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Abstract: The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet
one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health
Organization further clarifies these standards with a set of criteria that has the acronym ASSURED
(Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable
to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to
REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific,
User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many
diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most
of them only detect a single target. With the progression of syndromic infections, coinfections
and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now
more important than ever. This review summarizes current diagnostic technologies for multiplexed
detection and forecasts which methods have promise for detecting multiple targets and meeting all
REASSURED criteria.
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1. Introduction

Clinical diagnostics are devices or methods that are used to detect biomarkers in
the genome, proteome and metabolome for diagnosis, subclassification, prognosis, sus-
ceptibility risk assessment, treatment selection, and response to therapy monitoring [1,2].
Biomarker analytes include nucleic acids, proteins, peptides, lipids, metabolites, and other
small molecules [3,4]. Diagnostic tests are generally carried out in central labs, clinics,
hospitals, doctors’ offices, and point-of-care (POC) settings. Thousands of diagnostic tests
have been developed over the years, with varying levels of complexity, turnaround time,
cost, and other factors. While diagnostics account for less than 5% of hospital costs and
~1.6% of all Medicare costs, they influence up to 60–70% of healthcare decision making [5].
There are several stakeholders in diagnostics, each with their own priorities: patients,
healthcare providers, payers, pharmaceutical companies, diagnostic device manufacturers,
local and international health organizations, governments, public health agencies, and
regulatory bodies [6,7].

In order to be FDA (Food and Drug Administration) approved, diagnostic tests need to
meet certain standards for analytical and clinical validation. Analytical validation assesses
the sensitivity, specificity, accuracy, and precision of the test. Clinical validation assesses the
ability of the test to achieve its intended aim. Diagnostic tests in hospitals or reference labs
are able to meet analytical and clinical standards for accuracy and performance because
complexity and cost are not an issue. It is much more difficult for point-of-care diagnostics,
however, which must also minimize cost and complexity in their design and manufacturing.
The World Health Organization Special Program for Research and Training in Tropical
Diseases (WHO/TDR) concluded, in a study in 2003, that POC diagnostics should meet
the ASSURED (Affordable, Sensitive, Specific, User-Friendly, Rapid, Equipment-Free,
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Delivered) criteria [8]. In 2006, the WHO/TDR further recommended the ASSURED
criteria as a benchmark to decide whether diagnostic tests address disease control needs [9].
The ASSURED criteria represent three main attributes that are significant for a diagnostic
test. These attributes are accessibility, affordability, and accuracy. While all three attributes
are important, it is very challenging for any diagnostic test to adequately possess all three.
The different stakeholders in diagnostics may have varying orders of priority among
the three attributes. Patients may want diagnostic tests that are first, affordable, second,
accessible, and third, accurate. Healthcare providers likely prefer accuracy, accessibility,
and then affordability. Governments may prioritize accessibility over affordability and
accuracy. Manufacturers of diagnostics that are maximizing profits probably emphasize
accessibility, accuracy, and then affordability.

In the face of the SARS-CoV-2 pandemic, the role and importance of diagnostics has
become increasingly apparent. Diagnostics help to track, contain, and control the spread of
infectious diseases. Several diagnostic tests were developed in the wake of the SARS-CoV-2
pandemic [10–13], which guided the formulation and implementation of measures that
were used to protect the public, find new variants, track the disease, and slow its spread.
Diagnostics have also played a major role in non-infectious diseases. Early detection of
biomarkers of cancer, cardiovascular disease and metabolic diseases, such as diabetes and
hypertension, have reduced the mortality rate of humans over the years [14–17].

