A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemical and Reagents
2.2. Platform Design and Assembly
2.3. Android-Based Applications Development
2.4. Detection for Ca2+ Based on Cal Red R525/650 Fluorescent Probe
2.5. Quantitative Detection of Ca2+ in Bovine Serum
2.6. Statistical Analysis
3. Results and Discussion
3.1. Performance Test and Optimization of the SRFP Platform
3.2. Detection for Ca2+ Based on Cal Red R525/650 by Fluorescence Spectra
3.3. Quantitative Detection of Calcium-Based SRFP
3.4. Application in the Detection of Calcium in Serum-Based SRFP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venjakob, P.; Borchardt, S.; Heuwieser, W. Hypocalcemia—Cow-level prevalence and preventive strategies in German dairy herds. J. Dairy Sci. 2017, 100, 9258–9266. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, S.J.; Huzzey, J.M.; Kuhn-Sherlock, B.; Turner, S.A.; Mueller, K.R.; Phyn, C.V.C.; Donaghy, D.J.; Roche, J.R. Associations between lying behavior and activity and hypocalcemia in grazing dairy cows during the transition period. J. Dairy Sci. 2020, 103, 10530–10546. [Google Scholar] [CrossRef]
- Johns, V.K.; Patel, P.K.; Hassett, S.; Calvo-Marzal, P.; Qin, Y.; Chumbimuni-Torres, K.Y. Visible Light Activated Ion Sensing Using a Photoacid Polymer for Calcium Detection. Anal. Chem. 2014, 86, 6184–6187. [Google Scholar] [CrossRef]
- Beitollahi, H.; Ivari, S.G.; Torkzadeh-Mahani, M. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens. Bioelectron. 2018, 110, 97–102. [Google Scholar] [CrossRef]
- Ji, D.; Liu, Z.; Liu, L.; Low, S.S.; Lu, Y.; Yu, X.; Zhu, L.; Li, C.; Liu, Q. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron. 2018, 119, 55–62. [Google Scholar] [CrossRef]
- Deng, B.; Zhu, P.; Wang, Y.; Feng, J.; Li, X.; Xu, X.; Lu, H.; Xu, Q. Determination of Free Calcium and Calcium-Containing Species in Human Plasma by Capillary Electrophoresis-Inductively Coupled Plasma Optical Emission Spectrometry. Anal. Chem. 2008, 80, 5721–5726. [Google Scholar] [CrossRef]
- Buzanovskii, V. Determination of Calcium in Blood. Rev. J. Chem. 2019, 9, 12–70. [Google Scholar] [CrossRef]
- Chen, M.; Ji, H.; Zhang, Z.; Zeng, X.; Su, W.; Liu, S. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium. J. Funct. Foods 2019, 60, 103447. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, Y.; Wei, H.; Jiang, Y.; Ma, W.; Zheng, W.; Cao, A.-M.; Mao, L. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as a transducing layer. Anal. Chem. 2019, 91, 4421–4428. [Google Scholar] [CrossRef]
- Walters, M.E.; Esfandi, R.; Tsopmo, A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods 2018, 7, 172. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, C.; Yuan, W.; Liu, Z.; Zhu, L.; Li, X.; Lu, Y.; Chen, Z.; Liu, J.; Cui, Z.; et al. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens. Actuators B Chem. 2019, 297, 126743. [Google Scholar] [CrossRef]
- Azimi, S.; Farahani, A.; Docoslis, A.; Vahdatifar, S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal. Bioanal. Chem. 2021, 413, 1441–1452. [Google Scholar] [CrossRef]
- Dong, C.; Ma, X.; Qiu, N.; Zhang, Y.; Wu, A. An ultra-sensitive colorimetric sensor based on smartphone for pyrophosphate determination. Sens. Actuators B Chem. 2021, 329, 129066. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Gao, R.; Kan, C.; Xu, J. Portable quantitative detection of Fe3+ by integrating a smartphone with colorimetric responses of a rhodamine-functionalized polyacrylamide hydrogel chemosensor. Sens. Actuators B Chem. 2021, 340, 129958. [Google Scholar] [CrossRef]
