A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Alanine in Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Image Correction and Parameter Determination
2.3. Measurement of the Content of FAAs
2.4. Analysis of Two–Dimensional Correlation Spectra
2.5. Analysis Rules of Spectral Peak
2.6. Extraction of Spectral Characteristic Wavelength
2.7. Visualization of the Ala Contents
2.8. Model Establishment and Evaluation
3. Results and Discussion
3.1. Spectral Reflectance Index Visualization and Spectral Curve Analysis
3.2. Abnormal Sample Detection and Sample Set Division
3.3. Analysis of Spectral Full Band Modeling
3.4. 2D–COS Analysis of Ala Content in NIR–HSI
3.5. Characteristic Wavelength Extraction
3.6. Comparison of PLSR, ANN, and LS-SVM Model Effects
3.7. Visualization of Alanine Content in Beef
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.Z.; Luo, Y.L.; Luo, R.M.; Ji, C.; Gao, S.; Bai, S.; Wang, Y.Z.; Dong, F.J.; Hu, X.L.; Guo, J.J. High freezing rate improves flavor fidelity effect of hand grab mutton after short-term frozen storage. Front. Nutr. 2022, 9, 959824. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; You, L.Q.; Ji, C.; Zhang, T.G.; Wang, Y.R.; Geng, D.; Gao, S.; Bi, Y.Z.; Luo, R.M. Formation of volatile flavor compounds, maillard reaction products and potentially hazard substance in China stir-frying beef sao zi. Food Res. Int. 2022, 159, 111545. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.A.A.D.S.; Lorenzo, J.M.; Gonçalves, C.A.A.; Santos, B.A.D.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl. Meat Sci. 2017, 123, 50–56. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.Y.; Wang, Y.; Kong, B.H.; Chen, Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT-Food Sci. Technol. 2020, 140, 110764. [Google Scholar] [CrossRef]
- Chong, S.H.; Ham, S. Site-directed analysis on protein hydrophobicity. J. Comput. Chem. 2014, 35, 1364–1370. [Google Scholar] [CrossRef]
- Yue, J.; Zhang, Y.F.; Jin, Y.F.; Deng, Y.; Zhao, Y.Y. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chem. 2016, 194, 12–19. [Google Scholar] [CrossRef]
- Yin, M.Y.; Matsuoka, R.; Yanagisawa, T.; Xi, Y.C.; Zhang, L.; Wang, X.C. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (patinopecten yessoensis) adductor muscle. Food Chem. 2022, 396, 133620. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Guo, X.Y.; Peng, Z.Q.; Jamali, M.A. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids. Trends Food Sci. Technol. 2022, 119, 215–226. [Google Scholar] [CrossRef]
- Tian, Z.M.; Cui, Y.Y.; Lu, H.J.; Wang, G.; Ma, X.Y. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef]
- Monteiro, S.T.; Minekawa, Y.; Kosugi, Y.; Kosugi, Y.; Akazawa, T.; Oda, T. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J. Photogram. 2007, 62, 2–12. [Google Scholar] [CrossRef]
- Huang, H.P.; Hu, X.J.; Tian, J.P.; Jiang, X.N.; Luo, H.B.; Huang, D. Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging. J. Food Compos. Anal. 2021, 101, 103970. [Google Scholar] [CrossRef]
- Yamashita, H.; Sonobe, R.; Hirono, Y.; Morita, A.; Ikka, T. Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves. Sci. Rep. 2021, 11, 4169. [Google Scholar] [CrossRef]
- Kjær, A.; Nielsen, G.; Staerke, S.; Clausen, M.R.; Edelenbos, M.; Jørgensenet, B. Prediction of Starch, Soluble Sugars and Amino Acids in Potatoes (Solanum tuberosum L.) Using Hyperspectral Imaging, Dielectric and LF-NMR Methodologies. Potato Res. 2016, 59, 357–374. [Google Scholar] [CrossRef]