1.1. Multiplexed Diagnostics

Multiplexing is the process of simultaneously detecting or identifying multiple biomark-
ers in a single diagnostic test, which can be valuable for several different types of diseases.
For example, pharmacogenomic studies in patients with cardiovascular disease have indi-
cated that the presence of polymorphisms affects patients’ response to various drugs [18].
Therefore, the multiplex detection of relevant biomarkers will not only provide insight
of the pathophysiology of cardiovascular disease, but also provide a guide for the most
efficient treatment option. Most cancers have biomarkers in common with other cancers,
hence detecting multiple biomarkers is needed for the accurate differentiation of cancer
types or location [19,20]. Hermann et al. [21] demonstrated that several biomarkers are
significantly elevated in breast cancer patients versus patients with benign breast tumor
disease. The multiplexed detection of these biomarkers enables oncologists to accurately
diagnose their patients and select the appropriate therapy, thus improving patient outcomes
and decreasing healthcare costs. Cytokines are important in the mediation of immune
responses, such inflammation and mobilization of immune cells [22]. They are secreted by
different cell types and are very diverse [23]. Multiplexed detection of cytokines is key to
the better understanding of the immune response. Abdullah et al. [24] demonstrated that
multiplexed detection of cytokines was important to understand whether neural stem cell
rosette morphologies had an impact on the profile of cytokine signals and therefore had
different outcomes in neurodegenerative disease cell therapies.

Infectious disease is another area where multiplexed diagnostics are extremely valu-
able. Most infectious diseases, such as urinary tract infections and respiratory infec-
tions, have multiple causative pathogens, but the resulting symptoms do not indicate the
causative pathogen. On the other hand, different types of infections that have shared
symptoms could be misdiagnosed or incompletely diagnosed. For example, SARS-CoV-2
and influenza A or B present with many of the same symptoms and clinical features [25,26].
Studies show that there is the prevalence of influenza coinfection among people with
SARS-CoV-2 is 0.4% in the United States of America and 4.5% in Asia [27]. In a case study
of 1986 patients that presented with Severe Acute Respiratory Infection (SARI), 14.3%,
8.8% and 0.3% had SARS-CoV-2, influenza and SARS-CoV-2/influenza coinfection, respec-
tively [28]. In another study, 40% of a cohort of Kenyans who sought treatment for fever
were presumed to have malaria and received malaria medicines even though they actually
had HIV [29]. Incomplete diagnosis of infectious disease leads to inefficient treatments by
exposing some pathogens to sub-lethal doses or the wrong antibiotics. This contributes



Biosensors 2022, 12, 124 3 of 16

to the emergence of antimicrobial resistance and recurrent infections as well as persistent
secondary infections [30,31]. The last two classes of antibiotics were discovered in 1987
and 2004 [32], and since then, we are in a period of discovery void while there is rapid
emergence of antimicrobial pathogens to the antibiotics that currently exist (Figure 1).
According to O’Neil [33], 10 million people will die annually due to antimicrobial resistance
(AMR) by 2050. Furthermore, AMR-related costs and the associated loss of productivity
amount to about USD 55 billion annually in the U.S. alone [34]. Better diagnostics and
treatment for tuberculosis could save 770,000 lives over the course of 2015 to 2025 [33],
while a malaria test could save ~2.2 million lives and prevent ~447 million unnecessary
treatments per year [35]. The introduction of antibiotics increased the average lifespan of
humankind by 23 years since the first introduction of antibiotics, thus showing the drastic
consequences if we were to lose the use of antibiotics that we currently have [32]. Another
instance where multiplexing is crucial is the diagnosis of blood infections. Sepsis resulting
from blood infections can be caused by many pathogens and becomes increasingly fatal
over time, with mortality increasing by 7.6% for every hour that passes without receiving
the correct antibiotic [36]. Accurately identifying which pathogen(s) is responsible for
the blood infection is therefore a race against time to start the antibiotic therapy before
sepsis becomes fatal [37]. The diagnosis of infections should therefore be approached by
syndromic diagnosis, wherein all the potential pathogens for an infection or symptom
are investigated rather than tested for just the most likely pathogen and then conduct-
ing other tests if negative [38,39]. Multiplexed diagnostic tests—wherein one sample is
simultaneously tested for multiple pathogens in the same device—are essential for blood
infections nowadays and important to combat AMR for all types of infections in the future.
A query on the PubMed database of the National Center for Biotechnology Information
(NCBI) suggests that researchers have become increasingly more interested in multiplex
diagnostics (Figure 2).
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Figure 2. Annual publications related to diagnostics compared to annual publications related
to multiplex diagnostics from 1950 to 2021 from the PubMed database (National Center for
Biotechnology Information).

