Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application
Abstract
:1. Introduction
2. Preparation of MoS2-Based Nanoprobes
2.1. Physical Interaction
2.2. Chemical Interaction
2.3. Noble Metal Nanoparticles-Mediated
3. MoS2-Based Nanoprobes for Sensing Applications
3.1. Electrochemical Sensors
3.2. ECL Sensors
3.3. Colorimetric Sensors
3.4. SERS Sensors
3.5. Fluorescence Sensors
3.6. SPR Sensors
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, H.; Lin, H.; Guo, Z.; Lu, J.; Jia, Y.; Ye, M.; Su, F.; Niu, L.; Kang, W.; Wang, S.; et al. A Multiple Signal Amplification Sandwich-Type SERS Biosensor for Femtomolar Detection of miRNA. Biosens. Bioelectron. 2019, 143, 111616. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhang, S.; Fang, X.; Kong, J. Double Signal Amplification Strategy for Ultrasensitive Electrochemical Biosensor Based on Nuclease and Quantum Dot-DNA Nanocomposites in the Detection of Breast Cancer 1 Gene Mutation. Biosens. Bioelectron. 2019, 142, 111544. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, H.; Xu, J.; Huang, Y.; Zhang, X.; Weng, J.; Li, Z.; Sun, L. Ultrasensitive Colorimetric Biosensor for Brca1 Mutation Based on Multiple Signal Amplification Strategy. Biosens. Bioelectron. 2020, 166, 112424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Luo, F.; Qiu, B.; Guo, L.; Weng, Z.; Lina, Z.; Chen, G. An Electrochemiluminescence Biosensor for Kras Mutations Based on Locked Nucleic Acid Functionalized DNA Walkers and Hyperbranched Rolling Circle Amplification. Chem. Commun. 2017, 53, 2910–2913. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Qiao, B.; Li, F.; Pan, L.; Chen, D.; Cao, Y.; Tu, J.; Wang, X.; Lv, C.; Wu, Q. A Novel Electrochemical Biosensor for Ultrasensitive Hg2+ Detection via a Triple Signal Amplification Strategy. Chem. Commun. 2021, 57, 619–622. [Google Scholar] [CrossRef]
- Aithal, S.; Mishriki, S.; Gupta, R.; Sahu, R.P.; Botos, G.; Tanvir, S.; Hanson, R.W.; Puri, I.K. SARS-Cov-2 Detection with Aptamer-Functionalized Gold Nanoparticles. Talanta 2022, 236, 122841. [Google Scholar] [CrossRef]
- Ma, X.; Song, S.; Kim, S.; Kwon, M.-s.; Lee, H.; Park, W.; Sim, S.J. Single Gold-Bridged Nanoprobes for Identification of Single Point DNA Mutations. Nat. Commun. 2019, 10, 836. [Google Scholar] [CrossRef] [Green Version]
- Bakirhan, N.K.; Ozcelikay, G.; Ozkan, S.A. Recent Progress on the Sensitive Detection of Cardiovascular Disease Markers by Electrochemical-Based Biosensors. J. Pharm. Biomed. Anal. 2018, 159, 406–424. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Dempsey-Hibbert, N.C.; Peeters, M.; Tridente, A.; Banks, C.E. Molecularly Imprinted Polymer Based Electrochemical Biosensors: Overcoming the Challenges of Detecting Vital Biomarkers and Speeding up Diagnosis. Talanta Open 2020, 2, 100018. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Review on Electrochemical Sensing Strategies for C-reactive Protein and Cardiac Troponin I Detection. Microchem. J. 2020, 156, 104857. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, H.; Wang, Z.; Cao, H.; Zhang, K.; Li, X.; Yang, Z. Nanomaterial-Based Aptamer Sensors for Arsenic Detection. Biosens. Bioelectron. 2020, 148, 111785. [Google Scholar] [CrossRef] [PubMed]
