A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and DNA Constructs
2.2. Glass Substrate Activation
2.3. Preparation of Large-Area PDMS Stamps
2.4. Preparation of Protein Micropatterns by µCP
2.5. Cell Culture and Transfection
2.6. Subcellular Micropatterning Experiments in Living Cells
2.7. Fluorescence Microscopy
2.8. Atomic Force Microscopy
2.9. Image Analysis and Statistical Evaluation
3. Results and Discussion
3.1. Simplified Procedure for the Fabrication of Protein Micropatterned Glass Substrates
3.2. Characterization of Protein Binding on Micropatterned Substrates
3.3. Applicability for Subcellular Micropatterning Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wingren, C.; Borrebaeck, C.A.K. Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays. Drug Discov. Today 2007, 12, 813–819. [Google Scholar] [CrossRef]
- Chen, Z.; Oh, D.; Biswas, K.H.; Zaidel-Bar, R.; Groves, J.T. Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. Elife 2021, 10, e67379. [Google Scholar] [CrossRef]
- Lee, J.H.; Shao, S.; Kim, M.; Fernandes, S.M.; Brown, J.R.; Kam, L.C. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front. Cell Dev. Biol. 2021, 9, 648925. [Google Scholar] [CrossRef]
- Mohr, J.D.; Ramezani, M.; Holowka, D.; Baird, B.A. Micropatterned Ligand Arrays to Investigate Spatial Regulation of Cellular Signaling Initiated by Clustered Fc Receptors. Methods Mol. Biol. 2022, 2421, 1–19. [Google Scholar] [CrossRef]
- Mujahid, A.; Iqbal, N.; Afzal, A. Bioimprinting strategies: From soft lithography to biomimetic sensors and beyond. Biotechnol. Adv. 2013, 31, 1435–1447. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Sathe, S.R.; Yim, E.K.F. From nano to micro: Topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter 2016, 28, 183001. [Google Scholar] [CrossRef]
- Shemesh, M.; Lochte, S.; Piehler, J.; Schreiber, G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci. Signal. 2021, 14, eabe4627. [Google Scholar] [CrossRef]
- Watson, J.L.; Aich, S.; Oller-Salvia, B.; Drabek, A.A.; Blacklow, S.C.; Chin, J.; Derivery, E. High-efficacy subcellular micropatterning of proteins using fibrinogen anchors. J. Cell Biol. 2021, 220, e202009063. [Google Scholar] [CrossRef]
- Lenci, S.; Tedeschi, L.; Pieri, F.; Domenici, C. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics. Appl. Surf. Sci. 2011, 257, 8413–8419. [Google Scholar] [CrossRef]
- Nicolau, D.V.; Ivanova, E.P.; Fulga, F.; Filipponi, L.; Viezzoli, A.; Dobroiu, S.; Alekseeva, Y.V.; Pham, D.K. Protein immobilisation on micro/nanostructures fabricated by laser microablation. Biosens. Bioelectron. 2010, 26, 1337–1345. [Google Scholar] [CrossRef]
- Kristensen, S.H.; Pedersen, G.A.; Ogaki, R.; Bochenkov, V.; Nejsum, L.N.; Sutherland, D.S. Complex protein nanopatterns over large areas via colloidal lithography. Acta Biomater. 2013, 9, 6158–6168. [Google Scholar] [CrossRef] [PubMed]
- Lohmüller, T.; Aydin, D.; Schwieder, M.; Morhard, C.; Louban, I.; Pacholski, C.; Spatz, J.P. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 2011, 6, MR1–MR12. [Google Scholar] [CrossRef] [PubMed]
- Hortigüela, V.; Larrañaga, E.; Cutrale, F.; Seriola, A.; García-Díaz, M.; Lagunas, A.; Andilla, J.; Loza-Alvarez, P.; Samitier, J.; Ojosnegros, S.; et al. Nanopatterns of Surface-Bound EphrinB1 Produce Multivalent Ligand-Receptor Interactions That Tune EphB2 Receptor Clustering. Nano Lett. 2018, 18, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Kumar, R.; Takai, M.; Hirtz, M. Enhanced Stability of Lipid Structures by Dip-Pen Nanolithography on Block-Type MPC Copolymer. Molecules 2020, 25, 2768. [Google Scholar] [CrossRef]
- Atwater, J.; Mattes, D.S.; Streit, B.; von Bojničić-Kninski, C.; Loeffler, F.F.; Breitling, F.; Fuchs, H.; Hirtz, M. Combinatorial Synthesis of Macromolecular Arrays by Microchannel Cantilever Spotting (µCS). Adv. Mater. 2018, 30, e1801632. [Google Scholar] [CrossRef]
- Zheng, Z.; Daniel, W.L.; Giam, L.R.; Huo, F.; Senesi, A.J.; Zheng, G.; Mirkin, C.A. Multiplexed protein arrays enabled by polymer pen lithography: Addressing the inking challenge. Angew. Chem. Int. Ed. Engl. 2009, 48, 7626–7629. [Google Scholar] [CrossRef]
- Alom Ruiz, S.; Chen, C.S. Microcontact printing: A tool to pattern. Soft Matter 2007, 3, 168–177. [Google Scholar] [CrossRef]