- Tang, S.; Chen, D.; Guo, G.; Li, X.; Wang, C.; Li, T.; Wang, G. A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+. Sci. Total Environ. 2022, 825, 153913. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, Z.; Xu, N.; Jiang, L.; Yang, M.; Yi, C. A Smartphone-Based Sensing System for On-Site Quantitation of Multiple Heavy Metal Ions Using Fluorescent Carbon Nanodots-Based Microarrays. ACS Sens. 2020, 5, 870–878. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 2021, 275, 130096. [Google Scholar] [CrossRef]
- Chen, W.; Yao, Y.; Chen, T.; Shen, W.; Tang, S.; Lee, H.K. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens. Bioelectron. 2021, 172, 112788. [Google Scholar] [CrossRef]
- Song, J.; Pandian, V.; Mauk, M.G.; Bau, H.H.; Cherry, S.; Tisi, L.C.; Liu, C. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Anal. Chem. 2018, 90, 4823–4831. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T. Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Ge, Y.; Song, G.; Zhou, J. Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119740. [Google Scholar] [CrossRef]
- Li, Y.; Duan, N.; Wu, X.; Yang, S.; Tian, H.; Sun, B. Novel fluorescent probe for the ratiometric detection of β-galactosidase and its application in fruit. Food Chem. 2020, 328, 127112. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Ruan, K.; Sun, M.; Zhang, S.; Liu, T.; Yin, J.; Wang, X.; Chen, H.; Wang, Y.; et al. Deep learning-assisted smartphone-based ratio fluorescence for “on–off–on” sensing of Hg2+ and thiram. Chem. Eng. J. 2022, 435, 134979. [Google Scholar] [CrossRef]
- Malik, A.H.; Hussain, S.; Iyer, P.K. Aggregation-Induced FRET via Polymer–Surfactant Complexation: A New Strategy for the Detection of Spermine. Anal. Chem. 2016, 88, 7358–7364. [Google Scholar] [CrossRef]
- Hussain, S.; Chen, X.; Wang, C.; Hao, Y.; Tian, X.; He, Y.; Li, J.; Shahid, M.; Iyer, P.K.; Gao, R. Aggregation and Binding-Directed FRET Modulation of Conjugated Polymer Materials for Selective and Point-of-Care Monitoring of Serum Albumins. Anal. Chem. 2022, 94, 10685–10694. [Google Scholar] [CrossRef]
- Duan, N.; Wang, H.; Li, Y.; Yang, S.; Tian, H.; Sun, B. The research progress of organic fluorescent probe applied in food and drinking water detection. Coord. Chem. Rev. 2021, 427, 213557. [Google Scholar] [CrossRef]
- Wang, H.-H.; Xue, L.; Qian, Y.-Y.; Jiang, H. Novel ratiometric fluorescent sensor for silver ions. Org. Lett. 2010, 12, 292–295. [Google Scholar] [CrossRef]
- Yang, K.; Jia, P.; Hou, J.; Bu, T.; Sun, X.; Liu, Y.; Wang, L. Innovative dual-emitting ratiometric fluorescence sensor for tetracyclines detection based on boron nitride quantum dots and europium ions. ACS Sustain. Chem. Eng. 2020, 8, 17185–17193. [Google Scholar] [CrossRef]
- Han, L.; Liu, S.G.; Dong, X.Z.; Liang, J.Y.; Li, N.B.; Luo, H.Q. Construction of an effective ratiometric fluorescent sensing platform for specific and visual detection of mercury ions based on target-triggered the inhibition on inner filter effect. J. Hazard. Mater. 2019, 376, 170–177. [Google Scholar] [CrossRef]
- Xiong, J.-B.; Ban, D.-D.; Zhou, Y.-J.; Li, J.-Z.; Chen, S.-R.; Liu, G.-Q.; Tian, J.-J.; Mi, L.-W.; Li, D.-M. A novel AIE-active imidazolium macrocyclic ratiometric fluorescence sensor for pyrophosphate anion. RSC Adv. 2022, 12, 6876–6880. [Google Scholar] [CrossRef]
- Nawaz, H.; Zhang, J.; Tian, W.; Jin, K.; Jia, R.; Yang, T.; Zhang, J. Cellulose-based fluorescent sensor for visual and versatile detection of amines and anions. J. Hazard. Mater. 2020, 387, 121719. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yang, W.; Luo, X.; He, X.; Zhao, H.; Tang, W.; Yue, T.; Li, Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, Z.; Lu, X.; Guo, J.; Cheng, R.; Zhu, L.; Wang, C.-F.; Chen, S. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale 2020, 12, 5494–5500. [Google Scholar] [CrossRef]
- Available online: https://www.aatbio.com/products/cal-red-r525-650-am#jump_overview (accessed on 20 May 2022).