- Nezami, A.; Dehghani, S.; Nosrati, R.; Eskandari, N.; Taghdisi, S.M.; Karimi, G. Nanomaterial-Based Biosensors and Immunosensors for Quantitative Determination of Cardiac Troponins. J. Pharm. Biomed. Anal. 2018, 159, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, F.; Guo, X.; Chen, W.; Dong, C.; Zhang, J.; Zhang, J.; Wang, L. Gold Nanostars for Cancer Cell-Targeted SERS-Imaging and NIR Light-Triggered Plasmonic Photothermal Therapy (PPTT) in the First and Second Biological Windows. J. Mater. Chem. B 2019, 7, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, J.; Sun, Y.; Jiang, X.; Zhang, J.; Dong, C.; Wang, L. Colorimetric/SERS Dual-Mode Detection of Mercury Ion via SERS-Active Peroxidase-Like Au@AgPt NPs. Sens. Actuators B Chem. 2020, 310, 127849. [Google Scholar] [CrossRef]
- Sui, C.; Yin, H.; Wang, L.; Zhou, Y.; Ai, S. Electrochemiluminescence Biosensor for DNA Hydroxymethylation Detection Based on Enzyme-Catalytic Covalent Bonding Reaction of -CH2OH and Thiol Functionalized Fe3O4 Magnetic Beads. Biosens. Bioelectron. 2020, 150, 111908. [Google Scholar] [CrossRef]
- Li, F.; Pei, H.; Wang, L.; Lu, J.; Gao, J.; Jiang, B.; Zhao, X.; Fan, C. Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. Adv. Funct. Mater. 2013, 23, 4140–4148. [Google Scholar] [CrossRef]
- He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453–459. [Google Scholar] [CrossRef]
- Liu, X.; Ge, J.; Wang, X.; Wu, Z.; Shen, G.; Yu, R. Development of a Highly Sensitive Sensing Platform for T4 Polynucleotide Kinase Phosphatase and Its Inhibitors Based on WS2 Nanosheets. Anal. Methods 2014, 6, 7212–7217. [Google Scholar] [CrossRef]
- Qi, C.; Cai, S.; Wang, X.; Li, J.; Lian, Z.; Sun, S.; Yang, R.; Wang, C. Enhanced Oxidase/Peroxidase-Like Activities of Aptamer Conjugated MoS2/PtCu Nanocomposites and Their Biosensing Application. RSC Adv. 2016, 6, 54949–54955. [Google Scholar] [CrossRef]
- Du, C.; Shang, A.; Shang, M.; Ma, X.; Song, W. Water-Soluble VS2 Quantum Dots with Unusual Fluorescence for Biosensing. Sens. Actuators B 2018, 255, 926–934. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Wang, H.; Wang, Z.; Wang, W.; Ajmal, M.; Xiao, F.; Chen, X.; Liu, H. Superlattice Stacking by Hybridizing Layered Double Hydroxide Nanosheets with Layers of Reduced Graphene Oxide for Electrochemical Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid. Microchim. Acta 2019, 186, 61. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Li, J.; Ren, S.; Su, S.; Wang, L. Construction and Application of DNA-Two-Dimensional Layered Nanomaterials Sensing Platform. Acta Chim. Sin. 2019, 77, 1230–1238. [Google Scholar] [CrossRef]
- Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Man, T.; Zhu, C.; Pei, H.; Shi, J.; Li, L.; Qu, X.; Shen, X.; Li, J. MoS2 Nanoprobe for MicroRNA Quantification Based on Duplex-Specific Nuclease Signal Amplification. ACS Appl. Mater. Interfaces 2018, 10, 7852–7858. [Google Scholar] [CrossRef]
- Kaushik, S.; Tiwari, U.K.; Pal, S.S.; Sinha, R.K. Rapid Detection of Escherichia Coli Using Fiber Optic Surface Plasmon Resonance Immunosensor Based on Biofunctionalized Molybdenum Disulfide (MoS2) Nanosheets. Biosens. Bioelectron. 2019, 126, 501–509. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, T.; Cheng, L.; Song, G.; Liu, Z.; Chen, M. MoS2-Based Nanoprobes for Detection of Silver Ions in Aqueous Solutions and Bacteria. ACS Appl. Mater. Interfaces 2015, 7, 7526–7533. [Google Scholar] [CrossRef]
- Sun, X.; Fan, J.; Fu, C.; Yao, L.; Zhao, S.; Wang, J.; Xiao, J. WS2 and MoS2 Biosensing Platforms Using Peptides as Probe Biomolecules. Sci. Rep. 2017, 7, 10290. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Qiu, Q.; Wen, Q.; Zhang, Q.; Yang, W.; Yuwen, L.; Weng, L.; Wang, L. Efficient Biofunctionalization of MoS2 Nanosheets with Peptides as Intracellular Fluorescent Biosensor for Sensitive Detection of Caspase-3 Activity. J. Colloid Interface Sci. 2019, 543, 96–105. [Google Scholar] [CrossRef]