1.2. REASSURED Diagnostics

Considering the advances in digital technology and mobile health, a new REAS-
SURED (Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific,
User-Friendly, Rapid and Robust, Equipment free or simple Environmentally friendly,
Deliverable to end-users) framework has been proposed as the benchmark for diagnostic
systems [40]. The diagnosis of a disease is just the first step. The information from the
diagnosis results needs to be used to inform actionable steps to treat or manage the disease.
In a remote setting where a healthcare professional is not readily accessible, real-time
connectivity provides the avenue to transmit the results to the healthcare professional for
medical advice. Furthermore, having a reader that can provide the results of a diagnostic
test is important especially in ambiguous cases where there is uncertainty due to variation
in the interpretation of the results. A reader will serve as a standardized way to state the
results of the diagnostic test [41–43].

The development of diagnostic tests that meet all the ASSURED criteria, but uses
hard-to-obtain samples, such as venous blood, will not be very helpful in the absence of a
trained professional to obtain the sample. It is therefore very crucial that, when possible,
diagnostic tests should be developed to use easy-to-obtain and non-invasive samples, such
as finger pricks, nasal or oral swabs, or urine samples.

While all the elements of the REASSURED criteria are important for POC diagnostics,
it is challenging for any diagnostic device to embody all of these elements and trade-
offs are often made in one or more elements to achieve other elements. For instance,
nucleic acid testing (NAT) is very sensitive and specific, but often requires purification or
isolation of the nucleic acid, concentration of the nucleic acid, amplification, and detection
of the nucleic acid [44–46]. These processes can be achieved through user steps or by
the introduction of equipment components that can execute them. On the other hand,
antigen-based diagnostics, such as a lateral flow assay, are not as sensitive and specific as
NAT, but are far more user-friendly, affordable, rapid, and deliverable [47]. In these two
scenarios, some degree of sensitivity and specificity could be traded for the affordability,
user-friendliness, and equipment complexity of the diagnostic test by detecting antigens
instead of nucleic acids.
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Naseri et al. [48] have summarized POC devices based on lateral flow assays (LFAs)
and paper-based analytical devices (PADS) technology that were developed in the last
10 years for common human viral infection diagnostics. Dincer et al. [49] presented a
survey of the existing multiplexed POC tests in academia and industry, while Kim et al. [50]
summarized current POC tests for multiplex molecular testing of syndromic infections;
however, these reviews focused mainly on POC diagnostics rather than summarizing
devices that meet REASSURED criteria. In this paper, we present the current state of
multiplexed diagnostic technology that meet REASSURED criteria based on an in-house
developed scoring scheme. This review summarizes multiplexed diagnostics in three
categories: (i) clinically used, (ii) in academia or research only, and (iii) next-generation
technology. We then discuss the limitations in developing multiplexed REASSURED
diagnostics, present current gaps in technology, and describe the needs for future research
and development. For the purpose of this review, clinical diagnostics refer to diagnostics
that have been approved by the FDA (including Emergency Use Authorization) or have a
CE marking and are available for patient diagnosis.