- Talens, P.; Mora, L.; Morsy, N.; Barbin, D.F.; ElMasry, G.; Sun, D.W. Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. J. Food Eng. 2013, 117, 272–280. [Google Scholar] [CrossRef]
- Wang, S.N.; Das, A.K.; Pang, J.; Liang, P. Artifificial intelligence empowered multispectral vision based system for non-contact monitoring of large yellow croaker (Larimichthys crocea) fillets. Foods. 2021, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Wang, S.L.; He, X.G.; Wu, L.G.; Li, Y.L.; Guo, J.H. Combination of spectra and texture data of hyperspectral imaging for prediction and visualization of palmitic acid and oleic acid contents in lamb meat. Meat Sci. 2020, 169, 108194. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.B.; Wei, Q.Y.; Wang, X.M. Protein content evaluation of processed pork meats based on a novel single shot (snapshot) hyperspectral imaging sensor. J. Food Eng. 2019, 240, 207–213. [Google Scholar] [CrossRef]
- Dixit, Y.; Al-Sarayreh, M.; Craigie, C.R.; Reis, M.M. A global calibration model for prediction of intramuscular fat and pH in red meat using hyperspectral imaging. Meat Sci. 2021, 181, 108405. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.B. Model improvement for predicting moisture content (MC) in pork longissimus dorsi muscles under diverse processing conditions by hyperspectral imaging. J. Food Eng. 2017, 196, 65–72. [Google Scholar] [CrossRef]
- Nubiato, K.E.Z.; Mazon, M.R.; Antonelo, D.S.; Calkins, C.R.; Naganathan, G.K.; Subbiah, J.; Silva, S. A bench-top hyperspectral imaging system to classify beef from Nellore cattle based on tenderness. Infrared Phys. Technol. 2018, 89, 247–254. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ma, Y.H.; Liu, G.S.; Fan, N.Y.; Li, Y.; Sun, Y.R. Rapid evaluation of texture parameters of Tan mutton using hyperspectral imaging with optimization algorithms. Food Control 2022, 135, 108815. [Google Scholar] [CrossRef]
- Cheng, W.W.; Sørensen, K.M.; Engelsen, S.B.; Sun, D.W.; Pu, H.B. Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: Effect of ice crystal growth and distribution. J. Food Eng. 2019, 263, 311–319. [Google Scholar] [CrossRef]
- Cheng, W.W.; Sun, D.W.; Cheng, J.H. Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data. LWT-Food Sci. Technol. 2016, 73, 13–19. [Google Scholar] [CrossRef]
- Wan, G.L.; Liu, G.S.; He, J.G.; Luo, R.M.; Cheng, L.J.; Ma, C. Feature wavelength selection and model development for rapid determination of myoglobin content in nitrite-cured mutton using hyperspectral imaging. J. Food Eng. 2020, 287, 110090. [Google Scholar] [CrossRef]
- Cheng, W.W.; Sun, D.W.; Pu, H.B.; Wei, Q.Y. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofifibrils during frozen storage. Food Chem. 2018, 248, 119–127. [Google Scholar] [CrossRef]
- Fan, N.Y.; Liu, G.S.; Wan, G.L.; Ban, J.J.; Yuan, R.R.; Sun, Y.R.; Li, Y. A combination of near infrared hyperspectral imaging with two-dimensional correlation analysis for monitoring the content of biogenic amines in mutton. Int. J. Food Sci. Technol. 2021, 56, 3066–3075. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.X.; Dong, F.J.; Wang, S.L. Integrated spectral and textural features of hyperspectral imaging for prediction and visualization of stearic acid content in lamb meat. Anal. Methods 2021, 13, 4157–4168. [Google Scholar] [CrossRef]