- Xiao, M.; Chandrasekaran, A.R.; Ji, W.; Li, F.; Man, T.; Zhu, C.; Shen, X.; Pei, H.; Li, Q.; Li, L. Affinity-Modulated Molecular Beacons on MoS2 Nanosheets for MicroRNA Detection. ACS Appl. Mater. Interfaces 2018, 10, 35794–35800. [Google Scholar] [CrossRef]
- Su, S.; Li, J.; Yao, Y.; Sun, Q.; Zhao, Q.; Wang, F.; Li, Q.; Liu, X.; Wang, L. Colorimetric Analysis of Carcinoembryonic Antigen Using Highly Catalytic Gold Nanoparticles-Decorated MoS2 Nanocomposites. ACS Appl. Bio Mater. 2019, 2, 292–298. [Google Scholar] [CrossRef]
- Su, S.; Sun, Q.; Wan, L.; Gu, X.; Zhu, D.; Zhou, Y.; Chao, J.; Wang, L. Ultrasensitive Analysis of Carcinoembryonic Antigen Based on MoS2-Based Electrochemical Immunosensor with Triple Signal Amplification. Biosens. Bioelectron. 2019, 140, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Cao, W.; Liu, W.; Lu, Z.; Zhu, D.; Chao, J.; Weng, L.; Wang, L.; Fan, C.; Wang, L. Dual-Mode Electrochemical Analysis of microRNA-21 Using Gold Nanoparticle-Decorated MoS2 Nanosheet. Biosens. Bioelectron. 2017, 94, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Niu, W.; Chen, S.; Xu, W.; Ji, X.; Yuan, L.; Zhao, H.; Geng, M.; Qiu, J.; Li, C. Target-Inspired Pb2+-Dependent DNAzyme for Ultrasensitive Electrochemical Sensor Based on MoS2-AuPt Nanocomposites and Hemin/G-quadruplex DNAzyme as Signal Amplifier. Biosens. Bioelectron. 2019, 144, 111560. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Ojha, R.P.; Kumar, S.; Singh, A.K.; Prakash, R. Fe-Doped MoS2 Nanomaterials with Amplified Peroxidase Mimetic Activity for the Colorimetric Detection of Glutathione in Human Serum. Mater. Chem. Phys. 2021, 267, 124684. [Google Scholar] [CrossRef]
- Tao, Y.; Lao, Y.-H.; Yi, K.; Xu, Y.; Wang, H.; Shao, D.; Wang, J.; Li, M. Noble Metal-Molybdenum Disulfide Nanohybrids as Dual Fluorometric and Colorimetric Sensor for Hepatitis B Virus DNA Detection. Talanta 2021, 234, 122675. [Google Scholar] [CrossRef]
- Li, W.; Qiao, X.; Hong, C.; Ma, C.; Song, Y. A Sandwich-Type Electrochemical Immunosensor for Detecting CEA Based on CeO2-MoS2 Absorbed Pb2+. Anal. Biochem. 2020, 592, 113566. [Google Scholar] [CrossRef]
- Lu, C.; Huang, Z.; Liu, B.; Liu, Y.; Ying, Y.; Liu, J. Poly-Cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials. Angew. Chem. Int. Ed. 2017, 56, 6208–6212. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Noble Metal Nanomaterials: Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today 2011, 6, 240–264. [Google Scholar] [CrossRef]
- Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-Phase Epitaxial Growth of Noble Metal Nanostructures on Dispersible Single-Layer Molybdenum Disulfide Nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef] [Green Version]
- Yuwen, L.; Xu, F.; Xue, B.; Luo, Z.; Zhang, Q.; Bao, B.; Su, S.; Weng, L.; Huang, W.; Wang, L. General Synthesis of Noble Metal (Au, Ag, Pd, Pt) Nanocrystal Modified MoS2 Nanosheets and the Enhanced Catalytic Activity of Pd-MoS2 for Methanol Oxidation. Nanoscale 2014, 6, 5762–5769. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 6826–6833. [Google Scholar] [CrossRef] [PubMed]
- Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Leotin, J.; Lou, J. Plasmonic Pumping of Excitonic Photoluminescence in Hybrid MoS2-Au Nanostructures. ACS Nano 2014, 8, 12682–12689. [Google Scholar] [CrossRef] [PubMed]
- Miro, P.; Ghorbani-Asl, M.; Heine, T. Two Dimensional Materials Beyond MoS2: Noble-Transition-Metal Dichalcogenides. Angew. Chem. Int. Ed. 2014, 53, 3015–3018. [Google Scholar] [CrossRef]