2. Clinically Available Multiplexed Diagnostics
2.1. Proteins and Peptides

Multiplex detection of select protein or peptide biomarkers in human samples, such
as blood, serum, saliva and urine for clinical diagnosis, while very important, presents
with a challenging puzzle: human samples typically have a myriad of diverse proteins
and peptides [51], only some of which are the protein of interest. Accurately differenti-
ating the select protein biomarkers out of the matrix is challenging due the occurrence
of cross-reactivity [52]. The advancement in technology has made it possible for some
immunoassays to be adapted to the point-of-care setting for multiplex peptide and pro-
tein biomarker detection. LFAs use a variety of detection techniques, such as fluorescent
immunoassays (FIA), chemiluminescence immunoassay [53] and colorimetric immune
assays [54], for the detection of protein and peptide biomarkers. While LFAs have lower
sensitivity compared to molecular diagnostic tests [55], they are rapid and relatively cheaper
to fabricate compared to other diagnostics [56]. LFAs were the first tests that meet the
WHO ASSURED criteria [47,57]. They are typically equipment free or are accompanied
by a simple reader with a digital interface. When immunoassays, such as LFAs, have a
colorimetric read-out, the interpretation of the results is subjective to the person who is
reading the results. This may be problematic in cases where the biomarkers being detected
are present in low concentrations. Utilizing a simple reader in conjunction with these LFAs
will promote an objective and a more accurate interpretation of the results. This will also
enable the LFAs to satisfy the REASSURED criteria.

Enzyme-Linked Immunosorbent Assays (ELISAs) are a highly sensitive method for the
detection of protein and peptide biomarkers. ELISAs are very prone to interferences [58],
which pose challenges to developing a multiplex test. This challenge is overcome through
the use of spatial multiplexing approaches, such as wells and microarrays [59,60]. To avoid
false positive tests as a result of non-specific interactions, there are multiple wash steps in
ELISA assays. The automation of ELISAs for adaption to the POC and limited resource
settings is therefore challenging because complex equipment components are required for
fluid handling to execute wash steps. Furthermore, to avoid false negative tests, there
are lengthy incubation periods in ELISA assays. It is therefore very challenging to adapt
ELISAs for point-of-care diagnostics that fit the REASSURED criteria.

The BinaxNOW influenza A and B card 2 developed by Abbott is a multiplex im-
munochromatographic LFA that is able to provide rapid differential diagnosis of influenzas
A and B infection [61]. This test is designed to be read by the DIGIVAL reader for result
interpretation. The DIGIVAL reader is portable and battery powered, making it suitable for
limited resource settings. Becton and Dickinson’s (BD) Veritor™ Flu A + B with analyzer
distinguishes between influenzas A and B as well. The BD test analyzer is palm sized and
battery powered and hence suitable for use at remote and limited resource settings [62].
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Acucy influenza A and B test developed by Sekisui diagnostics comes with a portable
battery-powered reader as well [63]. Quidel’s Sofia 2 Flu + SARS antigen FIA test is a
multiplex fluorescent immunoassay for the detection of and differentiating SARS-CoV-2,
influenzas A and B [64]. The Sofia 2 reader is portable, but it is not battery powered. It is
suitable for point-of-care settings, but it may not be fitting for a remote or limited resource
setting. There appears to be a trend of LFA diagnostics being accompanied by readers and
real-time connectivity [41–43], hence rapidly adapting and meeting the REASSURED criteria.

2.2. Nucleic Acids

Polymerase chain reaction (PCR) is the gold standard amplification method for molec-
ular diagnostic assays for clinical use. PCR-based diagnostics assays are robust and can use
crude samples, such as blood [65]. The key obstacle preventing PCR NATs from meeting all
of the ASSURED criteria is that multiple temperatures are required for the amplification of
target NAs. Device components that can perform thermal cycling are therefore necessary
when developing a PCR-based diagnostic device. It is also challenging to develop multiplex
PCR diagnostics. The existence of multiple primers for multiple targets increases the rate
of formation of primer dimers, which then leads to non-specific amplification [66]. There
is therefore a need for the stringent optimization of reaction conditions and parameters
in order to achieve a multiplex PCR [67]. On the other hand, isothermal amplification,
such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase
amplification (RPA), do not require thermal cycling [68,69]. The sensitivity of LAMP is not
affected when the nucleic acid sample is impure and has other crude components, such as
proteins and other cellular components [70]. However, a LAMP reaction requires four to six
primers for each target, and hence poses a challenge when multiplexing due the occurrence
of non-specific amplification [69,71].

