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Abstract: A new preparation route for high-luminescent blue-emission pepsin copper nanoclusters
(Pep-CuNCs) is introduced in this work. The synthesized nanoclusters are based on a pepsin molecule,
which is a stomach enzyme that works to digest proteins that exist in undigested food. Here, we
have developed an eco-friendly technique through microwave-assisted fast synthesis. The resulting
copper nanoclusters (CuNCs) exhibit significant selectivity towards Pb(II) ions. The pepsin molecule
was utilized as a stabilizer and reducing agent in the production procedure of Pep-CuNCs. The
characteristics of the resulting Pep-CuNCs were studied in terms of size, surface modification, and
composition using various sophisticated techniques. The CuNCs responded to Pb(II) ions through the
fluorescence quenching mechanism of the CuNCs’ fluorescence. Thus, great selectivity of Pep-CuNCs
towards Pb(II) ions was observed, allowing sensitive determination of this metal ion at lab-scale and
in the environment. The CuNCs have detection limits for Pb(II) in very tenuous concentration at a
nanomalar scale (11.54 nM). The resulting Pep-CuNCs were utilized significantly to detect Pb(II) ions
in environmental samples. Additionally, the activity of Pep-CuNCs on different human tumor cell
lines was investigated. The data for the observed behavior indicate that the Pep-CuNCs displayed
their activity against cancer cells in a dose dependent manner against most utilized cancer cell lines.

Keywords: copper nanoclusters; eco-friendly synthesis; pepsin; optical sensing; metal ions; anticancer

1. Introduction

With significant industrial progress in many fields, the need for the determination
of lead has increased. Lead ions are present and dispersed in varying amounts in nature,
as they are present in many ores such as galena, anglesite, and cerussite. Lead is used in
many industries, including for storage batteries, cable sheaths, weaponry, and radioactive
shielding. Lead is used in large quantities and added to gasoline to improve its properties.
Environmental lead pollution has caused many problems, and many countries have made
arrangements to reduce the use of lead in gasoline. However, lead in the environment
is recycled to be reused for valuable purposes. In general, lead compounds emitted into
the air typically end up in water sources [1]. Lead can destroy the nervous system and
cause kidney failure, and is recognized as a carcinogen [2]. Lead is generally found in the
environment in the form of inorganic lead(II) compounds. The Environment Protection
Agency (EPA) and World Health Organization (WHO) stated that acceptable concentrations
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of lead ions in water are 15 ppb and 10 ppb [3]. Various instruments have been utilized to
detect lead ions in water. These techniques include atomic absorption spectrometry, and
inductively coupled mass-plasma spectrometry. The difficulties with these techniques are
that they are expensive, time-consuming, and need a well-equipped laboratory. However,
label-free methods based on metal nanoclusters have distinctive optical properties and
tailorable surface functionalization that can detect different types of analytes [4].

Luminescent nanoscale particles have obtained much attention due to their distinctive
characteristics in various applications, including biotechnology, medicine, cell imaging, and
labeling [5–7]. Recently, different types of luminescent nanoparticles have been detected
such as luminescent protein [8,9], medicinal probe [10], natural chromophore [11,12], quan-
tum dots [13], carbon dots [14], metal-organic framework [15], fluorescent inorganic-organic
hybrid nanoparticles [16] and noble metal nanoclusters [17]. These fluorescent nanomateri-
als have many significant applications in sensors, molecular imaging, and nanomedicine
because of their outstanding optical characteristics, the extreme specific surface-to-volume
ratio, superficial surface modification, and the facility of being tenable [18,19].

Nowadays, with significant development in all areas of technology, noble metal nan-
oclusters have an essential role in developing biological and chemical sensors [20,21].
Furthermore, they can be used to produce high-precision devices to enhance biological
sensing and provide more sensitive and accurate biomolecular diagnostics. The nano-size of
the particles characterizes unique chemical and physical properties and has led to the devel-
opment of a group of biosensors. The applications of these sensors include: (a) diagnosing
some crucial diseases [22], (b) tracking and detecting different microbes [23,24], (c) imaging
living cells [25], (d) studying numerous reactions inside living cells [26], (e) tracking dis-
ease symptoms or monitoring drug treatment and other applications [27] that may benefit
humans revealing information about biological systems for scientific research. In general,
the participation of metallic nanoclusters has contributed significantly to the development
of bio-nanosensors due to the ease of application and the large surface area of the particles.
The metal nanoclusters, which have precious photophysical properties, have various advan-
tages including considerable photostability, biocompatibility, small size, ease of synthesis,
eco-friendliness, and large Stokes shift. The nanoclusters’ composition includes a crystal
structure consisting of a few atoms that may reach 25 atoms in some combinations. It,
therefore, has a size of less than 2 nanometers [28].