- Jing, P.; Yi, H.; Xue, S.; Chai, Y.; Yuan, R.; Xu, W. A Sensitive Electrochemical Aptasensor Based on Palladium Nanoparticles Decorated Graphene–Molybdenum Disulfide Flower-Like Nanocomposites and Enzymatic Signal Amplification. Anal. Chim. Acta 2015, 853, 234–241. [Google Scholar] [CrossRef]
- Su, S.; Sun, Q.; Ma, J.; Zhu, D.; Wang, F.; Chao, J.; Fan, C.; Li, Q.; Wang, L. Ultrasensitive Analysis of Micrornas with Gold Nanoparticle-Decorated Molybdenum Disulfide Nanohybrid-Based Multilayer Nanoprobes. Chem. Commun. 2020, 56, 9012–9015. [Google Scholar] [CrossRef]
- You, H.; Mu, Z.; Zhao, M.; Zhou, J.; Yuan, Y.; Bai, L. Functional Fullerene-Molybdenum Disulfide Fabricated Electrochemical DNA Biosensor for Sul1 Detection Using Enzyme-Assisted Target Recycling and a New Signal Marker for Cascade Amplification. Sens. Actuators B 2020, 305, 127483. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Zhang, X.; Feng, J.; Kong, L.; Wang, P.; Chen, Z.; Dong, Y.; Wei, Q. Ultrasensitive Electrochemical Immunosensor for Quantitative Detection of HBeAg Using Au@Pd/MoS2@MWCNTs Nanocomposite as Enzyme-Mimetic Labels. Biosens. Bioelectron. 2018, 102, 189–195. [Google Scholar] [CrossRef]
- Ma, E.; Wang, P.; Yang, Q.; Yu, H.; Pei, F.; Li, Y.; Liu, Q.; Dong, Y. Electrochemical Immunosensor Based on MoS2 NFs/Au@AgPt YNCs as Signal Amplification Label for Sensitive Detection of CEA. Biosens. Bioelectron. 2019, 142, 111580. [Google Scholar] [CrossRef]
- Zhao, H.; Du, X.; Dong, H.; Jin, D.; Tang, F.; Liu, Q.; Wang, P.; Chen, L.; Zhao, P.; Li, Y. Electrochemical Immunosensor Based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the Detection of Cardiac Troponin I. Biosens. Bioelectron. 2021, 175, 112883. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, T.; Fan, D.; Kuang, X.; Ali, A.; Wu, D.; Wei, Q. Triple Amplified Ultrasensitive Electrochemical Immunosensor for Alpha Fetoprotein Detection Based on MoS2@Cu2O-Au Nanoparticles. Sens. Actuators B 2019, 297, 126821. [Google Scholar] [CrossRef]
- Li, S.K.; Liu, Z.T.; Li, J.Y.; Chen, A.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Enzyme-Free Target Recycling and Double-Output Amplification System for Electrochemiluminescent Assay of Mucin 1 with MoS2 Nanoflowers as Co-Reaction Accelerator. ACS Appl. Mater. Interfaces 2018, 10, 14483–14490. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Yao, B.; Ding, Y.; Xie, M.; Zhao, J.; Zhang, K.; Huang, W. Electrochemiluminescence Aptasensor for Siglec-5 Detection Based on MoS2@Au Nanocomposites Emitter and Exonuclease III-powered DNA Walker. Sens. Actuators B 2021, 334, 129592. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhong, X.; Chai, Y.; Yuan, R. An ECL Biosensor for Sensitive Detection of concanavalin A Based on the ECL Quenching of Ru Complex by MoS2 Nanoflower. Sens. Actuators B Chem. 2017, 245, 247–255. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, G.; Li, X.; Fang, J.; Miao, J.; Wei, Q.; Cao, W. Electrochemiluminescence Immunosensor of “Signal-Off” for β-amyloid Detection Based on Dual Metal-Organic Frameworks. Talanta 2020, 208, 120376. [Google Scholar] [CrossRef] [PubMed]
- Bahari, D.; Babamiri, B.; Salimi, A.; Hallaj, R.; Amininasab, S.M. A Self-Enhanced ECL-RET Immunosensor for the Detection of CA19-9 Antigen Based on Ru(bpy)2(phen-NH2)2+ - Amine-rich Nitrogen-Doped Carbon Nanodots as Probe and Graphene Oxide Grafted Hyperbranched Aromatic Polyamide as Platform. Anal. Chim. Acta 2020, 1132, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Y.; Huang, Y.; Dai, H.; Lin, Y. Design and Application of Proximity Hybridization-Based Multiple Stimuli-Responsive Immunosensing Platform for Ovarian Cancer Biomarker Detection. Biosens. Bioelectron. 2020, 159, 112201. [Google Scholar] [CrossRef]
