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Abstract: Alzheimer’s disease is one of the most critical brain diseases. The prevalence of the disease
keeps rising due to increasing life spans. This study aims to examine the use of hemodynamic
signals during hypoxic respiratory challenge for the differentiation of Alzheimer’s disease (AD) and
wild-type (WT) mice. Diffuse optical spectroscopy, an optical system that can non-invasively monitor
transient changes in deoxygenated (∆RHb) and oxygenated (∆OHb) hemoglobin concentrations,
was used to monitor hemodynamic reactivity during hypoxic respiratory challenges in an animal
model. From the acquired signals, 13 hemodynamic features were extracted from each of ∆RHb
and −∆OHb (26 features total) for more in-depth analyses of the differences between AD and WT.
The hemodynamic features were statistically analyzed and tested to explore the possibility of using
machine learning (ML) to differentiate AD and WT. Among the twenty-six features, two features of
∆RHb and one feature of −∆OHb showed statistically significant differences between AD and WT.
Among ML techniques, a naive Bayes algorithm achieved the best accuracy of 84.3% when whole
hemodynamic features were used for differentiation. While further works are required to improve the
approach, the suggested approach has the potential to be an alternative method for the differentiation
of AD and WT.

Keywords: Alzheimer’s disease; diffuse optical spectroscopy; hemodynamic measurements; hypoxic
respiratory challenge; machine learning

1. Introduction

Dementia is one of the most devastating brain diseases and has various causes. The
most common cause of dementia is Alzheimer’s disease (AD) [1]. The prevalence of AD is
expected to keep increasing as life expectancy increases. Generally, AD is characterized
by the accumulation of β-amyloid and tau protein in the brain [1–5]. While AD results
in severe damage to the brain, which deteriorates the life of the patient and the patient’s
family, there is no viable cure for AD at present. However, early diagnosis of AD is still
beneficial for future planning, participation in clinical trials, and delaying the progress
of the disease by regulating the patient’s lifestyle [1]. For the diagnosis of AD, various
methods are used. The most conventional diagnostic methods are cognitive and behavioral
tests [1]. Other than cognitive and behavioral tests, blood sampling and brain imaging have
been used to diagnose AD. Among imaging methods, monitoring of β-amyloid [2,3] and
tau protein [4,5] using positron emission tomography (PET) has been performed. Blood
oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (fMRI), a
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type of MRI-based technique, has also been used to investigate the differences between
control, mild cognitive impairment (MCI), and AD [6]. However, the use of PET and MRI
is usually costly. As an alternative approach, optical techniques, solely or combined with
other techniques, have been utilized to characterize AD. Among various optical techniques,
diffuse optical spectroscopy (DOS), also known as near-infrared spectroscopy (NIRS) in
biomedical engineering, is frequently used in AD studies due to its relatively high temporal
resolution, low cost, portability, and non-invasiveness. In most NIRS-based AD studies,
experimental protocols, including the verbal fluency test [7–12], N-back test (including 1-
back) [10–13], oddball test [11,12], and Stroop test [10], are used as stimuli to the brain. Such
approaches aim to test neurovascular coupling to hypothesize differences in the responses
of an AD group and a normal group. However, the applicability of such experimental
protocols may be affected by the educational level of an individual.

Monitoring the cerebrovascular reactivity (CVR) caused by supplying breathing gas
or using specific breathing methods is another approach to investigating various brain
diseases, including migraine [14], traumatic brain injury [15], epilepsy [16], and cerebral
small vessel disease [17]. In the meantime, some animal studies have used breathing gas
challenges supplying 100% O2 gas or carbogen gas (95% O2 gas balanced by 5% CO2 gas) to
differentiate between 3xTg, a type of AD animal model, and wild-type (WT) animals [18,19].
However, these studies did not test the use of breath-holding as a means to induce the
CVR. Similarly, a spatial frequency domain imaging system, which is used in these studies,
requires excision of the scalp, which cannot be easily performed on human subjects.

While many AD studies using optical techniques performed relatively simple analyses
including statistical tests and comparison of signal correlations [7–9,11,13], thanks to the
rapid development of artificial intelligence (AI) techniques such as machine learning (ML)
and deep learning (DL), recent AD studies using optical techniques tend to perform more
advanced analyses of acquired signals [10,12]. It is well known that AI techniques extract
‘hidden’ information that cannot be found by conventional analytical methods, thus it is
believed that a wide range of medical fields will benefit from adopting AI techniques.

In this work, to explore an alternative non-invasive, simple, and cost-effective ap-
proach for diagnosing AD, preliminary animal experiments were performed during the
hypoxic respiratory challenge, an intervention that mimics breath-holding. During the
experiments, a DOS system was used to monitor the CVR of AD and WT. In the meantime,
Monte Carlo simulations were performed to show the possibility of non-invasive brain
signal measurement using the DOS system. Statistical analysis and machine learning
(ML) algorithms were used to confirm the feasibility of the suggested approach and the
practicality of the protocol for differentiating AD and WT.

Contributions of this study include: (1) testing hypoxic respiratory challenge in AD
and WT by measuring hemodynamic signals using the DOS system; (2) showing the
usefulness of extracted hemodynamic features, which are based on methods suggested
in previous breast cancer studies, in the differentiation of AD and WT; (3) identifying
some hemodynamic features that can differentiate AD and WT statistically significantly; (4)
testing 15 ML algorithms for hemodynamic features of CVR caused by hypoxic respiratory
challenge for classification of AD and WT.

2. Materials and Methods
2.1. Animal Model and Preparation

We used 12-month-old male 5xFAD animals (AD, n = 6) and age-matched wild-type
animals (WT, n = 6) in this study. The 5xFAD model is a genetically-modified mouse
model that co-expresses 5 mutations of familial Alzheimer’s disease (FAD) [20–23], and
develops accumulation of β-amyloid in a relatively short time. As a result, the model
shows the characteristics (amyloid pathology and memory impairment) of FAD in a shorter
time in comparison to other Alzheimer’s models. To induce anesthesia, each animal was
initially placed in an induction chamber filled with 5% isoflurane mixed with 50% O2 gas
balanced by N2 gas. After induction, the anesthesia was maintained with 1.5% isoflurane
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supplied through a nose cone (Figure 1a). The mouse head was fixed using a stereotaxic
frame (Customized stereotaxic frame, Digitaxis). To prevent eye dryness, an eye ointment
was applied to both eyes of the animal. The fur on the head and the thigh was shaved
and depilated to minimize the influence of scattering in the DOS and pulse oximeter
measurements, respectively.
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Figure 1. (a) Schematic of the animal experimental setup, (b) protocol of gas intervention.

2.2. Behavioral Tests

Before proceeding with the measurements of cerebral hemoglobin concentration, novel
object recognition and Morris water maze tests were performed to confirm the AD-related
behavioral changes in 5xFAD mice when the animals were 6–7 months old (5xFAD: n = 6;
WT: n = 6).

2.2.1. Novel Object Recognition Test

The novel object recognition test consists of training and test phases. Mice were placed
for 10 min in the open-top box (40 × 40 × 40 cm3) where two identical objects were located
during the training phase. The test phase started 24 h after the training phase. Mice were
returned to the box with one novel object and the identical object used in the training phase
and then explored the objects for 10 min. The preference index was calculated as the time
to explore the novel object, which is expressed as ‘a’, divided by the time to explore both
objects, which is expressed as ‘a + b’ (% preference index = {a/(a + b)} × 100 (%)).