Herein, we used pepsin enzyme as a significant ligand and capping/reducing agent for
the preparation of fluorescent Pep-CuNCs (Scheme 1). Pepsin is a chain protein exhibiting
a catalytic site that is formed at the junction of the domain, each domain contains two
aspartic acid residues. Thus, pepsin has free carboxylic and amino groups that can react
as a polyvalent ligand to reduce Cu(II) ions and stabilize the metal core, leading to the
formation of stable fluorescent CuNCs. The prepared Pep-CuNCs were utilized for sensing
Pb(II) metal ions. We believe that the synthesized Pep-CuNCs are promising materials for
biological applications.
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2. Materials and Methods
2.1. Materials

The pepsin, lead nitrate, ethylenediaminetetraacetic acid (EDTA) and all chemicals and
reagents were purchased from Sigma Aldrich Co. (Taufkirchen, Germany) (http://www.
sigmaaldrich.com, accessed on 25 February 2022), at the maximum purity offered. Dialysis
membrane of 12–14 KD was obtained from the Spectrum chemical Co. (New Brunswick,
NJ, USA) (https://www.spectrumchemical.com/chemicals/Dialysis-Membrane, accessed
on 25 February 2022). The organic solvents were of the best grade available.

2.2. Apparatus and Instrumentation

The absorption spectra of the studied solutions were observed in a 1 cm quartz cell
using an Evolution™ 200 series (Thermo Fisher Scientific, Waltham, MA, USA) UV-Vis
spectrophotometer. Both emission and excitation spectra were collected with a JASCO-
FP8200 spectrofluorometer using 1 cm quartz for all spectral measurements. High resolution
transmission electron microscope (HR-TEM) images of nanoclusters were attained utilizing
JEOL-100S Japan functioning at 200 kV. Fourier Transform Infrared Spectroscopy (FTIR)
spectra were recorded on a 4100 Jasco-Japan (4000 to 400 cm−1). Finally, X-ray Photoelectron
Spectroscopy (XPS) analyses were collected on a K-ALPHA (Thermo Fisher Scientific, USA)
with monochromatic X-ray Al K-alpha radiation −10 to 1350 eV spot size 400 µm at pressure
10−9 mbar with full-spectrum pass energy 200 eV and narrow-spectrum 50 eV.

2.3. Synthesis of Pep-CuNCs

All glass was cleaned carefully in aqua regia and then washed twice with bi-distilled
water. Pep-CuNCs were prepared in the aqueous medium according to the following
procedure. Here, the pepsin molecules were involved in this method as a stabilizing and
reducing agent. Into a 25 mL round flask and at 37 ◦C, 4 mL of 10 mM Cu(NO3)2 was
added to 6 mL of 20 mg/mL Pepsin aqueous solution. The resulting solution was stirred
vigorously for 3 min, then 300 µM NaOH ml of 1M NaOH was added at once, and the
resulting mixture was stirred for another 3 min. The solution was transferred to a 10 mL
microwave tube. The reaction mixture was kept in the microwave oven (850 W, Anton paar
monowave 200) with irradiation power for 30 min. After the completion of the irradiation,
the produced microwave-assisted solution was dialyzed in ultra-pure water overnight
to remove all contaminants. After dialysis, Pep-CuNCs were stored at 4 ◦C in the dark.
The Quantum Yield (QY) of Pep-CuNCs was calculated by quantifying the integrated
fluorescence intensities of the Pep-CuNCs and the reference compound quinine sulfate (QY
of 55%) in 0.05 M H2SO4 under 310 nm excitation [29].