- Ju, P.; He, Y.; Wang, M.; Han, X.; Jiang, F.; Sun, C.; Wu, C. Enhanced Peroxidase-Like Activity of MoS2 Quantum Dots Functionalized g-C3N4 Nanosheets Towards Colorimetric Detection of H2O2. Nanomaterials 2018, 8, 976. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Weng, J. Enhanced Peroxidase-Like Activity of MoS2/Graphene Oxide Hybrid with Light Irradiation for Glucose Detection. Biosens. Bioelectron. 2017, 89, 652–658. [Google Scholar] [CrossRef]
- Chi, M.; Zhu, Y.; Jing, L.; Wang, C.; Lu, X. Fabrication of Ternary MoS2-Polypyrrole-Pd Nanotubes as Peroxidase Mimics with a Synergistic Effect and Their Sensitive Colorimetric Detection of L-Cysteine. Anal. Chim. Acta 2018, 1035, 146–153. [Google Scholar] [CrossRef]
- Tao, Z.; Wei, L.; Wu, S.; Duan, N.; Li, X.; Wang, Z. A Colorimetric Aptamer-Based Method for Detection of Cadmium Using the Enhanced Peroxidase-Like Activity of Au-MoS2 Nanocomposites. Anal. Biochem. 2020, 608, 113844. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, S.; Wang, X.; Wei, L.; Kong, Q.; Ye, M.; Luo, X.; Xu, J.; Zhang, C.; Xian, Y. pH-Sensitive Dye-Based Nanobioplatform for Colorimetric Detection of Heterogeneous Circulating Tumor Cells. ACS Sens. 2021, 6, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Gao, Y.; Hu, N.; Zhang, Y.; Guo, C.; Gao, G.; Ma, Z.; Ivan Ivanovich, K.; Qiu, Y. Electronic Coupling between Molybdenum Disulfide and Gold Nanoparticles to Enhance the Peroxidase Activity for the Colorimetric Immunoassays of Hydrogen Peroxide and Cancer Cells. J. Colloid Interface Sci. 2020, 578, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, H.; Li, X.; Chen, Y.; Gu, C.; Wei, G.; Zhou, J.; Jiang, T. Nonmetallic SERS-Based Immunosensor Byintegrating MoS2 Nanoflower and Nanosheet Towards the Direct Serum Detection of Carbohydrate Antigen 19-9. Biosens. Bioelectron. 2021, 193, 113481. [Google Scholar] [CrossRef] [PubMed]
- Medetalibeyoglu, H.; Kotan, G.; Atar, N.; Yola, M.L. A Novel Sandwich-Type SERS Immunosensor for Selective and Sensitive Carcinoembryonic Antigen (CEA) Detection. Anal. Chim. Acta 2020, 1139, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Liu, Z.; Hou, Y.; Li, Y.; Yang, G.; Su, C.; Wang, Z.; Zhong, H.; Zhuang, Z.; Guo, Z. Synthesis of Au NP@MoS2 Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging. Materials 2017, 10, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Lyu, J.; Tian, F.; Yang, M. A Fluorescence Turn-on Biosensor Based on Graphene Quantum Dots (GQDs) and Molybdenum Disulfide (MoS2) Nanosheets for Epithelial Cell Adhesion Molecule (EpCAM) Detection. Biosens. Bioelectron. 2017, 93, 182–188. [Google Scholar] [CrossRef]
- Kong, R.-M.; Ding, L.; Wang, Z.; You, J.; Qu, F. A Novel Aptamer-Functionalized MoS2 Nanosheet Fluorescent Biosensor for Sensitive Detection of Prostate Specific Antigen. Anal. Bioanal. Chem. 2015, 407, 369–377. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, J.; Huang, F.; Zheng, M.; Deng, Q.; Xu, J. MoS2 Nanosheet-Based Fluorescent Biosensor for Protein Detection via Terminal Protection of Small-Molecule-Linked DNA and Exonuclease III-aided DNA Recycling Amplification. Biosens. Bioelectron. 2015, 74, 227–232. [Google Scholar] [CrossRef]
