Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Synthesis of Zn-MOFs-NP
2.4. PL-Measurements Procedures
2.5. PSA Determination by MOF in Real-Samples
3. Results
3.1. FE-SEM, EDX and HR-TEM
3.2. Elemental Analysis
3.3. Mass Spectrum
3.4. UV-Vis and FT-IR Spectra
3.5. XRD and XPS Analysis
3.6. Thermal Behavior and Stability of the Zn-MOFs-NP
3.7. Photoluminescence Investigation
3.8. Method Validation
3.9. Interaction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karunasinghe, N.; Minas, T.Z.; Bao, B.Y.; Lee, A.; Wang, A.; Zhu, S.; Masters, J.; Goudie, M.; Huang, S.P.; Jenkins, F.J.; et al. Assessment of Factors Associated with PSA Level in Prostate Cancer Cases and Controls from Three Geographical Regions. Sci. Rep. 2022, 12, 55. [Google Scholar] [CrossRef]
- Hoffman, S.S.; Smith, A.W.; Kent, E.E.; Doria-Rose, V.P.; Kobrin, S.C.; Mollica, M.A. Examination of Prostate-Specific Antigen (PSA) Screening in Military and Civilian Men: Analysis of the 2018 Behavioral Risk Factor Surveillance System. Cancer Causes Control 2022, 33, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Lee, M.; Kim, D. Detection of Early Stage Prostate Cancer by Using a Simple Carbon Nanotube@paper Biosensor. Biosens. Bioelectron. 2018, 102, 345–350. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Q.; Lu, Y.; Zhang, B.; Nie, G. Ultrasensitive “Signal-on” Electrochemiluminescence Immunosensor for Prostate-Specific Antigen Detection Based on Novel Nanoprobe and Poly(Indole-6-Carboxylic Acid)/Flower-like Au Nanocomposite. Sens. Actuators B Chem. 2020, 303, 127246. [Google Scholar] [CrossRef]
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 17 October 2022).
- Du, D.; Fu, H.J.; Ren, W.; Li, X.L.; Guo, L.H. PSA Targeted Dual-Modality Manganese Oxide–Mesoporous Silica Nanoparticles for Prostate Cancer Imaging. Biomed. Pharmacother. 2020, 121, 109614. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Tian, L.; Jia, B.; Wang, M.; Xiong, M.; Hu, B.; Deng, C.; Hou, Y.; Hou, T.; Yang, X.; et al. Association between Serum Triglycerides and Prostate Specific Antigen (PSA) among U.S. Males: National Health and Nutrition Examination Survey (NHANES), 2003–2010. Nutrients 2022, 14, 1325. [Google Scholar] [CrossRef]
- Thunkhamrak, C.; Chuntib, P.; Ounnunkad, K.; Banet, P. Highly Sensitive Voltammetric Immunosensor for the Detection of Prostate Specific Antigen Based on Silver Nanoprobe Assisted Graphene Oxide Modified Screen Printed Carbon Electrode. Talanta 2020, 208, 120389. [Google Scholar] [CrossRef]
- Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L. The Case for Early Detection. Nat. Rev. Cancer 2003, 3, 243–252. [Google Scholar] [CrossRef]
- Akl, M.A.; El-gharkawy, E.R.; El-mahdy, N.A.; El-sheikh, S.M.; Sheta, S.M. A Novel Nano Copper Complex: Potentiometry, DFT and Application as a Cancer Prostatic Biomarker for the Ultrasensitive Detection of Human PSA. Dalt. Trans. 2020, 49, 15769–15778. [Google Scholar] [CrossRef]