2.4. Detection of Metal Ions

The stock solution of Pep-CuNCs aqueous solution was prepared by diluting the
as-prepared nanocluster solution 10-fold using an appropriate amount of Milli-Q water.
We used the resulting solutions to take the subsequent measurements. Then, solutions
including the Pep-CuNCs and 0.1 mM stock solutions of the studied metal ions were
prepared and the fluorescence measurements were taken under excitation of 349 nm.
Different ions involving alkali, alkaline, and transition metals were tested utilizing the
same conditions for further study of selectivity and sensitivity.

2.5. Biological Application—In-Vitro Methods
2.5.1. Human Tumor Cell Lines Utilized

A431 epidermoid carcinoma, HCT-116 colorectal carcinoma, PC3 prostate adenocar-
cinoma, A-549 lung adenocarcinoma, MCF-7 breast cancer adenocarcinoma, MIA PaCa2
pancreatic carcinoma and HOS osteocarcinoma cells were kindly supplied by Prof. Dr. Stig
Linder, Karolinska institute, Sweden.

http://www.sigmaaldrich.com
http://www.sigmaaldrich.com
https://www.spectrumchemical.com/chemicals/Dialysis-Membrane
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2.5.2. Monolayer Cytotoxicity Bioassay

To maintain the cells’ viability, they were sub-cultured twice a week using DMEM-F12
medium supplemented with l-glutamine and fetal bovine serum added at a concentration
of 5–15%, and the flasks kept at 37 ◦C incubation under 5% CO2 and 95% humidity. Trypsin
versine at 0.15 % was used for detaching the cells. When preparing the working 96-well-
plates, 10,000 to 20,000 cells per well were seeded, but in case of normal cells 60,000 cells per
well were prepared, and after a day the cells reached a concentration of about 80%. Under
those conditions the test samples were added in triplicate at 100 µM, 50 µM, 25 µM and
12.5 µM and the plates were left incubated for 72 h. Positive (Doxorubicin) and negative
controls were prepared with the test samples [30–32]. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] salt was used to measure cell viability [3]. The resulting blue
color was measured at 595 nm with reference 690 nm. Percentage viability was calculated
by dividing the absorbance of the test well by the negative control, and multiplying by 100.
If the cytotoxicity percentage is required, we can simply subtract the percentage viability
from 100.

2.5.3. IC50 Determination

The samples which were shown to be active on the cells were tested. Graphpad PRISM
(6.01) was used to analyze the results using the nonlinear regression method, by which we
obtained the IC50 values.

3. Results and Discussion
3.1. Optical Characteristics

The UV-vis absorbance of the synthesized Pep-CuNCs solution did not show the
production of nanoparticles with core diameters large than 2 nm, because the absence of
delocalized surface plasmon resonance (SPR) peaked at around ~600 nm. The blue shift
of the absorption peak of Pep-CuNCs is consistent with the observation that the CuNCs
were smaller in size than 2 nm [33]. The wavelength of luminescent CuNCs was based on
the size of the nanoclusters’ cores. Figure 1 displays the emission spectra of Pep-CuNCs.
The blue emission peak of Cu NCs was detected at (λem) of 409 nm under the excitation
wavelength of (λex) of 360 nm. The quantum yield for the as-prepared Pep-CuNCs was
found to be 17%.
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3.2. Particles’ Characterizations

TEM, DLS, and SD analyses were carried out to detect the typical size and surface
morphology of the as-prepared Pep-CuNCs. Figure 2a,b shows the TEM data of the
CuNCs, indicating that the synthesized nanoclusters were significantly well-dispersed
and had uniform shapes with a similar diameter of approximately ~2 nm. Therefore, the
obtained findings confirm that the pepsin reduction procedure is a usefultechnique for
synthesizing copper nanoclusters, giving excellent results.. The DLS and size distribution
(SD) histograms (Figure 2b,d) reveal that the Pep-Cu-NCs formed uniform well-dispersed
clusters in the aqueous solution. The results were confirmed by the TEM measurements
and the main particle size was assessed to be ~2 nm.
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Figure 2. (a,b) TEM images, (c) DLS, and (d) SD histogram of the as-prepared Pep-CuNCs.