2.2.2. Morris Water Maze Test

The Morris water maze test was performed over 4 trials per day for 4 consecutive days
to test spatial memory. A circular test pool (114 cm in diameter, 25 cm in height) was filled
with opaque water using non-toxic paint and was maintained at 25 ◦C. For all sessions
over 4 days, a clear escape platform (15 × 10.5 cm2) was immersed 1.5 cm below the water
surface in a fixed position in the pool. In each trial, mice were randomly placed facing the
wall in one of the three quadrants of the pool except for the quadrant containing the escape
platform. Mice were allowed to swim to find the escape platform for 60 s. If the mice could
not find the escape platform within 60 s, we guided the mice to the platform. The animals
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were allowed to stay on the platform for 10 s. The latency time from the starting point to
the escape platform was measured for all trials.

2.3. Diffuse Optical Spectroscopy for Cerebral Hemoglobin Concentration Measurement

Figure 1 shows a schematic of the system. The DOS system consisted of a broadband
light source (HL-2000-HP, Ocean Optics, Orlando, FL, USA) with a 600-µm multi-mode fiber
(M29L02, numerical aperture (N.A.): 0.39, Thorlabs, Newton, NJ, USA) and a spectrometer
(custom USB4000, wavelength: 470–1000 nm, Ocean Optics, Orlando, FL, USA) with a 400-µm
multi-mode fiber (M79L01, N.A.: 0.39, Thorlabs, Newton, NJ, USA). A source-detector
separation was set to 0.7 cm to balance the signal stability, which was determined by
comparing the maximum intensity and the noise level, as well as the signal acquisition rate,
which is inversely proportional to the integration time. The expected probing depth of the
system was approximately 0.35 cm based on the diffusion theory, which was deep enough
to reach the depth of the brain. Even though the overall signal-to-noise ratio may increase
as the source-detector separation becomes shorter, a shorter separation is not considered
due to the multi-layer nature of the brain. Specifically, the decrease of the source-detector
separation will enhance the signal sensitivity on the extracerebral tissues, including the
scalp and the skull, and simultaneously diminish the signal sensitivity on the brain. Thus,
the source-detector separation should be long enough to achieve high enough sensitivity
on the CVR. The validity of the acquisition of the signals from the brain is explored using
Monte Carlo simulation (Sections 2.6 and 3.2). DOS data were collected using a bundle
software from Ocean Optics (Spectrasuite, Ocean Optics, Orlando, FL, USA). The sampling
frequency of DOS varied depending on the integration time of the spectrometer since the
animals showed different peak signal intensities. The integration time was set to have the
maximum intensity value 3 or 4 times higher than the dark signal intensity, which resulted
in 1 Hz to 3 Hz of the sampling frequency. The collected DOS raw data were saved for
offline processing.

2.4. Signal Acquisition

The measurement was performed non-invasively, thus the bregma-lambda coordinate
points could not be used. Instead, the DOS probe was placed between the horizontal line of
the eyes and the horizontal line of the ears to acquire DOS signals from the same position.
The probe was placed on the head of the mouse by the same person so that the position and
pressure given to the head by the probe could be as constant as possible. Figure 1a shows
the orientation of the source and detector fibers. Figure 1b shows the experimental protocol
of the breathing gas challenge used in this work. The total measurement took 30 min.
We supplied 50% O2 gas balanced by N2 gas for 10 min for the baseline measurement.
After the baseline measurement, 16% O2 gas balanced by N2 gas was supplied for 5 min
as the hypoxic respiratory challenge. The hypoxic respiratory challenge was used to
mimic breath-holding. After the hypoxic respiratory challenge, 50% O2 gas balanced by
N2 gas was supplied again for 15 min. The gas modulation was performed using a gas
mixer. During the measurement, an automatic temperature controller with a rectal probe
(Temperature controller, RWD Life Science, Shenzhen, Guangdong, China) maintained
the core temperature of the animal as 37 ◦C. To ensure the safety of the animal, a pulse
oximeter (Mouse Ox, Starr Inc., Oakmont, PA, USA) and a patient monitoring device (B40,
GE Healthcare, Chicago, IL, USA) were used to monitor heart rate, oxygen saturation, and
the respiratory function of each animal during the measurement.

Following the principles of the 3Rs (replacement, reduction, and refinement) in animal
experiments (nc3rs.org.uk (accessed on 2 October 2022)), to minimize the usage of animals,
each animal was measured 5 to 6 times on different days. The study was approved by the
Institutional Animal Care and Use Committee (IACUC) of the Gwangju Institute of Science
and Technology (Protocol number: GIST-2017-065) and the Chonnam National University
(protocol number: CNU IACUC-YB-2018-08).

nc3rs.org.uk
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2.5. Modified Beer-Lambert’s Law

To extract relative hemoglobin concentration from the DOS raw data, the modified
Beer–Lambert law (MBLL) was used [24–26]. Equation (1) shows MBLL with wavelengths
of 780, 808, and 820 nm:

(
∆RHb
∆OHb

)
=

1
d·DPF

ε780 nm
RHb ε780 nm

OHb
ε808 nm

RHb ε808 nm
OHb

ε820 nm
RHb ε820 nm

OHb


−1∆OD780 nm

∆OD808 nm

∆OD820 nm

 (1)

where RHb and OHb denote deoxygenated and oxygenated hemoglobin, respectively,
∆RHb and ∆OHb denote the relative RHb and OHb changes, respectively, d denotes a
source –detector separation (7 mm in this study), DPF denotes the differential path length
factor, ελ

RHb and ελ
OHb denote the extinction coefficient of RHb and OHb at the different

wavelengths, respectively, and ∆ODλ (=log10
(

Iλ
t /Iλ

0
)
) denotes the transient optical density

at the different wavelengths. Iλ
t and Iλ

0 are the transient and baseline intensity at the differ-
ent wavelengths, respectively. The average intensity of the first 20 s signals at the different
wavelengths was considered as Iλ

0 . The εRHb and εOHb at different wavelengths are from a
web page hosted by S. Prahl and S. Jacques [27]. The unit of hemoglobin concentration was
set to be mM/DPF, which is equivalent to setting DPF as 1 at different wavelengths [24].
Note that considering DPF as a part of the unit of hemoglobin concentration is one of the
widely accepted approaches [12,24,25,28]. In this study, 808 nm was selected because it is
known as one of the isosbestic points of the extinction coefficients of RHb and OHb [29].
Meanwhile, 780 nm and 820 nm were selected to reflect the different light absorption
tendencies between RHb and OHb. Still, other optical wavelengths can be used depending
on experimental conditions. Owing to the existence of a non-square matrix of the extinction
coefficients in MBLL, the Moore–Penrose pseudoinverse was used to get the inverse of the
non-square matrix [26,30].

