Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aptamer Preparation
2.2.1. Incorporation of Biotinylated dNTPs
2.2.2. Asymmetric Polymerase Chain Reaction (A-PCR)
2.2.3. Enzyme Digestion
2.3. Affinity Studies: Surface Plasmon Resonance (SPR)
2.4. Enzyme Linked Aptamer Assay (ELAA)
2.4.1. Evaluation of Biotinylated Aptamer
2.4.2. Competition Assay
2.5. Electrochemical Detection
2.5.1. Instrumentation
2.5.2. Functionalization of the Screen-Printed Electrodes
2.5.3. Evaluation of the Functionalized Screen-Printed Electrodes (SPEs)
2.5.4. Competition on Screen-Printed Electrodes
3. Results and Discussion
3.1. Aptamer Preparation: Incorporation of Biotinylated dNTPs
3.2. Evaluation of the Binding Affinity of the Biotinylated Aptamer
3.3. Evaluation of the Sensitivity of Biotinylated Aptamer Using an Enzyme-Linked Aptamer Assay (ELAA)
3.4. Competition Assay on Microtiter Plate: Enzyme-Linked Aptamer Assay (ELAA)
3.5. Electrochemical Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasegawa, H.; Savory, N.; Abe, K.; Ikebukuro, K. Methods for Improving Aptamer Binding Affinity. Molecules 2016, 21, 421. [Google Scholar] [CrossRef] [PubMed]
- Kalra, P.; Dhiman, A.; Cho, W.C.; Bruno, J.G.; Sharma, T.K. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front. Mol. Biosci. 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.N.; Carter, J.; Dalby, A.B.; Eaton, B.E.; Fitzwater, T.; et al. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PLoS ONE 2010, 5, e15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimoto, M.; Yamashige, R.; Matsunaga, K.-I.; Yokoyama, S.; Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 2013, 31, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Rohloff, J.C.; Gelinas, A.D.; Jarvis, T.C.; Ochsner, U.A.; Schneider, D.J.; Gold, L.; Janjic, N. Nucleic Acid Ligands with Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. Mol. Ther.-Nucleic Acids 2014, 3, e201. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2018, 37, 28–50. [Google Scholar] [CrossRef]
- Davies, D.R.; Gelinas, A.D.; Zhang, C.; Rohloff, J.C.; Carter, J.D.; O’Connell, D.; Waugh, S.M.; Wolk, S.K.; Mayfield, W.S.; Burgin, A.B.; et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. USA 2012, 109, 19971–19976. [Google Scholar] [CrossRef] [Green Version]
- Lapa, S.A.; Chudinov, A.V.; Timofeev, E.N. The Toolbox for Modified Aptamers. Mol. Biotechnol. 2015, 58, 79–92. [Google Scholar] [CrossRef]
- Gupta, S.; Hirota, M.; Waugh, S.M.; Murakami, I.; Suzuki, T.; Muraguchi, M.; Shibamori, M.; Ishikawa, Y.; Jarvis, T.C.; Carter, J.D.; et al. Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor. J. Biol. Chem. 2014, 289, 8706–8719. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, M.; Obika, S. In vitro selection of BNA (LNA) aptamers. Artif. DNA PNA XNA 2013, 4, 39–48. [Google Scholar] [CrossRef]
- Karlsen, K.K.; Wengel, J. Locked Nucleic Acid and Aptamers. Nucleic Acid Ther. 2012, 22, 366–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broker, T.R.; Angerer, L.M.; Yen, P.H.; Hershey, N.D.; Davidson, N. Electron microscopic visualization of tRNA genes with ferritin-avidin: Biotin labels. Nucleic Acids Res. 1978, 5, 363–384. [Google Scholar] [CrossRef] [Green Version]
- Sodja, A.; Davidson, N. Gene mapping and gene enrichment by the avidin-biotin interaction: Use of cytochrome-c as a polyamine bridge. Nucleic Acids Res. 1978, 5, 385–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, P.R.; A Waldrop, A.; Ward, D.C. Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 1981, 78, 6633–6637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigati, D.J.; Myerson, D.; Leary, J.J.; Spalholz, B.; Travis, S.Z.; Fong, C.K.; Hsiung, G.; Ward, D.C. Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 1983, 126, 32–50. [Google Scholar] [CrossRef]