To detect the active chemical groups that exist in the Pep-CuNCs, IR spectra were
carried out. Figure 3 exhibits FTIR data of pure pepsin (blue) and the Pep-CuNCs (green),
respectively. The broad peak at 3300 and 2930 cm−1 coreresponds with the hydroxy
and C−H groups stretching on the surface of the nanoclusters and the natural protein.
Moreover, pepsin provides two main bands at 1642 and 1406 cm−1, resulting in the amide
I (C=O stretching) and amide II (CH3 asymmetric bending) peaks of the protein. On the
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other hand, the IR spectrum of surface-modified nanoclusters indicated that the strength
of the amide II peak was weakened in Pep-CuNCs. Also, the amide I band disappeared,
which may be attributed to the chelation of Cu atoms on CuNCs to pepsin. Additionally,
the differences between the spectra of pepsin and of the as-prepared nanoclusters prove
the chelation process was established through the present active sites of pepsin, such as
mercapto, carboxyl, and amino groups.
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To further characterize the electronic structures of the copper element in the nanoclus-
ters, XPS analyses were collected (Figure 4a). The Cu XPS 2p core level spectrum had two
sets of 2p bands; one set had Cu 2p3/2 and the other Cu 2p1/2. These bands localize at
930.7 and 950.6 eV correspondingly, indicating the presence of copper with low valance,
consisting of Cu and Cu(I) (Figure 4a) [34]. Additionally, the distinct peaks of Cu 2p3/2
at 931.77 eV and Cu 2p1/2 at 953.61 eV in combination with the main bands at 956.39 and
935.34 eV are typical characteristics of Cu(II), initiating from the predictable oxidation
of Cu/Cu(I) metal/[oxidant] in these nanoclusters. The XPs survey spectra shown in
Figure 4b reveals the existence of Cu, C, N, and O in the yield.
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3.3. Sensing Process

The quenching process of the Pep-CuNCs on diverse Pb(II) concentrations was also
studied. Figure 5a shows that the quenching influences happened instantly when Pb(II) was
added to the Pep-CuNCs aqueous solution, and the increment of quenching consequence
attained a constant value in less than 10 s. Such rapid response is of distinct significance in
different applications where particular samples can be examined immediately. Without
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Pb(II), Pep-CuNCs exhibited no considerable alteration in emission intensity during the
investigation test, which proved that the quenching influence was really due to the addition
of Pb(II). The as-synthesized Pep-CuNCs were remarkably unchanged under the optimum
synthesis conditions. The stability of CuNCs based on their fluorescence intensity was
examined and there was no significant decrease in the nanoclusters’ emission intensity at
room temperature for 12 h, enabling them to be adducted for several applications. Notably,
given the rapid turn-off process of Pep-CuNCs in the presence of Pb(II), it is conceivable
that a novel Pb(II) optical chemosensor may be acquired that can be applied to other
instruments that need several complicated preliminary steps for sample preparations.
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The sensitivity of the Pep-CuNCs-Pb(II) chemical system was examined by changing
the concentration of Pb(II) ions. Figure 5a displays the sensitivity of emission intensity to the
rising concentration of Pb(II), and its proportional reduction with no obvious change to the
peak maxima or peak shape of fluorescence spectra accompanying the emission quenching.
Furthermore, during the titrimetric reaction Pep-CuNCs-Pb(II), when Pb(II) concentration
reached 3 µM, the emission intensity was quenched, and no additional decrease took place.
Figure 5b shows the relation of the luminescence intensity of Pep-CuNCs at 409 nm to
Pb(II) concentration. The dynamic range of this significant reaction was between LOQ
(10/3 LOD) ~35 nM and 3 µM with square root R2 0.99923, which can be illustrated by the
classical Stern–Volmer equation, where I0/I = 1.0 + Ksv[Q] where I0 and I are the emission
intensity of Pep-CuNCs in the absence and presence of Pb(II), respectively, and Ksv is the
Stern–Volmer quenching constant. The Ksv value was calculated to be 2.7 × 106 M−1 based
on the slope of the Stern–Volmer equation. Also, the LOD of this system was estimated to
be 11.54 nM, supposing that the luminescence intensities were detected with a precision of
±1% [35]. The value of the LOD is considerably below the limit value of Pb (II) in drinking
water (72 nM)stated by the United States Environmental Protection Agency (EPA) [36].
Herein, this novel chemosensor delivered a significant LOD value which is a considerable
improvement on other applied fluorescence-determination techniques [37,38].