- Chen, S.-C.; Lin, C.-Y.; Cheng, T.-L.; Tseng, W.-L. 6-Mercaptopurine-Induced Fluorescence Quenching of Monolayer MoS2 Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione-Stimulated Drug Delivery. Adv. Funct. Mater. 2017, 27, 1702452. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Mou, Z.-L.; Wang, M.; Li, J.; Zhang, J.; Dang, F.-Q.; Zhang, Z.-Q. Chimeric Aptamers-Based and MoS2 Nanosheet-Enhanced Label-Free Fluorescence Polarization Strategy for Adenosine Triphosphate Detection. Anal. Chem. 2018, 90, 13708–13713. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, Y.; Wen, W.; Chen, M.-M.; Zhang, X.; Wang, S. Simple MoS2-Nanofiber Paper-Based Fluorescence Immunosensor for Point-of-Care Detection of Programmed Cell Death Protein 1. Anal. Chem. 2021, 93, 8791–8798. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Wang, Q.; Yang, X.; Zhang, H.; Li, Z.; Gao, L.; Zheng, Y.; Liu, X.; Wang, K. High Sensitivity Surface Plasmon Resonance Biosensor for Detection of microRNA Based on Gold Nanoparticles-Decorated Molybdenum Sulfide. Anal. Chim. Acta 2017, 993, 55–62. [Google Scholar] [CrossRef]
- Lin, T.; Zhong, L.; Guo, L.; Fu, F.; Chen, G. Seeing Diabetes: Visual Detection of Glucose Based on the Intrinsic Peroxidase-Like Activity of MoS2 Nanosheets. Nanoscale 2014, 6, 11856–11862. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gu, W.; Zheng, S.; Zhang, C.; Xian, Y. SDS-MoS2 Nanoparticles as Highly-Efficient Peroxidase Mimetics for Colorimetric Detection of H2O2 and Glucose. Talanta 2015, 141, 47–52. [Google Scholar] [CrossRef]
- Zheng, J.; Song, D.; Chen, H.; Xu, J.; Alharbi, N.S.; Hayat, T.; Zhang, M. Enhanced Peroxidase-Like Activity of Hierarchical MoS2 -Decorated N-Doped Carbon Nanotubes with Synergetic Effect for Colorimetric Detection of H2O2 and Ascorbic Acid. Chin. Chem. Lett. 2020, 31, 1109–1113. [Google Scholar] [CrossRef]
- Wan, L.; Wu, L.; Su, S.; Zhu, D.; Chao, J.; Wang, L. High Peroxidase-Mimicking Activity of Gold@Platinum Bimetallic Nanoparticle-Supported Molybdenum Disulfide Nanohybrids for the Selective Colorimetric Analysis of Cysteine. Chem. Commun. 2020, 56, 12351–12354. [Google Scholar] [CrossRef]
- Akbarzadeh, E.; Bahrami, F.; Gholami, M.R. Au and Pt Nanoparticles Supported on Ni Promoted MoS2 as Efficient Catalysts for P-Nitrophenol Reduction. J. Water Process Eng. 2020, 34, 101142. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.; Liu, L.; Zheng, J.; Alsulami, H.; Kutbi, M.A.; Xu, J. Noble Metal and Fe3O4Co-Functionalizedco-Functionalized Hierarchical Polyaniline@MoS2 Microtubes. Colloids Surf. A 2020, 605, 125347. [Google Scholar] [CrossRef]
- Ling, X.; Fang, W.; Lee, Y.-H.; Araujo, P.T.; Zhang, X.; Rodriguez-Nieva, J.F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M.S. Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040. [Google Scholar] [CrossRef]
- Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L. Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741. [Google Scholar] [CrossRef] [PubMed]
- Majee, B.P.; Srivastava, V.; Mishra, A.K. Surface-Enhanced Raman Scattering Detection Based on an Interconnected Network of Vertically Oriented Semiconducting Few-Layer MoS2 Nanosheets. ACS Appl. Nano Mater. 2020, 3, 4851–4858. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Fluorometric Determination of the Antibiotic Kanamycin by Aptamer-Induced FRET Quenching and Recovery between MoS2 Nanosheets and Carbon Dots. Microchim. Acta 2017, 184, 203–210. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, X.; Hu, W. A Fluorescence Aptasensor Based on Semiconductor Quantum Dots and MoS2 Nanosheets for Ochratoxin a Detection. Sens. Actuators B Chem. 2017, 246, 61–67. [Google Scholar] [CrossRef]