2.6. Monte Carlo Simulation of Probing Depth

The Monte Carlo simulation is widely used for the simulation of light propagation
through various types of media. To validate the probing depth of the DOS system with
the 7 mm source-detector separation, a set of Monte Carlo simulations was performed
using a MCXLAB toolbox [31]. For simplicity, a three-layer (scalp, skull, and brain), 2D flat
slab with a dimension of 10 × 20 mm2 (x-axis × z-axis) was assumed. Table 1 shows the
dimensional and optical properties of the scalp, skull, and brain used in the simulation. Due
to the unavailability of appropriate absorption coefficients of the scalp, following the work
of S. Y. Lee et al. [32], estimated constituents of absorbers of the human extracerebral tissue
that treat the scalp and the skull as a single tissue layer [32,33] were used to get absorption
coefficients of the scalp at desired wavelengths. In one simulation, the source was set to
have a size of 600 µm and a NA of 0.39 to mimic the source fiber in the measurements. In
another simulation, the source was set to have a size of 400 µm and a NA of 0.39 to mimic
the detector fiber in the measurements. Each simulation was performed by launching
107 photons. Two separate simulations performed with the two sources were set to have a
7 mm distance to mimic the 7 mm source-detector separation. Element-wise production
was performed on the fluence results of the two simulations to get depth sensitivity maps.
Note that this approach is commonly used to get the depth sensitivity map [34,35].
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Table 1. Dimensional and optical properties used in Monte Carlo simulation. λ1: 780 nm; λ2: 808 nm;
λ3: 820 nm.

Scalp Skull Brain

Thickness
(mm)
[36]

0.7 0.6 8.7

Absorption coefficient
(mm−1)

[32,33,37]

λ1 0.0104
0.0250

λ1 0.0132

λ2 0.0103 λ2 0.0131

λ3 0.0107 λ3 0.0137

Scattering coefficient
(mm−1)

[18,32,36]

λ1 9.9982 λ1 25.2684 λ1 11.9932

λ2 9.7269 λ2 24.6957 λ2 11.5491

λ3 9.6257 λ3 24.4602 λ3 11.3683

Refractive index
[32,38–40] 1.38 1.55 1.37

Anisotropy
[32,37,40] 0.80 0.92 0.90

2.7. Extraction of Hemodynamic Features

To quantify differences between AD and WT, quantitative hemodynamic features
were adopted from breast cancer studies that used diffuse optical tomography—an optical
method that can acquire 3D absorption and scattering images of biological tissues—and
dynamic contrast-enhanced MRI [41,42]. Originally, the features were suggested to quan-
tify the hemodynamic response of the breast during hypoxic respiratory challenge for
diagnosing breast cancer and monitoring neoadjuvant chemotherapy efficacy. While we
investigated AD in this study because the study also aimed to quantify hemodynamic
response caused by hypoxic respiratory challenge, the hemodynamic features used in the
breast cancer studies were adopted with a slight modification. Six hemodynamic features
derived via simple arithmetic calculation are shown below [41,42]:

Smin = min{S(t)}; t : 600− 700 s (2)

Smax = max{S(t)}; t : 900− 1000 s, (3)

IE = (Smax − Smin)/Smax, (4)

PIE = (SPostBH30sec − Smax)/Smax, (5)

mrise = (Smax − Smin)/(Tmax − Tmin), (6)

m f all = (Smax − SPostBH30sec)/(Tmax − TPostBH30sec), (7)

where S(t) denotes the signal as a function of time, Smin denotes the minimum of the
signal within 600–700 s, Smax denotes the maximum of the signal within 900–1000 s (after
the end of hypoxic respiratory challenge), IE denotes initial enhancement, PIE denotes
post-initial enhancement, SPostBH30sec denotes the amplitude of the signal at 930 s (30 s after
the end of hypoxic respiratory challenge), mrise denotes the slope of the rise within Tmax
and Tmin, Tmax and Tmin denote the corresponding times of Smax and Smin, respectively,
m f all denotes the slope of the drop within Tmax and TPostBH30sec, and TPostBH30sec denotes
the corresponding time of SPostBH30sec.

The other four parameters are derived via nonlinear fitting of the signal to the equa-
tions shown below [41–43]:

S(t) = Arise,1 × e(qrise,1)t + Arise,2 × e(qrise,2)t; t : 600− 900 s, (8)

S(t) = A f all × e(q f all)t; t : 900− 1000 s, (9)
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where Arise, 1 and Arise,2 denote the amplitudes of the rise of the first and second exponen-
tials, respectively, e denotes the exponential function, qrise,1 and qrise,2 denote the rate of
the rise of the first and second exponentials, respectively, A f all denotes the amplitude of
the washout rate, and q f all denotes the rate of the drop. Figure 2 shows the example of the
extraction of the hemodynamic features.
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Figure 2. Example of hemodynamic features extraction (from the grand average of ∆RHb of the AD
group). Blue dots indicate the signal. Smin: the smallest amplitude of the signal between 600 and
700 s; Smax: the largest amplitude of the signal between 900 and 1000 s; SPostBH30sec: the amplitude at
930 s (30 s after the end of hypoxic respiratory challenge). A purple dashed line indicates the result of
the double exponential fitting to the signal between 600 and 900 s. An orange line indicates the result
of the single Exponential fitting to the signal between 900 and 930 s.

All of the signals were detrended, up-sampled to 10 Hz, and then smoothed using a
moving average filter (window size: 500) before extracting the features described above. In
the case of ∆RHb, the features were calculated directly. In the case of ∆OHb, the features
were calculated using the negative of the signal (−∆OHb) due to its trend toward the nega-
tive during hypoxic respiratory challenge. Note that the references of the hemodynamic
features used signals at 15 s after the end of hypoxic respiratory challenge for calculating
some features (e.g., SPostBH15sec and TPostBH15sec); however, here signals at 30 s after the end
of hypoxic respiratory challenge were used due to the use of anesthesia that may alter the
vascular response. For Equation (8), the double exponential was used in this study due to
the tendency of the resultant signals while the references used the single exponential.

The features in Equations (8) and (9) (Arise1, Arise2, qrise1, qrise2, A f all , and q f all) were
calculated using fminsearch, a MATLAB built-in function for nonlinear fitting (MATLAB
R2019b, MathWorks, Natick, MA, USA). Among the whole data set, time-series data
with issues, including system issues, unstable measurements, and different experimental
conditions, were totally excluded and not used throughout the study.

2.8. Statistical Analysis

Before performing the statistical analysis, normality tests were performed for each
hemodynamic parameter using the Jarque–Bera test [44]. When a hemodynamic parameter
of both AD and WT passed the normality test, the two-sample t-test [45] was used to
perform the statistical analysis. Otherwise, the Wilcoxon rank-sum test [46] was used to
perform the statistical analysis. In this work, a p-value lower than 0.05 was considered to
be statistically significant. Normality tests and statistical analysis were performed using
built-in functions in MATLAB (MATLAB R2019b, MathWorks, Natick, MA, USA).