- Leary, J.J.; Brigati, D.J.; Ward, D.C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc. Natl. Acad. Sci. USA 1983, 80, 4045–4049. [Google Scholar] [CrossRef] [Green Version]
- Gebeyehu, G.; Rao, P.Y.; Soochan, P.; Simms, D.; Klevan, L. Novel biotinylated nucleotide—Analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res. 1987, 15, 4513–4534. [Google Scholar] [CrossRef] [Green Version]
- Forster, A.C.; Mclnnes, J.L.; Skingle, D.C.; Symons, R.H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res. 1985, 13, 745–761. [Google Scholar] [CrossRef] [Green Version]
- Viscidi, R.P.; Connelly, C.J.; Yolken, R.H. Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization. J. Clin. Microbiol. 1986, 23, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Flickinger, J.; Gebeyehu, G.; Buchman, G.; Rashtchian, A. Differential incorporation of biotinylated nucleotides by terminal deoxynucleotidyl transferase. Nucleic Acids Res. 1992, 20, 2382. [Google Scholar] [CrossRef]
- Tasara, T.; Angerer, B.; Damond, M.; Winter, H.; Dörhöfer, S.; Hübscher, U.; Amacker, M. Incorporation of reporter molecule-labeled nucleotides by DNA polymerases. II. High-density labeling of natural DNA. Nucleic Acids Res. 2003, 31, 2636–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, N.; Yee, J. PCR incorporation of modified dNTPs: The substrate properties of biotinylated dNTPs. BioTechniques 2010, 48, 333–334. [Google Scholar] [CrossRef]
- Schmidt, B.F.; Chao, J.; Zhu, Z.; DeBiasio, R.L.; Fisher, G. Signal Amplification in the Detection of Single-copy DNA and RNA by Enzyme-catalyzed Deposition (CARD) of the Novel Fluorescent Reporter Substrate Cy3. 29-Tyramide. J. Histochem. Cytochem. 1997, 45, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vora, G.J.; Meador, C.E.; Anderson, G.P.; Taitt, C.R. Comparison of detection and signal amplification methods for DNA microarrays. Mol. Cell. Probes 2008, 22, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Vorwerk, S.; Ganter, K.; Cheng, Y.; Hoheisel, J.; Stähler, P.F.; Beier, M. Microfluidic-based enzymatic on-chip labeling of miRNAs. New Biotechnol. 2008, 25, 142–149. [Google Scholar] [CrossRef]
- Beier, M.; Boisguérin, V. Microfluidic Primer Extension Assay. In Next-Generation MicroRNA Expression Profiling Technology: Methods and Protocols; Fan, J.-B., Ed.; Humana Press: Totowa, NJ, USA, 2012; pp. 143–152. ISBN 978-1-61779-427-8. [Google Scholar]
- Ho, N.R.Y.; Lim, G.S.; Sundah, N.R.; Lim, D.; Loh, T.P.; Shao, H. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat. Commun. 2018, 9, 3238. [Google Scholar] [CrossRef] [Green Version]
- Plucnara, M.; Eksin, E.; Erdem, A.; Fojta, M. Electrochemical Detection of SNP in Human Mitochondrial DNA Using Cyclic Primer Extension with Biotinylated Nucletides and Enzymatic Labeling at Disposable Pencil Graphite Electrodes. Electroanalysis 2018, 30, 2321–2329. [Google Scholar] [CrossRef]
- Kortli, S.; Jauset-Rubio, M.; Tomaso, H.; Abbas, M.N.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.; Ben-Ali, M.; O’Sullivan, C.K. Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays. Anal. Chim. Acta 2020, 1112, 54–61. [Google Scholar] [CrossRef]
- Lin, D.; Mei, C.; Liu, A.; Jin, H.; Wang, S.; Wang, J. Cascade signal amplification for electrochemical immunosensing by integrating biobarcode probes, surface-initiated enzymatic polymerization and silver nanoparticle deposition. Biosens. Bioelectron. 2015, 66, 177–183. [Google Scholar] [CrossRef]