- Deng, H.; Yang, X.; Gao, Z. MoS2 Nanosheets as an Effective Fluorescence Quencher for DNA Methyltransferase Activity Detection. Analyst 2015, 140, 3210–3215. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, S.; Feng, J.; Zou, R.; Xiang, L.; Cai, C. MoS2-Loaded G-quadruplex Molecular Beacon Probes for Versatile Detection of MicroRNA through Hybridization Chain Reaction Signal Amplification. Talanta 2019, 202, 342–348. [Google Scholar] [CrossRef]
- Dong, H.; Tang, S.; Hao, Y.; Yu, H.; Dai, W.; Zhao, G.; Cao, Y.; Lu, H.; Zhang, X.; Ju, H. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107–3114. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y. Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection. Anal. Chem. 2014, 86, 7463–7470. [Google Scholar] [CrossRef]
- Xu, S.; Li, D.; Wu, P. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127–1136. [Google Scholar] [CrossRef]
- Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y. A Facile and One-Step Ethanol-Thermal Synthesis of MoS2 Quantum Dots for Two-Photon Fluorescence Imaging. J. Mater. Chem. B 2016, 4, 27–31. [Google Scholar] [CrossRef]
- Oudeng, G.; Au, M.; Shi, J.; Wen, C.; Yang, M. One-Step in Situ Detection of miRNA-21 Expression in Single Cancer Cells Based on Biofunctionalized MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Zhang, W.; Wang, X.; Sun, Y.; Huang, Y.; Ma, P.; Ding, J.; Song, D. Ratiometric Fluorescent Sensor Based on MoS2 QDs and AuNCs for Determination and Bioimaging of Alkaline Phosphatase. Spectrochim. Acta Part A 2021, 262, 120087. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Kang, Q.; Yang, B.; Chen, B.; He, M.; Hu, B. A Nanoprobe Based on Molybdenum Disulfide Nanosheets and Silver Nanoclusters for Imaging and Quantification of Intracellular Adenosine Triphosphate. Anal. Chim. Acta 2020, 1134, 75–83. [Google Scholar] [CrossRef]
- Jia, L.; Ding, L.; Tian, J.; Bao, L.; Hu, Y.; Ju, H.; Yu, J.-S. Aptamer Loaded MoS2 Nanoplates as Nanoprobes for Detection of Intracellular ATP and Controllable Photodynamic Therapy. Nanoscale 2015, 7, 15953–15961. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, J.; Lu, B.; Zhu, Y.; Wei, Y.; Zhang, Q.; Guo, X.; Yuwen, L.; Su, S.; Chao, J.; et al. Intracellular MicroRNA Imaging with MoS2-Supported Nonenzymatic Catassembly of DNA Hairpins. ACS Appl. Mater. Interfaces 2019, 11, 20725–20733. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.-F.; Lin, T.-L. Affinity Capture Surface Carboxyl-Functionalized MoS2 Sheets to Enhance the Sensitivity of Surface Plasmon Resonance Immunosensors. Talanta 2018, 185, 174–181. [Google Scholar] [CrossRef]
Preparation Mechanism | Advantages | Disadvantages | References |
---|---|---|---|
physical interaction | simple, fast, facile, wide variety of binding molecules | unstable | [23,24,25,26,27] |
chemical interaction | stable | The binding molecule needs to be modified, few choices of binding molecules | [28,29] |
noble metal nanoparticles -mediated | simple, facile, stable, wide variety of binding molecules, properties enhanced | complicated preparation process | [30,31,32,33,34,35,36] |
Detection Method | Advantages | Disadvantages |
---|---|---|
fluorescence | easy design, simple, versatile, possible quantification | the need of large equipment, poor stability |
electrochemical | easy design, simple, fast, facile, quantification, miniaturization | complicated interface design, poor repeatability |
electrochemiluminescence | easy design, simple, fast, facile, quantification | complicated interface design, poor reproducibility |
colorimetric | simple, facile, no need of equipment | poor sensitivity, poor stability |