- Berganza, E.; Hirtz, M. Direct-Write Patterning of Biomimetic Lipid Membranes In Situ with FluidFM. ACS Appl. Mater. Inter Faces 2021, 13, 50774–50784. [Google Scholar] [CrossRef]
- Kaufmann, T.; Ravoo, B.J. Stamps, inks and substrates: Polymers in microcontact printing. Polym. Chem. 2010, 1, 371–387. [Google Scholar] [CrossRef]
- Dias, A.D.; Kingsley, D.M.; Corr, D.T. Recent advances in bioprinting and applications for biosensing. Biosensors 2014, 4, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Humenik, M.; Winkler, A.; Scheibel, T. Patterning of protein-based materials. Biopolymers 2021, 112, e23412. [Google Scholar] [CrossRef] [PubMed]
- Voskuhl, J.; Brinkmann, J.; Jonkheijm, P. Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Curr. Opin. Chem. Biol. 2014, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Boey, F.; Huo, F.; Huang, L.; Zhang, H. Chemically functionalized surface patterning. Small 2011, 7, 2273–2289. [Google Scholar] [CrossRef] [PubMed]
- Guruvenket, S.; Rao, G.; Komath, M.; Raichur, A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 2004, 236, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Taniguchi, Y.; Murase, K.; Taguchi, Y.; Sugimura, H. Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl. Surf. Sci. 2009, 255, 3648–3654. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ji, S.; Zhang, G.; Guo, H. Surface-modification of poly(dimethylsiloxane) membrane with self-assembled monolayers for alcohol permselective pervaporation. Langmuir 2013, 29, 8093–8102. [Google Scholar] [CrossRef]
- Lindner, M.; Tresztenyak, A.; Fülöp, G.; Jahr, W.; Prinz, A.; Prinz, I.; Danzl, J.G.; Schütz, G.J.; Sevcsik, E. A Fast and Simple Contact Printing Approach to Generate 2D Protein Nanopatterns. Front. Chem. 2018, 6, 655. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Tirado, E.; Martínez-García, G.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF)-β1 in urine. Biosens. Bioelectron. 2017, 88, 9–14. [Google Scholar] [CrossRef]
- Sánchez-Tirado, E.; Salvo, C.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double–walled carbon nanotubes. Anal. Chim. Acta 2017, 959, 66–73. [Google Scholar] [CrossRef]
- Ojeda, I.; Barrejón, M.; Arellano, L.M.; González-Cortés, A.; Yáñez-Sedeño, P.; Langa, F.; Pingarrón, J.M. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosens. Bioelectron. 2015, 74, 24–29. [Google Scholar] [CrossRef]
- Ooi, H.W.; Cooper, S.J.; Huang, C.-Y.; Jennins, D.; Chung, E.; Maeji, N.J.; Whittaker, A.K. Coordination complexes as molecular glue for immobilization of antibodies on cyclic olefin copolymer surfaces. Anal. Biochem. 2014, 456, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-García, G.; Sánchez-Tirado, E.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Amperometric immunoassay for the obesity biomarker amylin using a screen printed carbon electrode functionalized with an electropolymerized carboxylated polypyrrole. Mikrochim. Acta 2018, 185, 323. [Google Scholar] [CrossRef] [PubMed]
- Hauser, P.; Wang, S.; Didenko, V.V. Apoptotic Bodies: Selective Detection in Extracellular Vesicles. Methods Mol. Biol. 2017, 1554, 193–200. [Google Scholar] [CrossRef]
- Kim, S.; Kwak, S.; Lee, S.; Cho, W.K.; Lee, J.K.; Kang, S.M. One-step functionalization of zwitterionic poly(3-(methacryloylamino)propyl)dimethyl(3-sulfopropyl)ammonium hydroxide surfaces by metal-polyphenol coating. Chem. Commun. 2015, 51, 5340–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Han, L.; Jia, L. A Novel Platelet-Repellent Polyphenolic Surface and Its Micropattern for Platelet Adhesion Detection. ACS Appl. Mater. Interfaces 2016, 8, 26570–26577. [Google Scholar] [CrossRef] [PubMed]
- Hager, R.; Müller, U.; Ollinger, N.; Weghuber, J.; Lanzerstorfer, P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens. 2021, 6, 4076–4088. [Google Scholar] [CrossRef] [PubMed]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Borgmann, D.; Weghuber, J.; Schaller, S.; Jacak, J.; Winkler, S.M. Identification of patterns in microscopy images of biological samples using evolution strategies. In Proceedings of the European Modeling and Simulation Symposium, Vienna, Austria, 19–21 September 2012. [Google Scholar]