- Dhanasekaran, S.M.; Barrette, T.R.; Ghosh, D.; Shah, R.; Varambally, S.; Kurachi, K.; Pienta, K.J.; Rubin, M.A.; Chinnaiyan, A.M. Delineation of Prognostic Biomarkers in Prostate Cancer. Nature 2001, 412, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.J.; Shin, T.J.; Jung, W.; Ha, J.Y.; Kim, B.H.; Kim, Y.H. The Value of Magnetic Resonance Imaging and Ultrasonography (MRI/US)-Fusion Biopsy in Clinically Significant Prostate Cancer Detection in Patients with Biopsy-Naïve Men According to PSA Levels: A Propensity Score Matching Analysis. Prostate Int. 2022, 10, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Gómez, V.; Hernández-Santos, D.; González-García, M.B.; Pingarrón-Carrazón, J.M.; Costa-García, A. Simultaneous Detection of Free and Total Prostate Specific Antigen on a Screen-Printed Electrochemical Dual Sensor. Biosens. Bioelectron. 2009, 24, 2678–2683. [Google Scholar] [CrossRef]
- Vural, T.; Yaman, Y.T.; Ozturk, S.; Abaci, S.; Denkbas, E.B. Electrochemical Immunoassay for Detection of Prostate Specific Antigen Based on Peptide Nanotube-Gold Nanoparticle-Polyaniline Immobilized Pencil Graphite Electrode. J. Colloid Interface Sci. 2018, 510, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Karami, P.; Bagheri, H.; Johari-ahar, M.; Khoshsafar, H. Dual-Modality Impedimetric Immunosensor for Early Detection of Prostate- Specific Antigen and Myoglobin Markers Based on Antibody-Molecularly Imprinted Polymer. Talanta 2019, 202, 111–122. [Google Scholar] [CrossRef]
- Chong, J.; Chong, H.; Hoon, J. A Chemiluminescent Dual-Aptasensor Capable of Simultaneously Quantifying Prostate Specific Antigen and Vascular Endothelial Growth Factor. Anal. Biochem. 2019, 564, 102–107. [Google Scholar] [CrossRef]
- Zhang, S.; Du, B.; Li, H.; Xin, X.; Ma, H.; Wu, D.; Yan, L.; Wei, Q. Metal Ions-Based Immunosensor for Simultaneous Determination of Estradiol and Diethylstilbestrol. Biosens. Bioelectron. 2014, 52, 225–231. [Google Scholar] [CrossRef]
- Shayesteh, O.H.; Ghavami, R. A Novel Label-Free Colorimetric Aptasensor for Sensitive Determination of PSA Biomarker Using Gold Nanoparticles and a Cationic Polymer in Human Serum. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 226, 117644. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Tang, Z.; Ma, C.; Yan, Y. A Fluorometric Aptamer Based Assay for Prostate Specific Antigen Based on Enzyme-Assisted Target Recycling. Sens. Actuators B Chem. 2020, 302, 127178. [Google Scholar] [CrossRef]
- Kaya, T.; Kaneko, T.; Kojima, S.; Nakamura, Y.; Ide, Y.; Ishida, K.; Suda, Y.; Yamashita, K. High-Sensitivity Immunoassay with Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Using a Plastic Sensor Chip: Application to Quantitative Analysis of Total Prostate-Specific Antigen and GalNAcβ1-4GlcNAc-Linked Prostate-Specific Antigen for Prost. Anal. Chem. 2015, 87, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Soukka, T.; Paukkunen, J.; Härmä, H.; Lönnberg, S.; Lindroos, H.; Lövgren, T. Supersensitive Time-Resolved Immunofluorometric Assay of Free Prostate-Specific Antigen with Nanoparticle Label Technology. Clin. Chem. 2001, 47, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yu, Y.; Zhang, L.; Lin, B.; Wang, Y.; Guo, M.; Cao, Y. Precise Detection of Prostate Speci Fi c Antigen in Serum: A Surface Molecular Imprinted Sensor Based on Novel Cooperated Signal Ampli Fi Cation Strategy. Sens. Actuators B Chem. 2020, 302, 126998. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Xi, J.; Zhao, F.; Zeng, B. Sensors and Actuators B: Chemical A Novel Z-Scheme ZnIn2S4/WO3 Photocatalyst Based Photoelectrochemical Immunosensor for the Sensitive Detection of Prostate Speci Fi c Antigen. Sens. Actuators B Chem. 2019, 298, 126835. [Google Scholar] [CrossRef]
- Deng, K.; Wang, H.; Xiao, J.; Li, C.; Zhang, S. Polydopamine Nanospheres Loaded with L-Cysteine-Coated Cadmium Sul Fi de Quantum Dots as Photoelectrochemical Signal Ampli Fi Er for PSA Detection. Anal. Chim. Acta 2019, 1090, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Ehzari, H.; Amiri, M.; Safari, M. Enzyme-Free Sandwich-Type Electrochemical Immunosensor for Highly Sensitive Prostate Specific Antigen Based on Conjugation of Quantum Dots and Antibody on Surface of Modified Glassy Carbon Electrode with Core—Shell Magnetic Metal-Organic Frameworks. Talanta 2020, 210, 120641. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Ameer, H.; Ali, A.; Zhu, W.; Li, X.; Yang, L.; Wang, H. Label-Free Electrochemiluminescent Immunosensor for Prostate Specific Antigen Ultrasensitive Detection Based on Novel Luminophore Ag3PO4 Decorated GO. J. Electroanal. Chem. 2019, 847, 113266. [Google Scholar] [CrossRef]
- Karami, P.; Khoshsafar, H.; Johari-Ahar, M.; Arduini, F.; Afkhami, A.; Bagheri, H. Colorimetric Immunosensor for Determination of Prostate Specific Antigen Using Surface Plasmon Resonance Band of Colloidal Triangular Shape Gold Nanoparticles. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2019, 222, 117218. [Google Scholar] [CrossRef]
- Yazdani, Z.; Yadegari, H.; Heli, H. A Molecularly Imprinted Electrochemical Nanobiosensor for Prostate Specific Antigen Determination. Anal. Biochem. 2019, 566, 116–125. [Google Scholar] [CrossRef]
- Ghorbani, F.; Abbaszadeh, H.; Dolatabadi, J.E.N.; Aghebati-Maleki, L.; Yousefi, M. Application of Various Optical and Electrochemical Aptasensors for Detection of Human Prostate Specific Antigen: A Review. Biosens. Bioelectron. 2019, 142, 111484. [Google Scholar] [CrossRef]
- Jalalvand, A.R. Fabrication of a Novel and Ultrasensitive Label-Free Electrochemical Aptasensor for Detection of Biomarker Prostate Specific Antigen. Int. J. Biol. Macromol. 2019, 126, 1065–1073. [Google Scholar] [CrossRef]
- Assari, P.; Rafati, A.A.; Feizollahi, A.; Joghani, R.A. An Electrochemical Immunosensor for the Prostate Specific Antigen Based on the Use of Reduced Graphene Oxide Decorated with Gold Nanoparticles. Microchim. Acta 2019, 186, 484. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Zhu, W.; Ali, A.; Ahmad, S.M.; Li, X.; Yang, L.; Wang, Y.; Wang, H.; Wei, Q. Electrochemiluminescent Immunosensor for Prostate Speci Fi c Antigen Based upon Luminol Functionalized Platinum Nanoparticles Loaded on Graphene. Anal. Biochem. 2019, 566, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Farshchi, F.; Hasanzadeh, M. Nanomaterial Based Aptasensing of Prostate Specific Antigen (PSA): Recent Progress and Challenges in Efficient Diagnosis of Prostate Cancer Using Biomedicine. Biomed. Pharmacother. 2020, 132, 110878. [Google Scholar] [CrossRef]