The Accula dock developed by Mesa Biotech (now a part of Thermo Fisher Scien-
tific (Waltham, MA, USA.)) is a portable sample-to-answer molecular diagnostic device
that uses Mesa Biotech’s proprietary PCR technology OSCillating amplification reaction
(OSCAR) [72]. The Accula systems operates with a test cassette in which the multiplexed
nucleic acid detection occurs. The Accula Flu A and Flu B is CLIA waived the multiplexed
test for the detection of influenzas A and B, and the device has a 510K FDA clearance [73].
The disposable test cassette together with the dock are a portable system that checks nearly
all the criteria for REASSURED diagnostics.

The Visby Medical Sexual Health (Figure 3A) developed by Visby Medical is a hand-
held device that is capable of a rapid multiplexed PCR for the detection of Chlamydia
trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis [74]. The Visby Medical Sexual
Health device recently received CLIA waiver and FDA clearance. The device is a disposable
sample-to-answer diagnostic, which makes it adaptable for point-of-care testing and in
remote settings. Visby medical’s diagnostic device can be adaptable to any form of mul-
tiplexed molecular diagnostic test, as the Visby Medical COVID-19 test has been granted
Emergency Use Authorization (EUA) by the FDA for use by authorized labs [75].

Biomeme’s Franklin three9 is a rechargeable battery-operated mobile thermocycler that
is capable of conducting a multiplexed detection of nucleic acids and is adaptable to limited
resource settings. It is capable of PCR, (Reverse Transcriptase) RT-PCR, (quantitative)
qPCR and isothermal amplification. Franklin is not a sample-to-answer platform as it
requires upstream steps sample preparation. However, the sample preparation steps can be
achieved in about 1–2 min using Biomeme’s M1 sample-prep cartridge kits. The Franklin
system has Bluetooth and a wireless connection capability and is accompanied by an
intuitive companion mobile app that facilitates wireless programing and managing of
experiments. The Franklin three9 is capable of simultaneously testing nine samples with
three targets each [76].
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2.3. Small Molecules, Lipids, and Other Biomarkers

CardioChek PA Analyzer by PTS Diagnostics is a portable handheld diagnostic device
that is battery operated. It works in conjunction with panels test strips to measure single
and multiplex analytes. The CardioChek PA analyzer and test strips can measure total
cholesterol, high density lipoproteins, triglycerides and glucose and provide results in
45 to 90 s. The test strips are stable at room temperature [77].

Curofit’s Curo L7 m (Figure 3B) is capable of multiplex runs with up to six simultane-
ous tests with a cholesterol test strip. The device is handheld and battery-powered and is
able to deliver results directly from sample. The Curo L7 m is suitable for point-of-care and
low resource settings [78].

3. Multiplexed Diagnostics in Research or Academia
3.1. Proteins and Peptides

There are many multiplex immunoassays (MIAs) under development and only a few
have been commercialized [79]. Chen et al. [80] demonstrated the use of a smartphone camera
for reading ELISA-on-a-chip assays (Figure 4C). Berg et al. [59] published a cellphone-based
hand-held microplate reader (Figure 4A) that used optical fibers to transmit data from ELISA
plates to a cell-phone camera for diagnostics at the point of care. Mobile-phone-based ELISA
(MELISA) is a portable system published by Zhdanov et al. [60] (Figure 4D). It is a miniature
version of ELISA that is capable of executing all ELISA steps as well as providing a phone-
based read-out of the results. The MELISA system has multiple reaction wells and has
the potential to developed into a multiplexed system. According to the publishers, the
total assembly of the MELISA system cost about USD 35. The system does not require
any complex instrumentation; however, it uses plasma and hence requires an upstream
sample preparation step. Ghosh et al. [81] described a microchannel capillary flow assay
that detected malaria by a smartphone-assisted chemiluminescence-based ELISA. Perhaps,
mobile phone-based ELISA platforms are the future direction for REASSURED diagnostics
for protein and peptide biomarker detection.