- Fan, N.Y.; Ma, X.; Liu, G.S.; Ban, J.J.; Yuan, R.R.; Sun, Y.R. Rapid determination of TBARS content by hyperspectral imaging for evaluating lipid oxidation in mutton. J. Food Compos. Anal. 2021, 103, 104110. [Google Scholar] [CrossRef]
- Yu, H.D.; Qing, L.W.; Yan, D.T.; Xia, G.H.; Zhang, C.H.; Yun, Y.H.; Zhang, W.M. Hyperspectral imaging in combination with data fusion for rapid evaluation of tilapia fillet freshness. Food Chem. 2021, 348, 129129. [Google Scholar] [CrossRef]
- Noda, I. Recent advancement in the field of two-dimensional correlation spectroscopy. J. Mol. Struct. 2008, 883, 2–26. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional correlation analysis of spectra collected without knowing sampling order. J. Mol. Struct. 2018, 1156, 418–423. [Google Scholar] [CrossRef]
- Dong, F.J.; Hao, J.; Luo, R.M.; Zhang, Z.F.; Wang, S.L.; Wu, K.N.; Liu, M.Q. Identification of the proximate geographical origin of wolfberries by two-Dimensional correlation spectroscopy combined with deep learning. Comput. Electron. Agric. 2022, 198, 107027. [Google Scholar] [CrossRef]
- Yun, Y.H.; Li, H.D.; Deng, B.C.; Cao, D.S. An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC-Trend. Anal. Chem 2019, 113, 102–115. [Google Scholar] [CrossRef]
- Fu, J.S.; Yu, H.D.; Chen, Z.; Yun, Y.H. A review on hybrid strategy-based wavelength selection methods in analysis of near-infrared spectral data. Infrared Phys. Technol. 2022, 125, 104231. [Google Scholar] [CrossRef]
- Cheng, L.J.; Liu, G.S.; He, J.G.; Wan, G.L.; Ma, C.; Ban, J.J.; Ma, L.M. Non-Destructive assessment of the myoglobin content of Tan sheep using hyperspectral imaging. Meat Sci. 2020, 167, 107988. [Google Scholar] [CrossRef]
- Zhuang, Q.B.; Peng, Y.K.; Yang, D.Y.; Wang, Y.L.; Zhao, R.H.; Chao, K.L.; Guo, Q.H. Detection of frozen pork freshness by fluorescence hyperspectral image. J. Food Eng. 2022, 316, 110840. [Google Scholar] [CrossRef]
Φ (v1, v2) | Ψ (v1, v2) | Significance |
---|---|---|
+ | / | The signal strength at v1 and v2 changes in the same direction, i.e., increases or decreases at the same time. |
− | / | The signal strength at v1 and v2 changes in opposite directions. |
+ | + | The change at v1 is mainly prior to the change in band at v2. |
+ | − | The change at v1 mainly follows the change in wave band at v2. |
− | + | The change at v1 mainly follows the change in wave band at v2. |
− | − | The change at v1 is mainly prior to the change in band at v2. |
Sample Set | Outliers | Remaining Amount | PB | PA | ||
---|---|---|---|---|---|---|
R2CV | RMSECV | R2CV | RMSECV | |||
Ala | 64, 168, 299 | 357 | 0.6905 | 0.2071 | 0.6209 | 0.2275 |
3, 4, 8, 43, 56, 61, 75, 122, 174, 179, 227, 273, 298 | 347 | 0.6905 | 0.2071 | 0.7419 | 0.1831 |
Sample Set | Calibration Set | Prediction Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Range | Mean | SD | TAV | N | Range | Mean | SD | TAV | |
Ala | 260 | 5.04–10.6 | 9.616 | 0.356 | 0.160 | 87 | 5.56–10.5 | 9.611 | 0.387 | 0.160 |
Sample Set | Pretreatment Method | LVs | Calibration Set | Cross-Validation | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
R2C | RMSEC | R2CV | RMSECV | R2P | RMSEP | |||
Ala | None | 15 | 0.8202 | 0.1507 | 0.7527 | 0.1773 | 0.8145 | 0.1663 |
