Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents
2.3. Preparation of Silver Nanoparticles
2.4. Preparation of FeMOF/CoMOF/CuMOF/NiMOF
2.5. Experimental Procedure
3. Results and Discussion
3.1. Analysis Principles
3.2. Characterization of FeMOF
3.3. SERS Spectra
3.4. RRS and Fluorescence Spectra
3.5. Transmission Electron Microscopy (TEM) and Laser Scattering of the Analytical System
3.6. Nanocatalytic Mechanism of FeMOF
3.7. Selection of the Preparation and Analytical Conditions
3.7.1. Preparation Conditions of FeMOF
3.7.2. Analysis Conditions
3.8. Working Curve
3.9. Influence of Coexisting Substances
3.10. Analysis of Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giménez-Marqués, M.; Santiago-Portillo, A.; Navalón, S.; Álvaro, M.; Briois, V.; Nouar, F.; Garcia, H.; Serre, C. Exploring the caMOFlytic performance of a series of bimetallic MIL-100 (Fe, Ni) MOFs. J. Mater. Chem. A 2019, 7, 20285–20292. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–organic frameworks in heterogeneous catalysis: Recent progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.X.; Wu, M.L.; Lv, X.W.; Xiao, Y.; Jiang, Z.L.; Wen, G.Q. A novel resonance Rayleigh scattering assay for trace formaldehyde detection based on Ce-MOF probe and acetylacetone reaction. Microchem. J. 2022, 179, 107501. [Google Scholar] [CrossRef]
- Shi, J.L.; Li, J.J.; Liang, A.H.; Jiang, Z.L. Highly catalysis MOFCe supported Ag nanoclusters coupled with specific aptamer for SERS quantitative assay of trace dopamine. Talanta 2022, 245, 123468. [Google Scholar] [CrossRef] [PubMed]
- Mehek, R.; Iqbal, N.; Noor, T.; Nasir, H.; Mehmood, Y.; Ahmed, S. Novel Co-MOF/Graphene Oxide electrocaMOFlyst for methanol oxidation. Electrochim. Acta 2017, 255, 195–204. [Google Scholar] [CrossRef]
- Tan, H.; Li, Q.; Zhou, Z.; Ma, C.; Song, Y.; Xu, F.; Wang, L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta 2015, 856, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.; Lu, N.; Liu, H.; Xu, Z.; Xu, H.; Zhang, Z.; et al. AuPt/MOF–graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 2019, 91, 10589–10595. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Binyam, A.; Liu, M.; Wu, Y.; Li, F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438. [Google Scholar] [CrossRef]
- Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S.; Grenèche, J.M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100 (Fe), an iron (III) carboxylate with large pores. Chem. Commun. 2007, 27, 2820–2822. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Li, C.Y.; Zhao, Q.; Li, X.Y. Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3. Catal. Lett. 2016, 146, 1956–1964. [Google Scholar] [CrossRef]
- YLiu, L.; Zhao, X.J.; Yang, X.X.; Li, Y.F. A nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 2013, 138, 4526–4531. [Google Scholar]
- Liang, A.; Zhao, Y.; Huang, X.; Jiang, Z. A facile and sensitive fluorescence assay for glucose via hydrogen peroxide based on MOF-Fe catalytic oxidation of TMB. Spectrochim. Acta Part A 2022, 265, 120376. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.Y.; Byun, J. Nucleic Acid Aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol. Ther. 2013, 21, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, D.; Shigdar, S.; Qiao, G.; Wang, T.; Kouzani, A.Z.; Zhou, S.-F.; Kong, L.; Li, Y.; Pu, C.; Duan, W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics 2015, 5, 23–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Yao, D.; Liang, A.; Wen, G.; Jiang, Z. New Ag-doped COF caMOFlytic amplification aptamer analytical platform for trace small molecules with the resonance rayleigh scattering technique. ACS Appl. Mater. Interfaces 2020, 12, 12120–12132. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Wang, X.; Liang, A.; Jiang, Z. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance rayleigh scattering dual mode probe for arsenic(III). Microchim. Acta 2019, 186, 638. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Liang, A.; Luo, Y.; Jiang, Z. Doped N/Ag carbon dot catalytic amplification SERS strategy for acetamiprid coupled aptamer with 3,3′-dimethylbiphenyl-4,4′-diamine oxidizing reaction. Nanomaterials 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, C.; Liang, A.; Jiang, Z. SERS and fluorescence dual-mode sensing trace hemin and K+ based on Gquarplex/hemin DNAzyme catalytic amplification. Sens. Actuators B Chem. 2019, 297, 126799. [Google Scholar] [CrossRef]