2.9. Machine Learning (ML)-Based Classification

ML is a widely utilized technique for regression and classification. To further demon-
strate the feasibility of the suggested method for differentiating AD and WT, we performed
ML-based classification. Among various ML toolboxes, PyCaret was used because PyCaret
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is a handy library that offers multiple widely used ML algorithms [47]. ML algorithms
used in the study include logistic regression [48], ridge classifier [49], linear discriminant
analysis [50,51], K-nearest neighbor classifier [49], support vector machine [52], naive
Bayes [49], decision tree classifier [53], gradient boosting algorithm [54], light gradient
boosting machine [54], random forest classifier [55], quadratic discriminant analysis [51],
extreme gradient boosting [54], AdaBoost classifier [56], extra trees classifier [57], and
CatBoost classifier [54]. Note that various ML algorithms have been tested since there is
no fixed guidance or solution that determines which algorithm works best for a specific
problem. A total of 80% of the data were used as training data to fine-tune each algo-
rithm and 20% of data were used to evaluate the fine-tuned algorithm. K-fold with a
fold number of 32 was used due to the limited datasets of the study. For each fold, data
were shuffled. Data imbalance was mitigated using a synthetic minority over-sampling
technique (SMOTE) [47,58]. Outliers, which were replaced as a not-a-number (NaN) during
the extraction of the hemodynamic parameters in Section 2.7, were imputed using a median
value of each parameter. Parameters with low variance were ignored during the fine-tuning
of each algorithm. Data of each parameter were scaled based on the interquartile range.

To evaluate the performance of each ML algorithm, accuracy, precision, recall, and
F1–score were used. Accuracy, precision, recall, and F1–score are derived by equations
shown below [47,59]:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (10)

Precision = TP/(TP + FP), (11)

Recall = TP/(TP + FN), (12)

F1− score = 2{(Recall × Precision)/(Recall + Precision)}, (13)

where TP denotes true positive (in case the ML model classifies an input as positive and
the input is positive), TN denotes true negative (in case the ML model classifies an input
as negative and the input is negative), FP denotes false positive (in case the ML model
classifies an input as positive but the input is negative), and FN denotes false negative (in
case the ML model classifies an input as negative but the input is positive).

Accuracy indicates how much an ML model correctly classifies the input. Precision
and Recall trade off based on their equations. The numerator of Precision and Recall is TP
while the denominators of Precision and Recall are TP + FP (all items classified as positive)
and TP + FN (all positive items), respectively. F1− score, which considers both Precision
and Recall simultaneously, is a harmonic mean of Precision and Recall. Each ML algorithm
was run 600 times by randomly partitioning training and hold-out data (80% and 20%) to
partially mitigate the issue of the limited datasets. Then, the average and 95% confidence
intervals of accuracy, precision, recall, and F1–score were calculated.

3. Results
3.1. Behavioral Tests

As shown in Figure 3a, the percentage of preference index for the novel object in the
5xFAD group was significantly lower than that of WT mice. The data show that object
recognition memory was impaired in 5xFAD mice compared to WT mice. The results
indicate that 5xFAD animals are impaired in their spatial learning. As shown in Figure 3b,
5xFAD mice had a significantly longer latency time to escape the platform from day two of
the consecutive four days compared to WT mice. This observation indicates that 5xFAD
animals are impaired in their memory. Collectively with the results of the novel object
indication test, we confirm that the 5xFAD mice used in this work are impaired in terms of
spatial learning and recognition memory, which are typical symptoms of AD.
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3.2. Monte Carlo Simulation of Probing Depth

Figure 4 shows the results of Monte Carlo simulations. For better representation
of the probing depth and region of the brain, depth sensitivity maps (Figure 4a–c) are
superimposed on the mouse brain image that is based on a stereotaxic coordinate image
of the mouse brain [60,61]. Due to minute changes in the optical properties of the tissues
at different wavelengths, depth sensitivity maps at different wavelengths did not differ
significantly. Similarly, normalized sensitivity along the depth did not change much as
the wavelength varied (Figure 4d). At the interface between the skull and brain, depth
sensitivity at 780 nm, 808 nm, and 820 nm remained to be 0.8357, 0.8332, and 0.8320,
respectively. The maximum of depth sensitivity, which existed at the depth of 1.35 mm, of
780 nm, 808 nm, and 820 nm was 0.8497, 0.8448, and 0.8477, respectively. The results of
the Monte Carlo simulations showed that more than 83% of photons could reach a depth
deeper than 1.3 mm. In the meantime, more than 71% of photons could reach a 3.5 mm
depth, which was the expected depth based on the diffusion theory. The sensitivity maps
show that the light is mostly probing the cerebral cortex, thus the feasibility of non-invasive
brain signal acquisition using the current setup is confirmed. Furthermore, due to the use
of close wavelengths, the probing regions of different wavelengths are well overlapped.

3.3. Grand Average of Hemoglobin Concentration

Figure 5 shows the grand average of ∆RHb and −∆OHb during hypoxic respiratory
challenge. Hypoxic respiratory challenge was started at 600 s and ended at 900 s. In AD
and WT, both ∆RHb and −∆OHb showed a rapid increase until approximately 700 s (∆RHb,
AD: 0→0.00971 mM/DPF and WT: 0→0.00904 mM/DPF; −∆OHb, AD: 0→0.00907 and WT:
0→0.00862) before showing a relatively slow increase or plateau until 900 s (∆RHb, AD:
0.00971 mM/DPF→0.01072 mM/DPF and WT: 0.00904 mM/DPF→0.01065 mM/DPF;−∆OHb,
AD: 0.00907 mM/DPF→0.01138 mM/DPF and WT: 0.00862 mM/DPF→0.01012 mM/DPF). The
increase of ∆RHb and −∆OHb had a tendency of the double Exponential function (e.g.,
A1er1t + A2er2t). After the end of hypoxic respiratory challenge at 900 s, all of ∆RHb and
−∆OHb promptly decreased until approximately 960 s.

While ∆RHb and −∆OHb showed similar trends in both WT and AD, they had some
minute differences. ∆RHb of WT reached its maximum (0.01079 mM/DPF) at 887.1 s while
the one of AD reached its maximum (0.01112 mM/DPF) at 845.3 s. −∆OHb of WT reached
its maximum (0.01030 mM/DPF, minimum of ∆OHb) at 866.3 s while the one of AD reached
its maximum (0.01143 mM/DPF) at 891.2 s. Note that we analyzed −∆OHb, not ∆OHb, in
order to be consistent with the use of −∆OHb in the analysis of the hemodynamic features.
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Figure 5. (a) Grand average and 95% confidence interval of relative deoxyhemoglobin concentration
change (∆RHb) of wild-type (WT) (blue circle) and Alzheimer’s disease (AD) (purple dot) mice. (b)
Grand average and 95% confidence interval of the negative relative oxyhemoglobin concentration
change (−∆OHb) of WT (red circle) and AD (cyan dot).
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3.4. Statistical Analysis

Tables 2 and 3 show summaries of 13 hemodynamic features and their statistical
analyses of ∆RHb and −∆OHb, respectively. In ∆RHb, Arise,2 and qrise,2 showed p-values
of 0.0086 and 0.0066, respectively. While Afall and qrise,1 of ∆RHb showed quite a large
difference in the mean between AD and WT, their p-values were greater than 0.05 (0.2798
and 0.8052). In −∆OHb, mrise showed a p-value of 0.0499. Concurrently, Arise,1, qrise,1, and
Smax of −∆OHb showed quite a large difference in the mean between AD and WT, even
though their p-values were greater than 0.05 (0.2485, 0.1338, and 0.0566).