- Agarwal, S.; Warmt, C.; Henkel, J.; Schrick, L.; Nitsche, A.; Bier, F.F. Lateral flow–based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use. Anal. Bioanal. Chem. 2022, 414, 3177–3186. [Google Scholar] [CrossRef]
- Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Al Bawab, A.; Ismail, S.I. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. Molecules 2019, 25, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo-Gómez, R.; González-Robles, D.; Miranda-Castro, R.; De-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J. On the Electrochemical Detection of Alpha-Fetoprotein Using Aptamers: DNA Isothermal Amplification Strategies to Improve the Performance of Weak Aptamers. Biosensors 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.J.; Svobodová, M.; Mairal, T.; O’Sullivan, C.K. Surface plasmon resonance imaging (SPRi) for analysis of DNA aptamer:β-conglutin interactions. Methods 2016, 97, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.J.; Svobodova, M.; Mairal, T.; Schubert, T.; Künne, S.; Mayer, G.; O’Sullivan, C.K. β-Conglutin dual aptamers binding distinct aptatopes. Anal. Bioanal. Chem. 2015, 408, 875–884. [Google Scholar] [CrossRef]
- Jauset-Rubio, M.; Svobodová, M.; Mairal, T.; McNeil, C.; Keegan, N.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O.; O’Sullivan, C.K. Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers. Anal. Chem. 2016, 88, 10701–10709. [Google Scholar] [CrossRef] [Green Version]
- Jauset-Rubio, M.; del Río, J.S.; Mairal, T.; Svobodová, M.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O.; O’Sullivan, C.K. Ultrasensitive and rapid detection of β-conglutin combining aptamers and isothermal recombinase polymerase amplification. Anal. Bioanal. Chem. 2016, 409, 143–149. [Google Scholar] [CrossRef]
- Civit, L.; Fragoso, A.; O’Sullivan, C.K. Evaluation of techniques for generation of single-stranded DNA for quantitative detection. Anal. Biochem. 2012, 431, 132–138. [Google Scholar] [CrossRef]
- Svobodova, M.; Pinto, A.; Nadal, P.; Sullivan, C.K.O. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Anal. Bioanal. Chem. 2012, 404, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Cox, K.L.; Devanarayan, V.; Kriauciunas, A.; Manetta, J.; Montrose, C.; Sittampalam, S. Immunoassay Methods. 1 May 2012 [Updated 8 July 2019]. In Assay Guidance Manual [Internet]; Markossian, S., Grossman, A., Brimacombe, K., Markossian, S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C., Baell, J., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92434/ (accessed on 26 September 2022).
- Jalalian, S.H.; Karimabadi, N.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci. Technol. 2018, 73, 45–57. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauset-Rubio, M.; Ortiz, M.; O’Sullivan, C.K. Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. Biosensors 2022, 12, 972. https://doi.org/10.3390/bios12110972
Jauset-Rubio M, Ortiz M, O’Sullivan CK. Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. Biosensors. 2022; 12(11):972. https://doi.org/10.3390/bios12110972
Chicago/Turabian StyleJauset-Rubio, Miriam, Mayreli Ortiz, and Ciara K. O’Sullivan. 2022. "Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification" Biosensors 12, no. 11: 972. https://doi.org/10.3390/bios12110972
APA StyleJauset-Rubio, M., Ortiz, M., & O’Sullivan, C. K. (2022). Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. Biosensors, 12(11), 972. https://doi.org/10.3390/bios12110972