- Denholm, S.J.; Sneddon, A.A.; McNeilly, T.N.; Bashir, S.; Mitchell, M.C.; Wall, E. Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows. J. Dairy Sci. 2019, 102, 11180–11192. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Wang, Y.; Shi, F.; Luo, Q.; Zheng, S.; Chen, J.; Dai, D.; Yang, L.; Tang, X.; et al. DNAzyme-Amplified Electrochemical Biosensor Coupled with pH Meter for Ca2+ Determination at Variable pH Environments. Nanomaterials 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, H.; Zhao, Y.; Zhang, F.; Tang, X.; Xiong, B. Electrochemical Biosensor Using Nitrogen-Doped Graphene/Au Nanoparticles/DNAzyme for Ca2+ Determination. Biosensors 2022, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Colazo, M.G.; De Buck, J. Development of a blood calcium test for hypocalcemia diagnosis in dairy cows. Res. Vet. Sci. 2022, 147, 60–67. [Google Scholar] [CrossRef]
Sensor | Method | Linear Range (M) | Detection Limit (M) | Ref |
---|---|---|---|---|
GCE/SWNT/DNA zyme | EIS | 5 × 10−6~2.5 × 10−6 | 4.2 × 10−6 | [36] |
GCE/NGR/AuNPs/Sub-DNAzyme | EIS | 5 × 10−6~5 × 10−5 5 × 10−5~4 × 10−4 | 3.8 × 10−6 | [37] |
CalTreAX | Fluorescence | 1 × 10−6~1 × 10−3 | 1 × 10−5 | [38] |
SRFP | Ratiometric fluorescence | 1 × 10−5~4 × 10−5 | 1.8 × 10−6 | This work |
Detection Mode | Spiked Concentration (μg/mL) | Recovery (n = 3, %) | RSD (n = 3, %) |
---|---|---|---|
Fluorescence | 0 | - | - |
5 | 92.8 | 4.89 | |
7 | 102.4 | 1.83 | |
9 | 108.9 | 2.68 | |
10 | 99.4 | 1.72 | |
SRFP platform | 0 | - | - |
5 | 115.7 | 4.86 | |
7 | 110.1 | 4.20 | |
9 | 96 | 2.68 | |
10 | 105.9 | 3.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, Y.; Xu, Z.; Guo, X.; Yang, W.; Zhang, X.; Liao, Y.; Fan, M.; Zhang, D. A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes. Biosensors 2022, 12, 917. https://doi.org/10.3390/bios12110917
Wu Y, Zhang Y, Xu Z, Guo X, Yang W, Zhang X, Liao Y, Fan M, Zhang D. A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes. Biosensors. 2022; 12(11):917. https://doi.org/10.3390/bios12110917
Chicago/Turabian StyleWu, Yue, Yunshan Zhang, Zhongyuan Xu, Xinyu Guo, Wenjian Yang, Xiaoyu Zhang, Yuheng Liao, Minzhi Fan, and Diming Zhang. 2022. "A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes" Biosensors 12, no. 11: 917. https://doi.org/10.3390/bios12110917
APA StyleWu, Y., Zhang, Y., Xu, Z., Guo, X., Yang, W., Zhang, X., Liao, Y., Fan, M., & Zhang, D. (2022). A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes. Biosensors, 12(11), 917. https://doi.org/10.3390/bios12110917