Table 2. Summary of 13 hemodynamic features of ∆RHb from WT and AD. std: standard deviation.
p-value lower than 0.05 is highlighted using red color.

Features WT
(Mean ± std)

AD
(Mean ± std) p-Value Both Passed

Normality Test?

IE 1.03 × 100 ± 1.68 × 10−2 1.03 × 100 ± 3.53 × 10−2 0.8429 ×

PIE −4.00 × 10−1 ± 6.61 × 10−2 −3.94 × 10−1 ± 1.10 × 10−1 0.7950 #

mrise 3.63 × 10−5 ± 5.45 × 10−6 3.79 × 10−5 ± 1.46 × 10−5 0.6190 #

mfall −1.43 × 10−4 ± 4.29 × 10−5 −1.61 × 10−4 ± 6.47 × 10−5 0.2389 #

Afall 6.31 × 104 ± 8.89 × 104 7.21 × 105 ± 1.88 × 106 0.2798 ×

Arise,1 2.26 × 10−2 ± 3.70 × 10−2 3.81 × 10−2 ± 6.45 × 10−2 0.9298 ×

Arise,2 −4.70 × 102 ± 9.70 × 102 −4.71 × 101 ± 6.67 × 101 0.0086 ×

qfall 1.58 × 10−2 ± 4.09 × 10−3 1.79 × 10−2 ± 5.23 × 10−3 0.1143 #

qrise,1 −1.06 × 10−3 ± 2.84 × 10−3 −8.34 × 10−4 ± 3.77 × 10−3 0.8052 #

qrise,2 −1.62 × 10−2 ± 8.82 × 10−3 −9.68 × 10−3 ± 7.23 × 10−3 0.0066 #

Smax 1.02 × 10−2 ± 1.87 × 10−3 −1.09 × 10−2 ± 4.51 × 10−3 0.4879 #

Smin −2.67 × 10−4 ± 1.81 × 10−4 −2.98 × 10−4 ± 2.60 × 10−4 0.6340 #

SPostBH30sec 6.00 × 10−3 ± 1.23 × 10−3 6.15 × 10−3 ± 2.56 × 10−3 0.8050 #

Table 3. Summary of 13 hemodynamic features of−∆OHb from WT and AD. std: standard deviation.
p-value lower than 0.05 is highlighted using red color.

Features WT
(Mean ± std)

AD
(Mean ± std) p-Value Both Passed

Normality Test?

IE 1.03 × 100 ± 2.48 × 10−2 1.03 × 100 ± 2.30 × 10−2 0.3207 ×

PIE −3.92 × 10−1 ± 1.10 × 10−1 −3.61 × 10−1 ± 1.34 × 10−1 0.3518 #

mrise 3.44 × 10−5 ± 8.60 × 10−6 4.04 × 10−5 ± 1.26 × 10−5 0.0499 #

mfall −1.33 × 10−4 ± 4.14 × 10−5 −1.56 × 10−4 ± 6.14 × 10−5 0.1172 #

Afall 2.33 × 105 ± 4.16 × 105 3.35 × 105 ± 1.02 × 106 0.4202 ×

Arise,1 2.09 × 100 ± 4.61 × 100 1.33 × 10−2 ± 1.28 × 10−2 0.2485 ×

Arise,2 −3.56 × 102 ± 5.98 × 102 −4.47 × 102 ± 8.82 × 102 0.8004 ×

qfall 1.65×10−2 ± 5.59×10−3 1.69 × 10−2 ± 6.79 × 10−3 0.8486 #

qrise,1 −1.88 × 10−3 ± 3.31 × 10−3 −6.45 × 10−4 ± 2.69 × 10−3 0.1338 #

qrise,2 −1.37 × 10−2 ± 6.79 × 10−3 −1.46 × 10−2 ± 7.35 × 10−3 0.6446 #

Smax 9.81 × 10−3 ± 2.61×10−3 1.16 × 10−2 ± 3.83 × 10−3 0.0566 #

Smin −2.68 × 10−4 ± 2.45 × 10−4 −3.29 × 10−4 ± 2.38 × 10−4 0.3751 #

SPostBH30sec 6.07 × 10−3 ± 2.31 × 10−3 7.49 × 10−3 ± 3.04 × 10−3 0.0615 #
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3.5. Machine Learning (ML)-Based Classification

The ML-based classification was performed on three different datasets: data with
p-values lower than 0.05 (Arise,2 and qrise,2 of ∆RHb, and mrise of −∆OHb), whole hemo-
dynamic features of ∆RHb and −∆OHb (23 hemodynamic features in total), and three
principal components (PCs) from the whole hemodynamic features extracted via principal
component analysis (PCA). PCA is a technique that is commonly used for the dimension
reduction of multi-dimensional data to extract PCs with large variances [47,62]. The first PC
is the extracted data with the largest variance, and the contribution of PCs to the variation
of the data decreases as the order of PC increases (e.g., PC1 has a larger variance than PC2,
PC2 has a larger variance than PC3, and so forth). Table 4 shows the classification results
using data with p-values lower than 0.05. When data with p-values lower than 0.05 were
used, logistic regression performed the best showing the best accuracy of 62.9%, followed
by naive Bayes and quadratic discriminant analysis with an accuracy of 62.4%. Table 5
shows the classification results from the whole hemodynamic features. When the whole
features were used, naive Bayes performed the best and showed the best accuracy of 84.3%.
Table 6 shows the classification results using three PCs extracted from the whole hemody-
namic features. When three PCs from the whole data were used, the extra trees classifier
performed the best and showed the best accuracy of 76%. Among the best performing
classifiers of different data sets (data with low p-values, whole hemodynamic features, and
three PCs derived from the whole hemodynamic features), Naive Bayes using the whole
hemodynamic feature performed the best in terms of accuracy. Logistic regression using
data with low p-values performed the worst.

Table 4. Averaged accuracy, recall, precision, and F1− score and their 95% confidence interval (CI)
of 15 machine learning (ML) methods using hemodynamic features with p-values lower than 0.05
(Arise,2 and qrise,2 of ∆RHb, and mrise of −∆OHb) for classification of AD and WT. Each method was
performed 600 times by shuffling the data due to limited data sets. The results and the name of the
ML method with the best accuracy (logistic regression) are highlighted in red.

Method
Accuracy (%)

[95% CI]

Recall (%)

[95% CI]

Precision (%)

[95% CI]

F1–Score (%)

[95% CI]

Logistic regression 62.9
[62.0, 63.9]

35.8
[34.1, 37.4]

71.8
[69.1, 74.5]

45.1
[43.5, 46.8]

Ridge classifier 52.4
[51.2, 53.5]

30.0
[28.5, 31.5]

62.2
[59.8, 64.6]

35.9
[31.7, 37.1]

Linear discriminant
analysis

53.8
[52.6, 55.1]

7.3
[6.4, 8.1]

37.6
[33.7, 41.5]

11.9
[10.6, 13.2]

K-nearest neighbor
classifier

51.9
[51.1, 52.7]

18.3
[16.9, 19.8]

42.1
[38.8, 45.3]

22.3
[20.7, 23.9]

Support vector
machine

57.2
[56.2, 58.2]

52.2
[50.0, 54.4]

55.1
[52.7, 57.4]

48.4
[46.4, 50.4]

Naive Bayes 62.4
[61.2, 63.7]

25.7
[24.5, 26.9]

84.2
[81.3, 87.1]

38.4
[36.8, 40.0]

Decision tree
classifier

50.1
[48.9, 51.4]

0.6
[0.3, 1.0]

1.5
[0.6, 2.3]

0.8
[0.3, 1.2]

Gradient boosting classifier 46.0
[44.9, 47.2]

60.8
[58.4, 63.2]

51.8
[50.0, 53.6]

48.6
[47.4, 49.9]

Light gradient
boosting machine

55.1
[54.2, 55.9]

12.7
[11.0, 14.5]

18.0
[15.5, 20.5]

14.7
[12.7, 16.7]

Random forest
classifier

44.6
[43.7, 45.5]

41.1
[37.6, 44.6]

32.6
[29.9, 35.4]

28.1
[26.0, 30.3]
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Table 4. Cont.