MA | 15 | 0.8156 | 0.1526 | 0.7570 | 0.1756 | 0.8230 | 0.1850 | |
GF | 15 | 0.8180 | 0.1516 | 0.7561 | 0.1760 | 0.8287 | 0.1674 | |
MF | 16 | 0.8330 | 0.1452 | 0.7619 | 0.1738 | 0.8388 | 0.1548 | |
SG | 15 | 0.8129 | 0.1537 | 0.7530 | 0.1771 | 0.8191 | 0.1811 | |
Normalize | 14 | 0.8051 | 0.1569 | 0.7510 | 0.1777 | 0.7898 | 0.1764 | |
Baseline | 18 | 0.8136 | 0.1534 | 0.6935 | 0.1991 | 0.8165 | 0.1651 | |
SNV | 13 | 0.7729 | 0.1693 | 0.7059 | 0.1934 | 0.7705 | 0.1862 | |
DT | 17 | 0.8052 | 0.1568 | 0.6904 | 0.1997 | 0.8084 | 0.1687 | |
MSC | 12 | 0.7597 | 0.1742 | 0.6941 | 0.1941 | 0.7476 | 0.1939 |
Wavelength/nm | 1136 | 1323 | 1478 |
---|---|---|---|
Assignment | C-H | C=O | O-H |
Synchronous | |||
1136 | + | − | + |
1323 | + | − | |
1478 | + | ||
Asynchronous | |||
1136 | \ | − | + |
1323 | \ | − | |
1478 | \ |
Model | Extraction Method | Variable Number | LVs | Calibration Set (n = 260) | Prediction Set (n = 87) | ||||
---|---|---|---|---|---|---|---|---|---|
R2C | RMSEC | RPDC | R2P | RMSEP | RPDP | ||||
PLSR | FS | 225 | 16 | 0.8330 | 0.1452 | 2.45 | 0.8388 | 0.1548 | 2.50 |
FS–RC | 26 | 15 | 0.7754 | 0.1684 | 2.11 | 0.8006 | 0.1721 | 2.25 | |
FS–CARS | 36 | 18 | 0.8404 | 0.1419 | 2.51 | 0.8409 | 0.1538 | 2.52 | |
2D–COS | 115 | 12 | 0.8203 | 0.1506 | 2.36 | 0.8190 | 0.1655 | 2.34 | |
2D–COS–RC | 22 | 12 | 0.7536 | 0.1764 | 2.02 | 0.7919 | 0.1755 | 2.21 | |
2D–COS–CARS | 36 | 13 | 0.8141 | 0.1531 | 2.33 | 0.8458 | 0.1521 | 2.54 | |
LS-SVM | FS | 225 | - | 0.7226 | 0.1876 | 1.90 | 0.7598 | 0.1907 | 2.03 |
FS–RC | 26 | - | 0.7323 | 0.1839 | 1.94 | 0.7446 | 0.1960 | 1.97 | |
FS–CARS | 36 | - | 0.7278 | 0.1858 | 1.92 | 0.7596 | 0.1900 | 2.04 | |
2D–COS | 115 | - | 0.8145 | 0.1600 | 2.23 | 0.7898 | 0.1657 | 2.34 | |
2D–COS–RC | 22 | - | 0.7938 | 0.1704 | 2.09 | 0.7702 | 0.1747 | 2.22 | |
2D–COS–CARS | 36 | - | 0.8212 | 0.1629 | 2.19 | 0.7980 | 0.1633 | 2.37 | |
ANN | FS | 225 | - | 0.8317 | 0.1461 | 2.44 | 0.8158 | 0.1650 | 2.35 |
FS–RC | 26 | - | 0.8275 | 0.1476 | 2.41 | 0.7785 | 0.1810 | 2.14 | |
FS–CARS | 36 | - | 0.8492 | 0.1381 | 2.58 | 0.8312 | 0.1580 | 2.45 | |
2D–COS | 115 | - | 0.8095 | 0.1566 | 2.27 | 0.7924 | 0.1767 | 2.19 | |
2D–COS–RC | 22 | - | 0.7786 | 0.1672 | 2.13 | 0.7652 | 0.1863 | 2.08 | |
2D–COS–CARS | 36 | - | 0.8484 | 0.1383 | 2.57 | 0.8341 | 0.1560 | 2.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, F.; Bi, Y.; Hao, J.; Liu, S.; Lv, Y.; Cui, J.; Wang, S.; Han, Y.; Rodas-González, A. A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Alanine in Beef. Biosensors 2022, 12, 1043. https://doi.org/10.3390/bios12111043
Dong F, Bi Y, Hao J, Liu S, Lv Y, Cui J, Wang S, Han Y, Rodas-González A. A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Alanine in Beef. Biosensors. 2022; 12(11):1043. https://doi.org/10.3390/bios12111043
Chicago/Turabian StyleDong, Fujia, Yongzhao Bi, Jie Hao, Sijia Liu, Yu Lv, Jiarui Cui, Songlei Wang, Yafang Han, and Argenis Rodas-González. 2022. "A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Alanine in Beef" Biosensors 12, no. 11: 1043. https://doi.org/10.3390/bios12111043
APA StyleDong, F., Bi, Y., Hao, J., Liu, S., Lv, Y., Cui, J., Wang, S., Han, Y., & Rodas-González, A. (2022). A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Alanine in Beef. Biosensors, 12(11), 1043. https://doi.org/10.3390/bios12111043