Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Molecular Operating Environment (MOE)-Docking Simulation of Aptamer Bound to DEX
2.4. Molecular Dynamics Simulation
2.5. Preparation of Au NPs
2.6. Aptamer Biosensor for Detecting DEX
2.7. Selectivity Assay
2.8. Application in Milk and Glucosamine Samples
3. Results and Discussion
3.1. MOE-Docking and MD Simulation Results
3.2. The Operation Principle of the Developed Aptasensor
3.3. Optimization of Experimental Conditions
3.4. Quantitative Determination of DEX
3.5. Selectivity of the Assay for DEX Detection
3.6. Detection of DEX in Milk and Glucosamine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ollier, S.; Beaudoin, F.; Vanacker, N.; Lacasse, P. Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress. J. Dairy Sci. 2016, 99, 9949–9961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhao, Z.; Li, Y.; Zhang, X.; Li, B.; Chen, L.; Wang, H. Course-, dose-, and stage-dependent toxic effects of prenatal dexamethasone exposure on fetal articular cartilage development. Toxicol. Lett. 2018, 286, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Sun, Y.H.; Zhu, Y.; Zhong, Z.T.; Shi, J.Y.; Fan, C.H.; Huang, Q. Conjugation of dexamethasone to C60 for the design of an anti-inflammatory nanomedicine with reduced cellular apoptosis. ACS Appl. Mater. Interfaces 2013, 5, 5291–5297. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 508/1999 of 4 March 1999. Off. J. Eur. Commun. Legis. 1999, L60, 508. [Google Scholar]
- European Commission. Commission Regulation (EC) No 2535/2000 of 17 November 2000. Off. J. Eur. Commun. Legis. 2000, L291, 2535. [Google Scholar]
- Liang, Q.L.; Qu, J.; Luo, G.A.; Wang, Y.M. Rapid and reliable determination of illegal adulterant in herbal medicines and dietary supplements by LC/MS/MS. J. Pharm. Biomed. 2006, 40, 305–311. [Google Scholar] [CrossRef]
- Barbera, S.; Biolatti, B.; Divari, S.; Cannizzo, F.T. Meat quality traits and canonical discriminant analysis to identify the use of illicit growth promoters in Charolais bulls. Food Chem. 2019, 300, 125173. [Google Scholar] [CrossRef]
- Champagne, A.B.; Emmel, K.V. Rapid screening test for adulteration in raw materials of dietary supplements. Vib. Spectrosc. 2011, 55, 216–223. [Google Scholar] [CrossRef]
- Mikiewicz, M.; Otrocka-Domagała, I.; Paździor-Czapula, K.; Rotkiewicz, T. Influence of long-term, high-dose dexamethasone administration on proliferation and apoptosis in porcine hepatocytes. RVSc 2017, 112, 141–148. [Google Scholar] [CrossRef]
- Ma, L.; Fan, X.; Jia, L.; Wang, J.; Wang, S.; Zhao, L. Multiresidue analysis of glucocorticoids in milk by LC–MS/MS with low-temperature purification and dispersive solid-phase extraction. J. Mater. Sci. 2017, 40, 2759–2768. [Google Scholar] [CrossRef]
- Mens SP, V.; Meijvis, S.; Grutters, J.C.; Vlaminckx, B.; Rijkers, G.T. Dexamethasone Treatment Has No Effect on the Formation of Pneumococcal Antibodies during Community-Acquired Pneumonia. Clin. Vaccine Immunol. 2012, 19, 811–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, A.; Shimanoe, C.; Tanaka, K.; Ichiba, M.; Hara, M. Development of suitable method for large-scale urinary glucocorticoid analysis by liquid chromatography–mass spectrometry. J. Chromatogr. B 2017, 1057, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505. [Google Scholar] [CrossRef] [PubMed]
- Phanchai, W.; Srikulwong, U.; Chompoosor, A.; Sakonsinsiri, C.; Puangmali, T. Insight into the Molecular Mechanisms of AuNP-Based Aptasensor for Colorimetric Detection: A Molecular Dynamics Approach. Langmuir 2018, 34, 6161–6169. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Satyanarayana, M.; Kummari, S.; Gobi, K.V. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim. Acta 2019, 187, 29. [Google Scholar] [CrossRef]
- Perwein, M.K.E.; Smestad, J.; Warrington, A.E.; Heider, R.M.; Kaczor, M.W.; Maher, L.J.; Wootla, B.; Kunbaz, A.; Rodriguez, M. A comparison of human natural monoclonal antibodies and aptamer conjugates for promotion of CNS remyelination: Where are we now and what comes next? Expert Opin. Biol. Ther. 2018, 18, 545–560. [Google Scholar] [CrossRef]
- de Franciscis, V. Challenging cancer targets for aptamer delivery. Biochimie 2018, 145, 45–52. [Google Scholar] [CrossRef]
- Mehennaoui, S.; Poorahong, S.; Jimenez, G.C.; Siaj, M. Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor. Sci. Rep. 2019, 9, 6600. [Google Scholar] [CrossRef]
- Zhang, M.W.; Cao, X.; Li, H.; Guan, F.; Guo, J.; Shen, F.; Luo, Y.; Sun, C.; Zhang, L. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Food Chem. 2012, 135, 1894–1900. [Google Scholar] [CrossRef]