Method
Accuracy (%)

[95% CI]

Recall (%)

[95% CI]

Precision (%)

[95% CI]

F1–Score (%)

[95% CI]

Quadratic
discriminant analysis

62.4
[61.4, 63.4]

27.5
[26.3, 28.6]

79.0
[76.1, 81.9]

39.7
[38.2, 41.2]

Extreme gradient boosting 49.5
[48.4, 50.7]

63.0
[59.3, 66.8]

32.3
[30.1, 34.5]

41.3
[38.7, 43.9]

AdaBoost classifier 59.5
[58.2, 60.8]

24.7
[23.2, 26.2]

67.8
[64.3, 71.2]

34.4
[32.5, 36.4]

Extra trees classifier 38.6
[37.6, 39.6]

39.1
[35.5, 42.8]

16.2
[14.6, 17.7]

22.3
[20.2, 24.4]

CatBoost classifier 46.7
[45.2, 48.2]

26.7
[24.8, 28.6]

44.8
[41.8, 47.8]

28.5
[26.9, 30.1]

Table 5. Averaged accuracy, recall, precision, and F1− score and their 95% CI of 15 ML methods
using hemodynamic features with whole hemodynamic features for classification of AD and WT.
Each method was performed 600 times by shuffling the data due to limited data sets. The results and
the name of the ML method with the best accuracy (naive Bayes) are highlighted in red.

Method
Accuracy (%)

[95% CI]

Recall (%)

[95% CI]

Precision (%)

[95% CI]

F1–Score (%)

[95% CI]

Logistic regression 71.8
[70.8, 72.8]

69.7
[68.3, 71.0]

65.3
[63.7, 66.9]

65.1
[64.0, 66.2]

Ridge classifier 49.7
[48.7, 50.6]

42.0
[40.3, 43.8]

42.9
[40.9, 44.9]

40.3
[38.7, 41.9]

Linear discriminant
analysis

67.0
[65.8, 68.2]

28.0
[26.0, 30.0]

64.3
[60.6, 67.9]

34.0
[31.9, 36.1]

K-nearest neighbor
classifier

75.1
[74.0, 76.1]

43.5
[41.3, 45.7]

72.4
[69.7, 75.1]

51.9
[49.6, 54.2]

Support vector
machine

66.7
[65.5, 67.8]

69.3
[66.8, 71.7]

50.4
[48.3, 52.5]

56.9
[54.8, 59.0]

Naive Bayes 84.3
[83.8, 84.8]

69.7
[68.4, 71.1]

89.9
[88.4, 91.4]

75.4
[74.4, 76.3]

Decision tree
classifier

52.7
[51.2, 54.2]

24.6
[22.7, 26.5]

25.6
[23.5, 27.7]

23.4
[21.6, 25.1]

Gradient boosting classifier 51.6
[50.1, 53.1]

52.7
[50.2, 55.1]

41.5
[39.4, 43.6]

42.8
[40.9, 44.7]

Light gradient
boosting machine

54.2
[52.5, 56.0]

16.7
[14.1, 19.4]

13.9
[11.9, 15.9]

14.2
[12.1, 16.3]

Random forest
classifier

54.0
[52.5, 55.5]

28.8
[26.2, 31.5]

27.3
[25.1, 29.5]

24.8
[22.8, 26.8]

Quadratic
discriminant analysis

81.3
[80.6, 81.9]

75.4
[74.0, 76.8]

76.6
[75.3, 77.8]

74.0
[73.0, 75.0]

Extreme gradient boosting 39.5
[38.4, 40.5]

78.9
[76.1, 81.6]

34.6
[33.1, 36.1]

44.9
[43.1, 46.7]

AdaBoost classifier 59.1
[58.1, 60.2]

39.5
[37.1, 41.8]

43.2
[40.5, 45.9]

39.6
[37.3, 42.0]

Extra trees classifier 54.4
[53.0, 55.8]

19.7
[16.9, 22.5]

17.8
[15.3, 20.4]

13.2
[11.5, 14.9]

CatBoost classifier 49.1
[47.5, 50.7]

38.3
[36.0, 40.6]

39.2
[36.8, 41.6]

38.1
[35.8, 40.3]
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Table 6. Averaged accuracy, recall, precision, and F1− score and their 95% CI of 15 ML methods
using three principal components (PCs) of principal component analysis (PCA) extracted from whole
hemodynamic features for classification of AD and WT. Each method was performed 600 times by
shuffling the data due to limited data sets. The results and the name of the ML method with the best
accuracy (extra trees classifier) are highlighted in red.

Method
Accuracy (%)

[95% CI]

Recall (%)

[95% CI]

Precision (%)

[95% CI]

F1–Score (%)

[95% CI]

Logistic regression 73.8
[72.9, 74.7]

83.2
[82.0, 84.4]

69.3
[68.0, 70.5]

74.1
[73.1, 75.0]

Ridge classifier 73.5
[72.6, 74.4]

83.2
[82.0, 84.4]

68.9
[67.6, 70.2]

73.9
[73.0, 74.8]

Linear discriminant
analysis

73.7
[72.8, 74.6]

83.2
[82.0, 84.4]

69.1
[67.9, 70.4]

74.0
[73.1, 74.9]

K-nearest neighbor
classifier

73.8
[72.8, 74.7]

80.9
[79.4, 82.5]

68.9
[67.5, 70.4]

72.9
[71.6, 74.1]

Support vector
machine

71.1
[70.3, 71.9]

81.7
[80.2, 83.1]

65.5
[64.2, 66.9]

71.1
[69.9, 72.2]

Naive Bayes 73.3
[72.5, 74.1]

85.6
[84.4, 86.7]

67.8
[66.6, 69.0]

74.1
[73.3, 75.0]

Decision tree
classifier

61.5
[60.2, 62.7]

37.3
[34.3, 40.3]

47.2
[44.1, 50.2]

37.8
[35.1, 40.5]

Gradient boosting classifier 72.4
[71.2, 73.5]

67.4
[64.8, 70.0]

69.1
[67.0, 71.2]

64.5
[62.4, 66.7]

Light gradient
boosting machine

65.7
[64.3, 67.0]

41.2
[37.8, 44.5]

41.9
[38.7, 45.0]

39.2
[36.2, 42.3]

Random forest
classifier

69.0
[67.7, 70.2]