https://www.visbymedical.com/resources/press-kit/
https://www.visbymedical.com/resources/press-kit/
https://curofit.com/
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3.2. Nucleic Acids

Shu et al. [82] proposed rapid multiplexed molecular diagnostic system dubbed flow
genetic analysis system (FGAS) that is capable of conducting quantitative detection of
nucleic acids (Figure 4B). FGAS is portable and battery powered, making it suitable for low
resource settings. It is coupled with a smartphone, which is used for fluorescent imaging.
RespiDisk (Figure 4E) is a fully automated multiplex molecular diagnostic device for
respiratory tract infections [83]. The platform is based on RT-PCR and capable of automated
sample-to-answer analysis, with a turnaround time of 3 h and 20 min. The RespiDisk system
operates by centrifugal microfluidics. An Internet of things (IoT)-based diagnostic device is
presented by Nguyen et al. [84] (Figure 4F). This platform is accompanied by an integrated
microfluidic chip that is capable of running a multiplexed reverse-transcriptase LAMP
(RT-LAMP) reaction. In addition, this battery-powered portable device has optical detection
capability and was able to accurately detect SARS-CoV-2 from clinical samples in 33 min.
The advanced IoT based device can be operated with a smartphone and provides real-time
data to the user. It is capable of sample-to-answer analysis and hence there are only few
user steps. Carter et al. [85] presented a multiplex lateral flow microarray platform for the
detection nucleic acids. This platform combined the desirable qualities of an isothermal
nucleic acid test (high sensitivity, high specificity, and no thermal cycling) with the best
qualities LFAs (inexpensive, rapid, and equipment-free).

4. Next Generation Multiplex Diagnostics

The development of microfluidics and nanofluidics has inspired the emergence of several
miniaturized platforms, such as lab-on-a-chip and lab-on-a-disk. These platforms present the
capabilities of molecular-scale sensitivity on low-cost and rapidly fabricated devices [86–88].
However, the adoption of these platforms into clinical diagnostics are yet to be realized.
Yeh et al. [89] presented a microfluidic chip called SIMPLE (Self-powered Integrated Microflu-
idic Point-of-care Low-cost Enabling). The SIMPLE chip is portable and completely integrated,
allowing the accurate quantitative detection of nucleic acids from whole blood in 30 min. The
emergence of microfluidic technologies propelled the development of digital PCR (dPCR).
dPCR offers advantages, such as excellent precision [90], single copy detection, high sensitivity
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and absolute quantification [91]. Droplet microfluidics [92–94] and microarray [95,96] are
some of the techniques used to achieve multiplexing by dPCR. While not able to meet all
REASSURED criteria, some dPCR techniques show potential by using a mobile phone for
detection and using simple fluid handling methods [97,98]. While very promising, the
development and commercialization of microfluidic platforms are hindered by setbacks,
such as the high cost and complexity of manufacturing on large scale, and challenges of
integration from sample to answer [99,100].

In recent years, a number of studies are migrating towards the application of CRISPR/Cas
systems for multiplex molecular diagnostics [101–104]. Gootenberg et al. [102] presents
SHERLOCKv2, a multiplex platform for nucleic acid detection with high sensitivity and
specificity and is integrated with a lateral flow read out. This presents the potential for
SHERLOCKv2 to be developed into a multiplex and portable platform for diagnostics.
Recently, Ackerman et al. [105] proposed a high throughput multiplex nucleic acid detection
microarray system called CARMEN-Cas13. The high sensitivity and specificity of CARMEN
combined with its incredibly high throughput, endows it with the potential of being the
ultimate point of care diagnostic device when integrated with upstream sample preparation
and concentration steps. Rezaei et al. [106] recently developed a portable device for the
screening of SARS-CoV-2 by RT-LAMP and followed by CRISPR/Cas12a reaction and
FAM-biotin system to give a fluorescent readout in a LFA. The device is semiautomated
and battery operated. It has the potential for multiplexing and is able to produce results in
about an hour. Yi et al. presented a similar system termed CRICOLAP for the detection of
SARS-CoV-2 and also employs an amplification step by RT-LAMP, which is followed by a
CRISPR/Cas12a collateral cleavage system for target recognition [107]. The paper reports a
real-time parallel fluorescent readout system.