On consecutive additive of Pb(II) cations to the Pep-CuNCs, we noticed the fluores-
cence turn-off mechanism reach about 21.66% quenching regarding the existence of 0.25 µM
Pb(II) ions. On increased addition of Pb(II) to the Pep-CuNCs aqueous solution, the fluores-
cence intensity was 88.16% for ~3 µM Pb(II) concentration (Figure 5). The Pep-CuNCs-Pb(II)
“turn-off” mechanism to be proposed is as follows: the surface of the pepsin-stabilized
CuNCs was encased by Pb(II) with the existence of pepsin moiety as a reducing and stabi-
lizing agent. The Pb(II) ions interacted with Cu(I) at the surface of the copper nanocluster
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with significant electronic structure 5d10-Pb(II) and 3d10-Cu(I) metallophilic reaction to
stimulate quenching of the CuNCs’ fluorescence [39,40].

We still face a challenge for a complete understanding of the quenching mechanism
of Pep-CuNCs by Pb(II). Also, the mechanism could be attributed to the chelation of the
Pb(II) by the function groups of the aspartic acid that presented in the pepsin structure;
this brought the Pb(II) cations in the vicinity of the nanoclusters’ surface. The quenching
mechanism was produced by the metal-complex production between the pepsin molecules
on the surface of the nanoclusters and the studied metal ions Pb(II). However, this proposed
mechanism is supported by the DLS data (Figure 6). The size of CuNCs did not consid-
erably affect the presence of Pb(II) ions within different concentrations series involving
0.5, 1.0, 2.0, and 3.0 µM. No agglomeration was noticed for the studied samples. Therefore,
we established that the luminescence quenching of the CuNCs was not evolved by the
accumulation of Pep-CuNCs into larger particles.
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3.4. Selectivity and Reversibility

To investigate the Pep-CuNCs selectivity, the impacts of diverse metal cations on the
as-prepared Pep-CuNCs were examined under the same conditions in aqueous solution
(Figure 7a). No substantial emission intensity change was detected in the presence of these
studied cations, which confirms that CuNCs can successfully determine Pb(II) quantitively.
Moreover, EDTA solution greatly enhanced CuNCs’ fluorescence in the Pep-CuNCs-Pb(II)
system. Because Pb(II) cations react to the functional groups of EDTA molecule, there-
fore, Pb(II) was successfully liberated from the Pep-CuNCs surface, which restored the
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emission of CuNCs. Curiously, the recovery of Pep-CuNCs’ fluorescence was attained by
approximately 97.8% percent of the initial emission in the presence of EDTA, as shown in
Figure 7b. The fluorescence of CuNCs ddid not change as the number of cycles increased
and reached similar fluorescence after four cycles. Moreover, the kinetic alterations in
the cycles’ intensities produced significantly selective Pb(II) ions. Therefore, the recovery
shown by the Pep-CuNCs method for Pb(II) detection was acceptable over four cycles.
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3.5. Detection of Pb(II) Ions in Environmental Samples

The detection of Pb(II) metal ions using Pep-CuNCs in environmental samples (tape
and mineral water samples) was examined. The tested water samples were used directly
without any additional treatment. Moreover, certain Pb(II) metal ions concentrations
in Milli-Q water were added to the real samples. Notably, the net results are based on
the standard curve from the lab experiments. The concentrations of Pb(II) in tape and
mineral water samples were successfully determined. The results are given in Table 1; the
detection average recoveries are 96.20%, 98.90% and 99.10% for Pb(II) in tap water and
97.40%, 99.10% and 99.55% for Pb(II) in mineral water. The obtained results were compared
with the measured data from ICP-MS instruments, proving that this sensing technique is
promising for Pb(II) detection in environmental samples.

Table 1. Sensing of Pb(II) in environmental samples based on Pep-CuNCs as a promising sensor (n = 3).