58.3
[55.5, 61.2]

62.9
[60.5, 65.4]

56.3
[53.9, 58.7]

Quadratic
discriminant analysis

72.7
[718, 73.6]

83.8
[82.6, 85.0]

67.6
[66.4, 68.9]

73.4
[72.5, 74.3]

Extreme gradient boosting 63.1
[62.0, 64.1]

73.6
[71.4, 75.8]

60.1
[58.4, 61.7]

62.0
[60.5, 63.6]

AdaBoost classifier 65.2
[63.9, 66.5]

49.1
[46.1, 52.1]

56.2
[53.3, 59.1]

47.9
[45.3, 50.5]

Extra trees classifier 76.0
[75.1, 76.9]

80.1
[78.5, 81.7]

72.3
[70.9, 73.7]

74.2
[73.0, 75.4]

CatBoost classifier 65.8
[64.6, 67.0]

53.4
[50.5, 56.3]

60.5
[57.9, 63.1]

57.1
[49.3, 54.1]

4. Discussion

In this work, the hypoxic respiratory challenge was used to induce hemodynamic
reactivity in an animal model. Since animals cannot perform breath-holding spontaneously,
the hypoxic respiratory challenge was used to mimic breath-holding even though hypoxic
respiratory challenge may not be able to mimic breath-holding perfectly. The experimental
protocol used in the work (50% O2 gas balanced by N2 gas for 10 min → 16% O2 gas
balanced by N2 gas for 5 min as hypoxic gas challenge → 50% O2 gas balanced by N2
gas for 15 min) was based on a protocol used in a previous breast cancer study by S. Lee
and J. G. Kim (100% O2 gas for 3 min→ 21% O2 gas balanced by N2 gas for 10 min as the
hypoxic gas challenge) with a minute modification [28]. In the previous study, the average
pulmonary oxygen saturation (SpO2) of rats changed from 97% to 91% as the supplied
gas was changed from 100% O2 gas to 21% O2 gas balanced by N2 gas. In this study, the
average SpO2 changed from 98.6% to 94.4% as the supplied gas was changed from 50%
O2 gas balanced by N2 gas to 16% O2 gas balanced by N2 gas. While the drop of SpO2
in this study was smaller (98.6%→ 94.4%: 4.2% difference) than the one of the previous
study (97%→ 91%: 6% difference) [28], the drop of SpO2, which is observed in a human
study during breath-holding [63], guarantees that the protocol used in this study can mimic
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breath-holding as well. At the same time, 94.4% SpO2 can assure the safety of the animal
because this value is higher than the one (92% SpO2) of people living in Aspen, Colorado
where people do not have any critical health issues [28]. The discrepancy between the study
of S. Lee and J. G. Kim and this study may come from the use of different experimental
protocols and the difference in animals used. While the protocol—either by letting a subject
perform breath-holding spontaneously or supplying hypoxic gas—can be relatively easily
carried out, the use of the protocol should be avoided for people with respiratory diseases.

As the ultimate goal of the suggested technique is to translate the technique to clinics
in the future, the total amount of time for performing signal acquisition and processing—
including the conversion of the raw data to hemoglobin concentration data and classi-
fication using an ML algorithm—should be short enough. In the animal experiments,
assuming that all preparations—including shaving and depilating the fur on the leg and
the head—are done, it takes 30 min for signal acquisition. The signal acquisition time
can be shortened to several minutes maximum, which would include minutes of baseline
and recovery measurements and breath holding or breathing of hypoxic gas if the signal
acquisition is performed on human subjects. The conversion of optical intensity data to
hemoglobin concentration and the extraction of hemodynamic features takes less than one
minute, and may take a shorter length of time if the amount of the data becomes smaller
(e.g., via the use of a shorter experimental protocol). For classification, it would take several
seconds at maximum using a pre-trained ML algorithm. Overall, the total time may take
less than 40 min for animals in this work and several minutes for humans. Thus, the signal
acquisition and processing time of the technique will not be a hurdle when translating the
technique to the clinics in the future.

Other than this work, there have been studies that attempted using breath-holding
in mild cognitive impairment (MCI) and AD studies. Rather than attempting to extract
various features from CVR signals, most of the previous MCI and AD studies that utilized
transcranial Doppler for monitoring blood flow used the so-called breath-holding index,
which is relatively simple [64,65]. Even though this work is not the first work that uses
breath-holding for investigating AD or MCI, by using the simple DOS system for the
acquisition of hemodynamic signals, extracting hemodynamic features from CVR caused
by breath-holding, and adopting modern ML algorithms, this work attempted to examine
an alternative approach for differentiating AD and WT. Thus, we believe that such a new
approach will be able to encourage researchers to investigate the use of hemodynamic
features from CVR signals caused by breath-holding or other types of breathing gas (e.g.,
carbogen) for other brain diseases that cause the impairment of the cerebrovasculature. In
the meantime, changes in hemodynamic features have also been studied in animal studies
to test cyanide toxicity [26,66], breast cancer studies [41], and other brain diseases such
as Parkinson’s disease [67] and traumatic brain injury [68]. We believe that the suggested
approach, with modifications, has the potential to be used in cases other than AD, such as
the cases mentioned above.

In this work, the best ML result (84% accuracy) was achieved when the whole hemo-
dynamic features were used as input features, and naive Bayes was employed for binary
classification of AD and WT. As mentioned in the introduction, we note that some previous
studies attempted to use AI, including ML and DL, for the classification of a sub-type of AD
based on hemodynamic signals provoked by various cognitive tests. A study by D. Yang
et al. adopted N-back, Stroop, and verbal fluency tasks as interventions to classify MCI
patients and healthy controls [10]. A commercial, multi-channel functional near-infrared
spectroscopy (fNIRS) was utilized to acquire hemoglobin concentration maps in the study.
Using a convolutional neural network (CNN)-based AI algorithm, the researchers achieved
90% accuracy using the verbal fluency test, and achieved the best accuracy of 98.61% using
the N-back test. Another study by D. Yang et al. attempted to use resting-state fNIRS
signals acquired using the same commercial fNIRS system for the classification of MCI
patients and healthy controls [69]. A connectivity map of ∆OHb and ∆RHb features ex-
tracted using various pre-trained CNN models (e.g., variations of VGG, Densenet, Alexnet,
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and Resnet networks) for transfer learning, time-series of ∆OHb, and ∆RHb were used as
input features for ML classifiers, including linear discriminant analysis, support vector
machine, and K-nearest neighbor. As the time-series signals were given as inputs, the best
classification accuracy only reached 67% using linear discriminant analysis. Interestingly,
because the features extracted using VGG19, a type of widely used CNN model, were
used, the best accuracy of 95.81% could be achieved when the support vector machine was
used as a classifier. In the meantime, one study by T. K. K. Ho et al. adopted oddball,
1-back, and verbal fluency tasks as interventions and attempted to perform classification of
multi-stage AD with the inclusion of healthy controls, asymptomatic AD (a group of people
with amyloid deposition but without cognitive impairment), prodromal AD (a group of
people with MCI), and AD (a group of people with significant cognitive impairment due to
AD) [12]. A lab-built, multi-channel fNIRS was utilized to acquire time-series hemoglobin
concentration signals in the study. For classification, the researchers tested various ML
(linear discriminant analysis, k-nearest neighbor, Gaussian naive Bayes, support vector
machine, AdaBoost, random forest, and ensemble learning) and DL (simple neural network,
1D-CNN, long-short term memory (LSTM), gated recurrent units, and a combination of
CNN and LSTM (CNN-LSTM)) algorithms. Among ML algorithms, using ∆OHb, ensem-
ble learning achieved the best accuracy of 82.9%. Among DL algorithms, using relative
total hemoglobin concentration (∆THb), which is calculated via summation of ∆OHb and
∆RHb (i.e., ∆THb = ∆OHb + ∆RHb), CNN-LSTM achieved an accuracy of 87.7%. The
studies used more advanced AI algorithms as either a classifier or a feature extractor and
achieved a better accuracy than the current study. However, the best accuracy in this study
outperformed the one in one study by D. Yang et al. [69] with ML classifiers as ∆OHb and
∆RHb were used as inputs (84% vs. 67%), even though the direct comparison between the
study of D. Yang et al. and this work is not straightforward due to a few differences such as
differences in subjects. Still, by comparing results from pure ML classifiers and a combina-
tion of AI algorithms, the study of D. Yang et al. [69] shows the potential of using advanced
AI techniques to fully extract hidden information in hemodynamic signals. In this work,
we could not test more advanced AI techniques due to the use of a single-channel system
and limited datasets. A limited population is another factor that limited the use of more
advanced AI techniques. In the future, a study using a multi-channel system and a larger
population will need to be performed to more rigorously test the use of breath-holding or
hypoxic respiratory challenge in AD.