- Zhao, W.A.; Brook, M.A.; Li, Y.F. Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. ChemBioChem 2008, 9, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Haiss, N.W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Wu, Y.G.; Liu, L.; Zhan, S.S.; Wang, F.Z.; Zhou, P. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on a surfactant-induced aggregation of gold nanoparticles. Analyst 2012, 137, 4171. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Chen, X.M.; Liu, Z.W.; Wang, J.; Hua, Q.C.; Liang, J.X.; Shen, X.; Xu, Z.L.; Lei, H.T.; Sun, Y.M. Latex microsphere immunochromatography for quantitative detection of dexamethasone in milk and pork. Food Chem. 2021, 345, 128607. [Google Scholar] [CrossRef] [PubMed]
- Primpray, V.; Chailapakul, O.; Tokeshi, M.; Rojanarata, T.; Laiwattanapaisal, W. A paper-based analytical device coupled with electrochemical detection for the determination of dexamethasone and prednisolone in adulterated traditional medicines. Anal. Chim. Acta 2019, 1078, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Mora, L.; Navarro, J.L.; Toldrá, F. A chromatography method for the screening and confirmatory detection of dexamethasone. Meat Sci. 2006, 74, 676–680. [Google Scholar] [CrossRef]
- Fatahi, A.; Malakooti, R.; Shahlaei, M. Electrocatalytic oxidation and determination of dexamethasone at a Fe3O4/PANI-Cu-II microsphere modified carbon ionic liquid electrode. RSC Adv 2017, 7, 11322–11330. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Park, J.; Kim, J.; Kim, C. HPLC Determination of Dexamethasone in Human Plasma. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 2293–2306. [Google Scholar] [CrossRef]
- Jeyaseelan, C.; Joshi, A. Trace determination of dexamethasone sodium phosphate in pharmaceutical formulations by differential pulse polarography. Anal. Bioanal. Chem. 2002, 373, 772–776. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Soares, J.E.S.; de Lima-Neto, P. Square-wave adsorptive voltammetry of dexamethasone: Redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations. Anal. Biochem. 2011, 413, 148–156. [Google Scholar] [CrossRef]
- Zhang, S.W.; Sun, Y.Y.; Sun, Y.M.; Wang, H.; Shen, Y.D. Semiquantitative immunochromatographic colorimetric biosensor for the detection of dexamethasone based on up-conversion fluorescent nanoparticles. Mikrochim. Acta 2020, 187, 447. [Google Scholar] [CrossRef] [PubMed]
Sample | Added (nmol/mL) | Recovery |
---|---|---|
glucosamine | 100 | (104 ± 3.2)% |
200 | (109.6 ± 2.5)% | |
300 | (100.7 ± 5.1)% | |
milk | 100 | (114 ± 4.8)% |
200 | (93.6 ± 4.8)% | |
300 | (117 ± 2.9)% |
Method | Linear Range | LOD | Applications | Recovery | Ref. |
---|---|---|---|---|---|
Electrochemical aptasensor | 2.5–100 nM | 2.12 nM | tab water and drinking water | 81.5–103.2% | [19] |
Immunochromatography | – | Milk: 0.3 ng/mL pork: 0.7 μg/kg | milk and pork | 80.0–122.8% | [24] |
Electrochemical aptasensor | 10–500 μg/mL | 3.59 μg/mL | herbal medicine samples | - | [25] |
HPLC | – | water = 6 ng/mL Feed = 190 ng/g | water and feed for meat-producing animals | 99.4 ± 1.3% | [26] |
Electrochemical sensor | 0.05 to 30 mM | 3.0 nM | human urine and serum samples | 97.0–102.0% | [27] |
HPLC | – | 10 ng/mL | human plasma | 96.96–106.07% | [28] |
Hanging mercury drop electrode | 25.5–122.3 µM | 7.6 µM | drug sample | 99.8–100% | [29] |
Square-wave adsorptive voltammetry | 0.0498–0.61 µM | 2.54 nM | eye drops, injectable, elixir | 94.14–112.41% | [30] |
Colorimetric biosensor | 0.1–9 ng/mL | 2.0 μg/kg | food supplements and cosmetic samples | – | [31] |
Colorimetric biosensor | 10–350 nmol/mL | 0.5 nmol/mL | milk and glucosamine | 93.6–117% | this assay |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Bubiajiaer, H.; Yao, J.; Zhang, M. Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food. Biosensors 2022, 12, 242. https://doi.org/10.3390/bios12040242
Qin Y, Bubiajiaer H, Yao J, Zhang M. Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food. Biosensors. 2022; 12(4):242. https://doi.org/10.3390/bios12040242
Chicago/Turabian StyleQin, Yadi, Hayilati Bubiajiaer, Jun Yao, and Minwei Zhang. 2022. "Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food" Biosensors 12, no. 4: 242. https://doi.org/10.3390/bios12040242
APA StyleQin, Y., Bubiajiaer, H., Yao, J., & Zhang, M. (2022). Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food. Biosensors, 12(4), 242. https://doi.org/10.3390/bios12040242