LSB Least significant bit
CS Compressive sensing
MSB Most significant bit
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