- Fang, B.Y.; An, J.; Liu, B.; Zhao, Y. Di Hybridization Induced Fluorescence Enhanced DNA-Ag Nanocluster/Aptamer Probe for Detection of Prostate-Specific Antigen. Colloids Surf. B Biointerfaces 2019, 175, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hu, X.; Mei, L.; Zhang, L.; Wang, X.; Liao, X.; Qiao, X.; Hong, C. PSA Detection Electrochemical Immunosensor Based on MOF-235 Nanomaterial Adsorption Aggregation Signal Amplification Strategy. Microchem. J. 2021, 171, 106870. [Google Scholar] [CrossRef]
- Hu, Y.; Lv, S.; Wan, J.; Zheng, C.; Shao, D.; Wang, H.; Tao, Y.; Li, M.; Luo, Y. Recent Advances in Nanomaterials for Prostate Cancer Detection and Diagnosis. J. Mater. Chem. B 2022, 10, 4907–4934. [Google Scholar] [CrossRef]
- Perry, G.; Cortezon-Tamarit, F.; Pascu, S.I. Detection and Monitoring Prostate Specific Antigen Using Nanotechnology Approaches to Biosensing. Front. Chem. Sci. Eng. 2020, 14, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Basaleh, A.S.; Sheta, S.M. Manganese Metal—Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1726–1737. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-sheikh, S.M.; Osman, D.I.; Salem, A.M.; Ali, O.I.; Harraz, F.A.; Shousha, W.G.; Shoeib, M.A.; Shawky, S.M.; Dionysiou, D.D. A Novel HCV Electrochemical Biosensor Based on a Polyaniline@Ni-MOF Nanocomposite. Dalt. Trans 2020, 49, 8918–8926. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.M.; El, S.M.; Mohkles, S.; Elzaher, M.A.; Wassel, A.R. A Novel Nano-Size Lanthanum Metal—Organic Framework Based on 5—Amino—Isophthalic Acid and Phenylenediamine: Photoluminescence Study and Sensing Applications. Appl. Organometal. Chem. 2019, 33, e4777. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Sheta, S.M. Novel Advanced Nanomaterial Based on Ferrous Metal—Organic Framework and Its Application as Chemosensors for Mercury in Environmental and Biological Samples. Anal. Bioanal. Chem. 2020, 412, 3153–3165. [Google Scholar] [CrossRef]
- Brandt, P.; Nuhnen, A.; Öztürk, S.; Kurt, G.; Liang, J.; Janiak, C. Comparative Evaluation of Different MOF and Non-MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low-Pressure Uptake. Adv. Sustain. Syst. 2021, 5, 2000285. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M. Promising Photoluminescence Optical Approach for Triiodothyronine Hormone Determination Based on Smart Copper Metal—Organic Framework Nanoparticles. Appl. Organometal. Chem. 2019, 33, e5069. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M.; Salem, S.R.; Moussa, H.A.; Mohamed, R.M.; Mkhalid, I.A. A Novel Biosensor for Early Diagnosis of Liver Cancer Cases Using Smart Nano-Magnetic Metal—Organic Framework. Appl. Organometal. Chem. 2019, 33, e5249. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Tian, J.; Luo, Y.; Chang, G.; Asiri, A.M. Application of Zeolitic Imidazolate Framework-8 Nanoparticles for the Fluorescence-Enhanced Detection of Nucleic Acids. Chempluschem 2012, 77, 23–26. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Some New Nano-Sized Fe(II), Cd(II) and Zn(II) Schiff Base Complexes as Precursor for Metal Oxides: Sonochemical Synthesis, Characterization, DNA Interaction, in Vitro Antimicrobial and Anticancer Activities. Bioorg. Chem. 2016, 69, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M. Simple Synthesis of Novel Copper Metal-Organic Framework Nanoparticles: Biosensing and Biological Applications. Dalt. Trans. 2018, 47, 4847–4855. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.M.; Salem, S.R.; Sheikh, S.M. El A Novel Iron (III)-Based MOF: Synthesis, Characterization, Biological, and Antimicrobial Activity Study. J. Mater. Res. 2022, 37, 2356–2367. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Sheta, S.M.; Sheha, R.R.; Kandil, A.T.; Ali, O.I.; El-Sheikh, S.M. A Novel Strontium-Based MOF: Synthesis, Characterization, and Promising Application in Removal Of152+154Eu from Active Waste. RSC Adv. 2022, 12, 13103–13110. [Google Scholar] [CrossRef]
- El-Sherif, D.M.; Abouzid, M.; Gaballah, M.S.; Ahmed, A.A.; Adeel, M.; Sheta, S.M. New Approach in SARS-CoV-2 Surveillance Using Biosensor Technology: A Review. Environ. Sci. Pollut. Res. 2022, 29, 1677–1695. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M. Nanomaterials and Metal-Organic Frameworks for Biosensing Applications of Mutations of the Emerging Viruses. Anal. Biochem. 2022, 648, 114680. [Google Scholar] [CrossRef]
- Sheta, S.M.; Akl, M.A.; Saad, E.; El-gharkawy, E.R.H. A Novel Cerium (III)—Isatin Schi Ff Base Complex: Application as a Kidney Biomarker for Ultrasensitive Detection of Human Creatinine. RSC Adv. 2020, 10, 5853–5863. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Maclaren, J.K.; Höppe, H.A.; Pasán, J.; Sanchiz, J.; Janiak, C. Homochiral Lanthanoid (iii) Mesoxalate Metal–Organic Frameworks: Synthesis, Crystal Growth, Chirality, Magnetic and Luminescent Properties. CrystEngComm 2012, 14, 2635–2644. [Google Scholar] [CrossRef]
- Tahli, A.; Elshaarawy, R.F.M.; Köc, Ü.; Kautz, A.C.; Janiak, C. A HKUST-1 MOF Inclusion Compound with in-Situ Reduced Copper(I) as [Cu(NCCH3)4]+ Cation Complex in the Octahedral A-Type Pore. Polyhedron 2016, 117, 579–584. [Google Scholar] [CrossRef]
- Alhaddad, M.; Sheta, S.M. Dual Naked-Eye and Optical Chemosensor for Morphine Detection in Biological Real Samples Based on Cr(III) Metal−Organic Framework Nanoparticles. ACS Omega 2020, 5, 28296–28304. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-Sheikh, S.M.; Abd-Elzaher, M.M.; Ghanemc, M.L.; Salem, S.R. A Novel, Fast, High Sensitivity Biosensor for Supporting Therapeutic Decisions and Onset Actions for Chest Pain Cases. RSC Adv. 2019, 9, 20463–20471. [Google Scholar] [CrossRef] [Green Version]
- Dey, C.; Kundu, T. Crystalline Metal-Organic Frameworks ( MOFs ): Synthesis, Structure and Function. Acta Crystallogr. Sect. B 2014, 23, 3–10. [Google Scholar] [CrossRef]
- Pal, S.; Bhunia, A.; Jana, P.P.; Dey, S.; Möllmer, J.; Janiak, C.; Nayek, H.P. Microporous La-Metal-Organic Framework (MOF) with Large Surface Area. Chem.—A Eur. J. 2015, 21, 2789–2792. [Google Scholar] [CrossRef] [PubMed]