Samples Added
Pb(II) µM

ICP-MS
µM

Found
µM

RSD
(%)

Recovery
(%)

Tap water
0.50 0.513 0.481 1.35 96.20
1.00 1.009 0.989 0.99 98.90
2.00 2.007 1.982 0.92 99.10

Mineral water
0.50 0.511 0.487 1.29 97.40
1.00 1.007 0.991 0.97 99.10
2.00 2.005 1.991 0.96 99.55

3.6. Cytotoxic Activity

The anticancer activity of the synthesized compound was tested on a series of cancer
cell lines, namely, human epidermoid carcinoma (A431), colorectal carcinoma (HCT-116),
prostate adenocarcinoma (PC3), lung adenocarcinoma (A-549), breast cancer adenocarci-
noma (MCF-7), pancreatic carcinoma (PaCa2) and osteocarcinoma (HOS) cancer cells, using
the MTT assay [30–32]. The results are shown in Tables 1 and 2 and Figure 8, expressed in
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Table 2 as the cytotoxic effect of the samples at values of 100 µM and IC50 which reflect the
effect of the synthesized particle on the cancer cells in the current investigation.
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Table 2. Activity of Pep-CuNCs on different human tumor cell lines.

Cell Activity at 100 µM IC50 (µM)

A431 25.1 ± 2.3 -
HCT116 28.9 ± 7.4 -

PC3 57.9 ± 4.8 -
A549 35.2 ± 1.6 -
MCF7 45.9 ± 0.3 104.4 ± 16, r2 = 0.94
PaCaII 4.6 ± 1.9 -
HOS 42.9 ± 0.9 -

The results showed that the tested particle generally displayed its activity against the
majority of cancer cell lines in a dose-dependent manner (Table 3). The tested compound
Pep-CuNCs revealed a degree of selectivity against certain cancer cells (HOS, MCF7 and
PC3) while the others tested were capable of only weak influence. It has been found that
the HOS cancer cell was the most susceptible cell under all tested concentrations. The
highest inhibition was observed for the PC3 at 100 µM, revealing 57.9 ± 4.8 as a percentage
of inhibition. Furthermore, the cancer cells most susceptible to the action of the tested
particle were identified as MCF7 and PC3 at 100 µM cells, while the least affected cancer
cells tested were the HCT116 and PaCall cell lines. A significant difference can be observed
in the displayed activity results for cells such as PC3 and PyCall.

Table 3. Activity of Pep-CuNCs on tumor cell lines.

Cell 100 µM 50 µM 25 µM 12.5 µM

HOS 42.9 ± 0.9 50.9 ± 1.3 40.8 ± 2.4 17.8 ± 1.6
MCF7 45.9 ± 0.3 29.2 ± 0.5 3.6 ± 2.2 0.0 ± 0.0
PC3 57.9 ± 4.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
A549 35.2 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
A431 25.1 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 21.4 ± 2.1

HCT116 28.9 ± 7.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
PaCaII 4.6 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Interestingly, minimal effects were observed for all the compounds tested on the RPE1
Human retinal pigment epithelial normal cell line at the studied concentrations (100, 50, 25
and 12.5 µM), which revealed interesting selectivity of activity against cancer cells without
affecting normal cells.
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4. Conclusions

This study firstly reports that Pep-CuNCs can be produced by a simple eco-friendly
microwave-assisted approach, using pepsin enzyme as a capping and reducing agent. We
synthesized an optical nanosensor based on CuNCs to sense Pb(II) ions. The considerable
chelation attendance of the pepsin on CuNCs to Pb(II) metal ions led to quenching of the
intensity of fluorescence in the nanoclusters, accompanying the quantitative detection of
Pb(II). The applied Pep-CuNCs sensor displayed a high selectivity to Pb(II) ions in the
presence of different types of metal ions. The reversibility of the sensor was examined in
the presence of EDTA and results showed high recovery performance for four cycles. The
proposed work was to effectively determine Pb(II) metal ions in real samples. The activity
of Pep-CuNCs on various human tumor cell lines was examined and the results show that
the Pep-CuNCs exhibited their activity against the cancer cells in a dose-dependent way in
terms of the detected behavior against most utilized cancer cells lines. Finally, this method
is suitable for precise quantitative determination of the hazardous metal ion in the study.
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