We postulated that CVR, which was measured using the DOS system, during breath-
holding may be able to be used to differentiate AD and WT due to differences in the
cerebrovasculature. While the time for onset and symptoms vary depending on AD animal
models, many AD models show cerebrovascular abnormalities [21,22,70,71]. In the 5xFAD
model, as β-amyloid accumulates, morphological abnormality of the cerebrovasculature,
dysfunction of the blood–brain barrier, and variations in cerebrovascular density happen,
which may be caused by or progressed due to inflammatory response and cerebral amy-
loid angiopathy [20–23]. In turn, neurovascular units (NVUs), which are responsible for
maintaining homeostasis of the cerebrovasculature, are deteriorated and may fail their
functions. As the deterioration of NVUs and the cerebrovasculature also happens in the
5xFAD model, we could observe CVR differences between AD and WT. ∆RHb in AD
showed a larger maximum and took a shorter time to reach the maximum than ∆RHb in
WT (AD: 0.01112 mM/DPF (845.3 s) and WT: 0.01079 mM/DPF (887.1 s)). Meanwhile,
∆OHb in AD showed a smaller minimum and took a longer time to reach the minimum
than ∆OHb in WT (AD:−0.01143 mM/DPF (891.2 s) and WT:−0.01030 mM/DPF (866.3 s)).
Additionally, as shown in Figure 6, starting from approximately 820 s, even after the end of
hypoxic respiratory challenge at 900 s, ∆THb in AD kept decreasing while ∆THb in WT
was maintained around the baseline level. The differences in ∆RHb, ∆OHb, and ∆THb
between AD and WT indicate that cerebrovascular impairment exists in the 5xFAD model.
Such differences may originate from the impairments mentioned above, which can lead
to the disruption of the regulation of cerebral blood flow and the exchange of O2 and
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CO2. We believe that these differences could be more quantitatively analyzed by utilizing
13 hemodynamic features. However, ML results using the whole hemodynamic features
were better than the ones of other features used in this study. Since similar impairments
happen in other AD models and even in clinical subjects [22,23,64,65,72], we expect that
our technique can be translated to the clinics with some modifications.
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As described above, this study has some limitations that should be addressed in the
future. First, this study used a relatively small population. Even though each animal was
measured multiple times to partially address the population issue, this approach may not
fully resolve the issue of the limited population. In the meantime, the acquisition of signals
from larger populations will be able to allow the use of more advanced AI techniques such
as deep learning so that more advanced analyses, including multi-stage classification of
AD, can be performed. Thus, a follow-up study with larger populations will need to be
performed. Second, the DOS measurement was performed using a single source-detector
separation. While the results of the Monte Carlo simulation guarantee the feasibility of
the brain signal measurement using the DOS system, based on diffuse optics theories,
deep tissue measurements of multi-layered tissues (e.g., the scalp, skull, and brain) are
affected by the changes in optical properties of both extracerebral (e.g., the scalp and skull)
and intracerebral tissues (e.g., the brain) [32]. To minimize the extracerebral signals, a
multi-channel system with multiple source-detector pairs (e.g., with both short separation
channels and long separation channels) can be used in the future [73]. Another advantage
of using the multi-channel system includes the possibility of the acquisition of signals from
multiple brain regions that can allow the use of more advanced analysis (e.g., functional
connectivity) and more advanced AI techniques. Additionally, the use of a multi-modal sys-
tem, including a combination of an optical system and an electroencephalogram [73], can be
another interesting work that is worth investigating in the future. Furthermore, cytochrome
c oxidase (CCO), which is closely related to the oxidative metabolism of mitochondria and
the synthesis of adenosine triphosphate (ATP), can be another potential parameter that can
be investigated due to the possibility of using DOS for CCO measurement [74] and the
relationship between the decrease of CCO activity and the progress of AD [75,76]. Third, to
perform a stable signal measurement, animals were anesthetized during the signal acqui-
sition. While anesthesia is widely utilized in animal studies, the physiological response
may be altered by anesthesia. In this study, hypoxic respiratory challenge, which was used
to mimic breath-holding, was maintained for a relatively long time (5 min) to compensate
the delayed response caused by anesthesia. However, this may not happen in human
experiments. Rather, breath-holding is mostly performed for less than 1 min in human
experiments. To mimic more realistic breath-holding in animal experiments, the animal can
be placed in a container that is much larger than a usual induction chamber of anesthesia
and different types of breathing gas can be supplied. In the meantime, a miniature, wireless
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system that can be fixed on the head can be used to monitor the brain response during
breath-holding. Fourth, the best accuracy has not reached the level of similar studies. While
the suggested method has the potential to be used in the early diagnosis of AD, there are
many spaces where the method should be further improved to use the method on patients
due to the simplicity of the method. Lastly, we only used a 5xFAD AD model and WT
animals in this work. In the future, the same work may need to be performed with various
types of AD models, including not only models of FAD but also models of sporadic AD,
which is found to be about 95% of AD cases [22].

5. Conclusions

In conclusion, we performed a preclinical study to test the feasibility of combining
hypoxic respiratory challenge, which was used to mimic breath-holding, and diffuse optical
signal measurements to differentiate AD and WT. To quantify hemodynamic response
during hypoxic respiratory challenge, we employed hemodynamic features that were
originally used to study the hemodynamic response of breast cancer during breath-holding.
To further confirm the usefulness of our approach, we used various ML techniques to
classify AD and WT. Using whole hemodynamic features, the best accuracy of 84% was
achieved. In the future, we will perform experiments with a larger population using multi-
channel brain monitoring systems to investigate the applicability of the breath-holding
protocol for classification of multi-stage AD.
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