- Nong, W.; Wu, J.; Ghiladi, R.A.; Guan, Y. The Structural Appeal of Metal–Organic Frameworks in Antimicrobial Applications. Coord. Chem. Rev. 2021, 442, 214007. [Google Scholar] [CrossRef]
- Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121. [Google Scholar] [CrossRef]
- Abd-Elzaher, M.M.; Ahmed, M.A.; Farag, A.B.; Attia, M.S.; Youssef, A.O.; Sheta, S.M. A Fast and Simple Method for Determination of Testosterone Hormone in Biological Fluids Based on a New Eu(III) Complex Optical Sensor. Sens. Lett. 2017, 15, 977–981. [Google Scholar] [CrossRef]
- Abd-Elzaher, M.M.; Ahmed, M.A.; Farag, A.B.; Attia, M.S.; Youssef, A.O.; Sheta, S.M. New Optical Sensor for Determination of Hydrochlorothiazide in Pharmaceutical Preparation and Biological Fluids. Sens. Lett. 2017, 15, 525–530. [Google Scholar] [CrossRef]
- Ahamed, M.A.; Farag, A.B.; Ibrahim, M.H.; Kamel, A.M.; Abd-Elzaher, M.M.; Sheta, S.M. New PVC Membrane Sensors for Microdetermination of Triamterene in Different Samples. Sens. Lett. 2017, 15, 632–638. [Google Scholar] [CrossRef]
- Sheta, S.M.; El-sheikh, S.M.; Abd-elzaher, M.M. A Novel Optical Approach for Determination of Prolactin Based on Pr-MOF Nanofibers. Anal. Bioanal. Chem. 2019, 411, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Kapoor, S.; Sharma, B.; Kumar, S.; Malhotra, R.; Dilbaghi, N. Fabrication of Zn-MOF@RGO Based Sensitive Nanosensor for the Real Time Monitoring of Hydrazine. J. Alloys Compd. 2020, 816, 152509. [Google Scholar] [CrossRef]
- Lan, J.; Qu, Y.; Xu, P.; Sun, J.; Energy, G.; Qu, Y.; Xu, P.; Sun, J. Novel HBD-Containing Zn(Dobdc)(Datz) as Efficiently Heterogeneous Catalyst for CO2 Chemical Conversion under Mild Conditions. Green Energy Environ. 2021, 6, 66–74. [Google Scholar] [CrossRef]
- Qin, L.; Zheng, Q.; Hu, Q.; Dou, Y.; Ni, G.; Ye, T.; Zhang, M. Selectively Sensing and Dye Adsorption Properties of One Zn(II) Architecture Based on a Rigid Biphenyltetracarboxylate Ligand. J. Solid State Chem. 2020, 284, 121216. [Google Scholar] [CrossRef]
- Othman, A.I.; Kaiss, I.R.; Huda, A.H. Vanadyl VO (II) with o-Phenylenediamine Complexes: Preparation and Spectral Characterization. Res. J. Chem. Environ. 2019, 23, 43–49. [Google Scholar]
- Sacourbaravi, R.; Ansari, Z.; Mohammad, A.; Valiollah, K.; Esmaeil, N. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4615–4621. [Google Scholar] [CrossRef]
- Yadav, D.K.; Gupta, R.; Ganesan, V.; Sonkar, P.K.; Yadav, M. Gold Nanoparticles Incorporated in a Zinc-Based Metal-Organic Framework as Multifunctional Catalyst for the Oxygen Reduction and Hydrogen Evolution Reactions. ChemElectroChem 2018, 5, 2612–2619. [Google Scholar] [CrossRef]
- Hu, C.; Hu, X.; Li, R.; Xing, Y. MOF Derived ZnO/C Nanocomposite with Enhanced Adsorption Capacity and Photocatalytic Performance under Sunlight. J. Hazard. Mater. 2020, 385, 121599. [Google Scholar] [CrossRef]
- Hong, Y.; Sun, S.; Sun, Q.; Gao, E.; Ye, M. Tuning Adsorption Capacity through Ligand Pre-Modification in Functionalized Zn-MOF Analogues. Mater. Chem. Phys. 2020, 243, 122601. [Google Scholar] [CrossRef]