surface enhanced Raman scattering | fast, high sensitivity, high selectivity, quantification | poor reproducibility, the need of large equipment |
surface plasmon resonance | simple, high sensitivity | few application scenarios, the need of large equipment |
Method | Nanoprobe | Target | Linear Range | LOD | References |
---|---|---|---|---|---|
Electrochemistry | MoS2-AuPt | Pb2+ | 0.1 pg mL−1 −1000 ng mL−1 | 38 fg mL−1 | [33] |
hemin/G-quadruplex-Tb-PdNPs/PDDA-G-MoS2 | thrombin | 0.0001−40 nM | 0.062 pM | [45] | |
MoS2-AuNP | microRNA-21 | 10 aM–1 μM | 38 aM | [46] | |
MoS2-PANI-Au | Sul1 | 40 fM–40 nM | 29.57 fM | [47] | |
Au@Pd/MoS2 @MWCNTs | HBeAg | 0.1−500 pg mL−1 | 26 fg mL−1 | [48] | |
MoS2 NFs/Au@AgPt YNCs | CEA | 10 fg mL−1 −100 ng mL−1 | 3.09 fg mL−1 | [49] | |
DPCN/MoS2 | CTnI | 10 fg mL−1 −100 ng mL−1 | 3.02 fg mL−1 | [50] | |
MoS2@Cu2O-Au | AFP | 0.1 pg mL−1 −50 ng mL−1 | 0.037 pg mL−1 | [51] | |
ECL | ABEI-Ag-MoS2 NFs/HP3 | MUC1 | 1 fg mL−1 −10 ng mL−1 | 0.58 fg mL−1 | [52] |
MoS2@Au | Siglec-5 | 10–500 pM | 8.9 pM | [53] | |
MoS2 NF | concanavalin A | 1.0 pg mL−1 −100 ng mL−1 | 0.3 pg mL−1 | [54] | |
MIL-101@Au -MoS2 QDs | β-amyloid | 10−5−50 ng mL−1 | 3.32 fg mL−1 | [55] | |
MoS2 | CA19-9 | 0.002−50 U mL−1 | 0.25 mU mL−1 | [56] | |
MoS2 NSs | human epididymis-specific protein 4 | 10−6−10 ng mL−1 | 3 × 10−7 ng mL−1 | [57] | |
Colorimetry | MoS2-AuNPs | CEA | 0.005−10 ng mL−1 | 0.5 pg mL−1 | [30] |
Fe-doped MoS2 | glutathione | 1–30 μM | 0.577 μM | [34] | |
MoS2@CNNS | H2O2 | 2.0–50.0 μM | 0.02 μM | [58] | |
MoS2/GO | glucose | 1–50 μM | 0.83 μM | [59] | |
MoS2-polypyrrole-Pd | l-cysteine | 1–10 μM | 0.08 μM | [60] | |
csDNA-Au-MoS2 | Cd2+ | 1–500 ng mL−1 | 0.7 ng mL−1 | [61] | |
TP/SYL3C-MoS2 | circulating tumor cells | 5–104 cells mL−1 | 2 cells mL−1 | [62] | |
MoS2/C-Au | H2O2 in living cells | 1 × 10−5–2 × 10−4 M | 1.82 μM | [63] | |
SERS | R6G-tagged MoS2 NF | CA19-9 | 5 × 10−3−100 IU mL−1 | 3.43 × 10−4 IU mL−1 | [64] |
MoS2 NFs@AuNPs/MBA | CEA | 0.0001−100.0 ng mL−1 | 0.033 pg mL−1 | [65] | |
Au NP@MoS2 | cell imaging | −− | −− | [66] | |
Fluorescence | MoS2-loaded MBs | microRNA | 1 pM–10 nM | 10 fM | [24] |
MoS2 NSs | caspase-3 | 2−360 ng mL−1 | 0.33 ng mL−1 | [28] | |
MoS2 | EpCAM | 3–54 nM | 450 pM | [67] | |
MoS2 | PSA | 0–60 ng mL−1 | 0.2 ng mL−1 | [68] | |
MoS2 | streptavidin | 0–600 ng mL−1 | 0.67 ng mL−1 | [69] | |
DOX-SH/M-MoS2 ND | glutathione cellular imaging | 0.1 × 10−6–100 × 10−6 M 0.1 × 10−3–4 × 10−3 M | 30 × 10−9 M | [70] | |
MoS2 | ATP | 0.067–26.7 μM | 34.4 nM | [71] | |
MoS2-NFP | programed cell death protein 1 | 125–8000 pg mL−1 | 85.5 pg mL−1 | [72] | |
SPR | AuNPs-MoS2 | miRNA-141 | 1–50 pM | 0.5 fM | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Feng, L.; Zheng, Y.; Luo, Y.; Zhu, D.; Chao, J.; Su, S.; Wang, L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors 2022, 12, 87. https://doi.org/10.3390/bios12020087
Gong L, Feng L, Zheng Y, Luo Y, Zhu D, Chao J, Su S, Wang L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors. 2022; 12(2):87. https://doi.org/10.3390/bios12020087
Chicago/Turabian StyleGong, Lingbo, Lin Feng, Youwei Zheng, Yi Luo, Dan Zhu, Jie Chao, Shao Su, and Lianhui Wang. 2022. "Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application" Biosensors 12, no. 2: 87. https://doi.org/10.3390/bios12020087
APA StyleGong, L., Feng, L., Zheng, Y., Luo, Y., Zhu, D., Chao, J., Su, S., & Wang, L. (2022). Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. Biosensors, 12(2), 87. https://doi.org/10.3390/bios12020087