In the current digital age, next-generation diagnostics are combined with machine
learning capabilities for high throughput and highly accurate results. Ballard et al. [108]
demonstrated a multiplexed paper-based Vertical Flow Assay (VFA) platform that used a
deep learning-based framework for sensing and quantifying high sensitivity C-Reactive
Protein. This platform represents a low-cost device that can be adapted for molecular
diagnostics at the POC and low resource settings. Machine-learning-assisted dPCR has
also improved diagnostic outcomes as demonstrated by Liu [109] and Miglietta [110].

5. Discussion

In the REASSURED scoring scheme (Table 1), LFAs with an in-built or a combined
reader had low sensitivity and specificity scores compared to molecular diagnostics, but
they had high overall scores. LFAs have been widely adopted for rapid diagnostics for
decades and while they are more affordable and simpler to develop and/or use, they do
not have good sensitivity and have low multiplex capacity. Most LFAs can only multiplex
two or three types of biomarkers. The limitations to multiplexing capability of LFAs
are due to technical and operational challenges, such cross-reactivity and selection of
appropriate diluents [56,111]. Most proteins or peptides have unique charges and pH
and hence, unique isoelectric points in different buffer conditions. There is therefore a
challenge of selecting the appropriate buffer for the select protein and peptide biomarkers to
multiplexed. In infectious diseases, acquired immune responses do not occur until several
days after exposure, and the antibodies linger in the body for days after the pathogen has
been cleared [112]. This makes it difficult for LFAs to distinguish between an active and
inactive infection.

The reviewed molecular diagnostics demonstrated much higher multiplex capacity
compared to the LFAs. Molecular diagnostics are easier to multiplex than LFAs because
biomarker recognition is achieved through the highly specific complementary hybridization
of primers and/or probes. The quest to bring molecular diagnostic devices to the point-of-
care setting has led to an increased focus on the miniaturization of the test systems. A major
challenge that is often encountered by the miniaturization of the molecular diagnostic test
platforms is the integration of sample preparation steps. Sample preparation include steps
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for isolation, purification, and concentration of nucleic acids from crude samples, such as
blood and saliva. While the execution of these steps increases the sensitivity and specificity
of molecular diagnostics, they are a major driver in the cost and complexity of these devices.
Molecular diagnostics that have in-built readers or connectivity to smartphones were
completely integrated from sample to answer, and handheld and battery-powered devices
generally scored the highest points on the multiplexed REASSURED scoring scheme.

Table 1. REASSURED scores of 9 clinically available multiplex diagnostics. The scoring was assigned
on a 1 to 3 scale based on developed criteria (Supplementary Materials, Table S1). The total score was
obtained by finding the average score across all elements of REASSURED and dividing by 3.

Test (Multiplex Capacity) R E A S S U R E D Score

Accula dock Flu A/
Flu B Test (2) 3 3 1 2 2 3 3 1 3 78%

Visby Medical Sexual
Health (3) 3 3 - 3 3 3 3 3 3 100%

Franklin three9
COVID-19 (27) 3 3 3 3 3 1 3 3 3 93%

Binax Now Influenza
A & B with DIGIVAL (2) 3 3 1 1 2 3 3 3 3 81%

BD Veritor™ Flu A + B
with analyzer (2) 3 3 2 1 3 3 3 3 3 89%

Sofia® 2 Flu + SARS
antigen FIA (3)

3 2 1 1 2 3 3 3 3 81%

Acucy influenza A and B (2) 3 3 2 1 3 3 3 3 3 89%

CardioChek PA Analyzer
with CHOL + HDL + GLU

Panel (3)
3 3 3 - - 3 3 3 3 100%

CuroL7 (6) 3 3 3 - - 3 3 3 3 100%

There is a need for technology that is highly accurate, but also is affordable and accessi-
ble, especially in the developing world. Such a technology will not only help to address the
need for increased access to diagnostics, but also ensure endemic and pandemic prepared-
ness for the future. More funds need to be allocated to the development of multiplexed
REASSURED diagnostics through funding by research and academic institutions and the
incentivizing of research and development efforts of industry.