- Mohan, A.J.; Katari, N.K.; Nagaraju, P.; Manabolu, S. ZIF-8, Zn(NA) and Zn(INA) MOFs as Chemical Selective Sensors of Ammonia, Formaldehyde and Ethanol Gases. Mater. Chem. Phys. 2020, 241, 122357. [Google Scholar] [CrossRef]
Element | Theoretically Calculated | Found C/H/N Elemental Analysis | EDX Analysis (Found) | |||
---|---|---|---|---|---|---|
Weight% | Atomic% | Net Int. | Error% | |||
Carbon | 40.180 | 39.960 | 40.000 | 53.250 | 55.430 | 2.370 |
Hydrogen | 5.760 | 5.950 | - | - | - | - |
Nitrogen | 6.830 | 6.820 | 6.570 | 7.360 | 2.820 | 3.670 |
Oxygen | 28.990 | - | 34.870 | 34.850 | 62.410 | 12.060 |
Zinc | 18.230 | - | 18.560 | 4.540 | 30.60 | 1.310 |
Method | Linear Detection Range | LOD | Reference |
---|---|---|---|
Electrochemiluminescence | 0.001–100.0 ng/mL | 440 fg/mL | [4] |
Nano Cu(II) complex biosensor | 0.005–10,000 pg/mL | 297 fg/mL | [10] |
Impedimetric immunosensor | 0.01–100 and 1–20,000 ng/mL | 5.4 pg/mL | [15] |
Voltammetry immunosensing platform | 0.75–100.0 ng/mL | 270 pg/mL | [8] |
Chemiluminescence resonance energy transfer (CRET) | 1.0–100 ng/mL | 600 pg/mL | [16] |
Electro chemiluminescent immunosensor | 0.001–80 ng/mL | 300 fg/mL | [26] |
Colorimetric aptasensor | 0.1–100 ng/mL | 20.0 pg/mL | [18] |
Fluorometric aptamer-based assay | 0.05–150 pg/mL | 43 fg/mL | [19] |
Cooperate signal amplifications strategy | 0.001–10,000 ng/mL | 30 fg/mL | [22] |
Photoelectrochemical immunosensor | 0.02 pg/mL–200 ng/mL | 6.8 fg/mL | [24] |
Sandwich-type electrochemical immunosensor | 1.0 pg/mL–100 ng/mL | 0.45 pg/mL | [25] |
Optical PL biosensor-based Zn-MOFs-NP | 0.1 to 0.2 fg/mL | 0.145 fg/mL | The present work |
Sample | Spiked PSA (fg/mL) | Found (fg/mL) | X | SD | RE % | R% | ||
---|---|---|---|---|---|---|---|---|
Serum samples | 1.0000 | 0.9520 | 1.0280 | 0.9420 | 0.974 | 0.0470 | 1.0270 | 97.400 |
100.00 | 101.13 | 96.90 | 95.200 | 97.74 | 3.0540 | 1.0340 | 96.740 | |
500.00 | 496.30 | 501.40 | 498.10 | 498.6 | 2.5870 | 1.0030 | 99.720 | |
1000.00 | 1007.7 | 1009.9 | 1018.0 | 1012 | 5.4240 | 0.9880 | 101.20 | |
2000.00 | 2002.6 | 2010.8 | 1992.0 | 2002.6 | 9.4250 | 0.9990 | 100.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sheikh, S.M.; Sheta, S.M.; Salem, S.R.; Abd-Elzaher, M.M.; Basaleh, A.S.; Labib, A.A. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor. Biosensors 2022, 12, 931. https://doi.org/10.3390/bios12110931
El-Sheikh SM, Sheta SM, Salem SR, Abd-Elzaher MM, Basaleh AS, Labib AA. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor. Biosensors. 2022; 12(11):931. https://doi.org/10.3390/bios12110931
Chicago/Turabian StyleEl-Sheikh, Said M., Sheta M. Sheta, Salem R. Salem, Mohkles M. Abd-Elzaher, Amal S. Basaleh, and Ammar A. Labib. 2022. "Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor" Biosensors 12, no. 11: 931. https://doi.org/10.3390/bios12110931
APA StyleEl-Sheikh, S. M., Sheta, S. M., Salem, S. R., Abd-Elzaher, M. M., Basaleh, A. S., & Labib, A. A. (2022). Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor. Biosensors, 12(11), 931. https://doi.org/10.3390/bios12110931