- Lanzerstorfer, P.; Müller, U.; Gordiyenko, K.; Weghuber, J.; Niemeyer, C.M. Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Lanzerstorfer, P.; Borgmann, D.; Schütz, G.; Winkler, S.M.; Höglinger, O.; Weghuber, J. Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS ONE 2014, 9, e92151. [Google Scholar] [CrossRef] [Green Version]
- Sevcsik, E.; Weghuber, J.; Lanzerstorfer, P.; Schütz, G.J. Protein Micropatterning Assay-Quantitative analysis of protein-protein interactions. Methods Mol. Biol. 2017, 1550, 261–270. [Google Scholar] [CrossRef]
- Motsch, V.; Brameshuber, M.; Baumgart, F.; Schütz, G.J.; Sevcsik, E. A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci. Rep. 2019, 9, 3288. [Google Scholar] [CrossRef] [PubMed]
- Dirscherl, C.; Löchte, S.; Hein, Z.; Kopicki, J.-D.; Harders, A.R.; Linden, N.; Weghuber, J.; Garcia-Alai, M.; Uetrecht, C.; Zacharias, M.; et al. Dissociation of β 2 m from MHC Class I Triggers Formation of Noncovalent, Transient Heavy Chain Dimers. bioRxiv 2021. [Google Scholar] [CrossRef]
- Dirscherl, C.; Hein, Z.; Ramnarayan, V.R.; Jacob-Dolan, C.; Springer, S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. Elife 2018, 7, e34150. [Google Scholar] [CrossRef] [PubMed]
- Kam, L.C.; Shen, K.; Dustin, M.L. Micro- and nanoscale engineering of cell signaling. Annu. Rev. Biomed. Eng. 2013, 15, 305–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzerstorfer, P.; Yoneyama, Y.; Hakuno, F.; Müller, U.; Höglinger, O.; Takahashi, S.-I.; Weghuber, J. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces. FEBS J. 2015, 282, 987–1005. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.F.; Dietz, M.S.; Müller, U.; Weghuber, J.; Gatterdam, K.; Wieneke, R.; Heilemann, M.; Lanzerstorfer, P.; Tampé, R. Dynamic in situ confinement triggers ligand-free neuropeptide receptor signaling. bioRxiv 2021. [Google Scholar] [CrossRef]
- LaGraff, J.R.; Chu-LaGraff, Q. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments. Langmuir 2006, 22, 4685–4693. [Google Scholar] [CrossRef] [PubMed]
- Graber, D.J.; Zieziulewicz, T.J.; Lawrence, D.A.; Shain, W.; Turner, J.N. Antigen Binding Specificity of Antibodies Patterned by Microcontact Printing. Langmuir 2003, 19, 5431–5434. [Google Scholar] [CrossRef]
- Dirscherl, C.; Springer, S. Protein micropatterns printed on glass: Novel tools for protein-ligand binding assays in live cells. Eng. Life Sci. 2018, 18, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, D.; Dayss, E.; Leps, G.; Wutzler, A. Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals. Surf. Interface Anal. 2004, 36, 689–693. [Google Scholar] [CrossRef]
- Mizutani, T. Estimation of protein and drug adsorption onto silicone-coated glass surfaces. J. Pharm. Sci. 1981, 70, 493–496. [Google Scholar] [CrossRef]
- Schwarzenbacher, M.; Kaltenbrunner, M.; Brameshuber, M.; Hesch, C.; Paster, W.; Weghuber, J.; Heise, B.; Sonnleitner, A.; Stockinger, H.; Schütz, G.J. Micropatterning for quantitative analysis of protein-protein interactions in living cells. Nat. Methods 2008, 5, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.J.; Ferhan, A.R.; Jackman, J.A.; Cho, N.-J. Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Commun. Mater. 2020, 1, 45. [Google Scholar] [CrossRef]
- Park, J.H.; Jackman, J.A.; Ferhan, A.R.; Ma, G.J.; Yoon, B.K.; Cho, N.-J. Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings. ACS Appl. Mater. Interfaces 2018, 10, 32047–32057. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimian, T.; Hager, R.; Karner, A.; Weghuber, J.; Lanzerstorfer, P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. Biosensors 2022, 12, 140. https://doi.org/10.3390/bios12030140
Karimian T, Hager R, Karner A, Weghuber J, Lanzerstorfer P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. Biosensors. 2022; 12(3):140. https://doi.org/10.3390/bios12030140
Chicago/Turabian StyleKarimian, Tina, Roland Hager, Andreas Karner, Julian Weghuber, and Peter Lanzerstorfer. 2022. "A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments" Biosensors 12, no. 3: 140. https://doi.org/10.3390/bios12030140
APA StyleKarimian, T., Hager, R., Karner, A., Weghuber, J., & Lanzerstorfer, P. (2022). A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. Biosensors, 12(3), 140. https://doi.org/10.3390/bios12030140