Point-of-care diagnostics development should gravitate towards more syndromic
test panels, such as respiratory infection panels, urinary tract infection panels, blood
protein panel and STI panels. Multiplexed panel measurements rather than single panel
measurements are important because they facilitate the efficient and effective diagnosis of
syndromic infections, accurately indicate the correct antibiotic or treatment, and minimize
the number of tests that need to be run to diagnose coinfections.

Novel technologies in development that meet the REASSURED criteria should be
incentivized by governments and international organizations to bring them to the market.
Gene Xpert Omni, unveiled by Cepheid in 2015 and dubbed as the world’s most portable
molecular diagnostic system, was predicted to decentralize and increase access to TB
diagnosis [113,114]. However, the commercialization plans for the Gene Xpert Omni were
aborted, and Cepheid has received petitions to reinstate the plan to commercialize the
diagnostic system [115,116]. The development of the Cepheid’s Gene Xpert systems was
supported by the Foundation for Innovative New Diagnostics (FIND) and the National
Institutes of Health (NIH), among other investors [117]. According to Gotham et al., FIND
is currently evaluating the Gene Xpert Omni, and it is expected to be commercially available



Biosensors 2022, 12, 124 11 of 16

in 2022 [117]. Cost is still an issue, however, as the lowest cost of the GeneXpert instrument
is USD 11,530 [118] and the per test cost averaged USD 21 [119].

An ideal diagnostic case for SARS-CoV-2/Flu A & B would be a test of ≤ USD 1
that can simultaneously detect and differentiate between SARS-CoV-2/Flu A & B RNA in
15 to 60 min with a sensitivity and specificity of >98%. This test would have ≤2 user steps,
all reagents prepackaged within, be equipment-free (or operated by a simple, portable, and
handheld device ≤USD 10), be made of environmentally friendly material, and disposable.
Moreover, the device, test and its reagents would be stable at room temperature with a
shelf-life of about a year. Finally, if a device is necessary beyond the disposable test itself,
it would be battery or solar powered, and able to transmit results remotely or by USB
connection to a mobile phone. While this ideal use case is for differentiating SARS-CoV-2
from Influenza A/B, a similar multiplexed and inexpensive test would help greatly with
other infections, such as UTIs, blood infections, and diarrheal disease [120,121]. Cancer
resistance genes identification, cardiovascular disease prognosis, cytokines profiling, and
epigenetic modification profiling are other areas where multiplex detection of biomarkers
will be invaluable [18,24,122–124].

Lateral flow assays meet the standards for affordability and accessibility, so improving
their accuracy could be the answer. Molecular tests already have high accuracy, so a
different approach would be adapting molecular tests into a REASSURED format and
decreasing their cost/complexity. While there is currently no such diagnostic device,
the rapid emergence of new technology, such as machine-learning-assisted diagnostics,
CRISPR-based diagnostics and nanofluidic technology, places such ideals within reach with
further research and innovation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12020124/s1, Table S1: Scoring scheme for assessing diagnostics
on the REASSURED criteria. The scoring ranges from 3 to 1, 3 being the highest score and 1 being
the lowest score; Table S2: Scoring scheme of clinical diagnostics on the REASSURED criteria [125].
Averages were calculated from the scores of the individual elements of the REASSURED criteria.
The Overall score was calculated by expressing the average score as a percentage of 3, the highest
achievable average score (Reference [125] is cited in the supplementary information under Table S2).
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