- Duke, S.O.; Powles, S.B. Glyphosate: A once in a century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef]
- Bradberry, S.M.; Proudfoot, A.T.; Vale, J.A. Glyphosate poisoning. Toxicol. Rev. 2004, 23, 159–167. [Google Scholar] [CrossRef]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environ. Health Perspect. 2004, 112, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.L. Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Anal. Chem. 1981, 53, 921–923. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Chen, X.; Yang, W.; Pei, H.; Hu, N.; Li, Z.; Suo, Y.; Li, T.; Wang, J. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. A 2018, 6, 2184–2192. [Google Scholar] [CrossRef]
- Jiang, J.; Lucy, C.A. Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection. Talanta 2007, 72, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, X.; Lan, S.; Zhang, C.; Hou, C.; He, Q.; Huo, D. A turn-on fluorescent sensor based on carbon dots from Sophora japonica leaves for the detection of glyphosate. Anal. Methods 2020, 12, 4130–4138. [Google Scholar] [CrossRef] [PubMed]
- Songa, E.A.; Arotiba, O.A.; Owino, J.H.O.; Jahed, N.; Baker, P.G.L.; Iwuoha, E.I. Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 2009, 75, 117–123. [Google Scholar] [CrossRef]
- Tan, M.J.; Hong, Z.Y.; Chang, M.H.; Liu, C.C.; Cheng, H.F.; Loh, X.J.; Chen, C.H.; Liao, C.D.; Kong, K.V. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens. Bioelectron. 2017, 96, 167–172. [Google Scholar] [CrossRef]
- Shokoth, H.B.; Yang, T.Y.; Li, Z.X.; Wu, M.H. Preparation of ferrous-doped MIL-53(Fe) photo-Fenton catalyst and its application in dyeing and printing wastewater treatment. Text. Aux. 2021, 38, 36–40. [Google Scholar]
- Liu, Q.; Yao, C.; Liu, J.; Wang, S.; Shao, B.; Yao, K. An efficient method to enrich, detect and remove bisphenol A based on Fe3O4@MIL-100(Fe). Microchem. J. 2021, 165, 106168. [Google Scholar] [CrossRef]
- Bressán, I.G.; Llesuy, S.F.; Rodriguez, C.; Ferloni, A.; Dawidowski, A.R.; Figar, S.B.; Giménez, M.I. Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the determination of glyphosate in human urine after pre-column derivatization with 9-fluorenylmethoxycarbonyl chloride. J. Chromatogr. B 2021, 1171, 122616. [Google Scholar] [CrossRef]
- Jose, M.R.; Bouchra, D.; Pilar, C.A.; Soria, M.E.; González, A.G.; Bautista, J.; Moreno, I. Validation of a simple method for the determination of glyphosate and aminomethylphosphonic acid in human urine by UPLC-MS/MS. Microchem. J. 2021, 170, 106760. [Google Scholar]
Method | Linear Range (μg/L) | Detection Limit (μg/L) | Recovery (%) | Sample | Comments | Reference |
---|---|---|---|---|---|---|
Colorimetry | 1 × 103–2 × 104 | 1 × 103 | 100.9 | Runoff water | Low sensitivity, but low-cost. | [22] |
CE-LIF * | 0.169–16.9 | 0.27 | / | River water | Sensitive, but complicated. | [24] |
Fluorescence | 1 × 102–1.6 × 104 | 8.75 | 97.55 | Potato | Low sensitivity | [25] |
Electrochemistry | 0.25–14.0 | 1.70 | / | Type sample | Sensitive and simple. | [26] |
LC–MS | 0.5–3.03 | 0.50 | 91 | Human urine | Sensitive, but high-cost. | [30] |
UPLC–MS/MS | 1–20 | 0.5 | 108 | Human urine | Sensitive, but high-cost. | [31] |
SERS | 0.0169–2.37 | 0.00845 | 92.1–97.5 | Wastewater | Highly sensitive and cheap. | This method |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Chen, Q.; Zhang, C.; Li, C.; Jiang, Z.; Liang, A. Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. Biosensors 2022, 12, 920. https://doi.org/10.3390/bios12110920
Zhao Y, Chen Q, Zhang C, Li C, Jiang Z, Liang A. Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. Biosensors. 2022; 12(11):920. https://doi.org/10.3390/bios12110920
Chicago/Turabian StyleZhao, Yuxiang, Qianmiao Chen, Chi Zhang, Chongning Li, Zhiliang Jiang, and Aihui Liang. 2022. "Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine" Biosensors 12, no. 11: 920. https://doi.org/10.3390/bios12110920
APA StyleZhao, Y., Chen, Q., Zhang, C., Li, C., Jiang, Z., & Liang, A. (2022). Aptamer Trimode Biosensor for Trace Glyphosate Based on FeMOF Catalytic Oxidation of Tetramethylbenzidine. Biosensors, 12(11), 920. https://doi.org/10.3390/bios12110920