Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Tween 80-Coated Polyaniline (TPAni) Nanoparticles
2.3. Fabrication of TPAni Nanoparticles Containing Filter Paper Sensor Platform
2.4. Fabrication of Colorimeter
2.5. Quantification of Color Change in TPAni Paper Sensor Platform Using Colorimeter
2.6. Human Sweat Sampling
3. Results and Discussion
3.1. Colorimetric Properties of TPAni Nanoparticles
3.2. Availability of PAni as a Filter Paper-Based Sensor Platform
3.3. Capability of TPAni Paper Sensor Platform for Colorimetric Sensing
3.4. Colorimetric Ability of TPAni Paper Sensor Platform for Sensing Lactate in Human Sweat
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishiyama, K.; Mizukami, R.; Kuki, S.; Ishida, A.; Chida, J.; Kido, H.; Maeki, M.; Tani, H.; Tokeshi, M. Electrochemical Enzyme-Based Blood ATP and Lactate Sensor for a Rapid and Straightforward Evaluation of Illness Severity. Biosens. Bioelectron. 2022, 198, 113832. [Google Scholar] [CrossRef] [PubMed]
- Matoori, S.; Mooney, D.J. Near-Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small 2020, 16, 2000369. [Google Scholar] [CrossRef] [PubMed]
- Barham, D.; Trinder, P. An Improved Colour Reagent for the Determination of Blood Glucose by the Oxidase System. Analyst 1972, 97, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Tatsuma, T.; Watanabe, T. Oxidase/Peroxidase Bilayer-Modified Electrodes as Sensors for Lactate, Pyruvate, Cholesterol and Uric Acid. Anal. Chim. Acta 1991, 242, 85–89. [Google Scholar] [CrossRef]
- Andina, D.; Leroux, J.-C.; Luciani, P. Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chem.—A Eur. J. 2017, 23, 13549–13573. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.W.; Tulyathan, O.; Isacoff, E.Y.; Chang, C.J. Molecular Imaging of Hydrogen Peroxide Produced for Cell Signaling. Nat. Chem. Biol. 2007, 3, 263–267. [Google Scholar] [CrossRef]
- Reth, M. Hydrogen Peroxide as Second Messenger in Lymphocyte Activation. Nat. Immunol. 2002, 3, 1129–1134. [Google Scholar] [CrossRef]
- Sobotta, M.C.; Liou, W.; Stöcker, S.; Talwar, D.; Oehler, M.; Ruppert, T.; Scharf, A.N.D.; Dick, T.P. Peroxiredoxin-2 and STAT3 Form a Redox Relay for H2O2 Signaling. Nat. Chem. Biol. 2015, 11, 64–70. [Google Scholar] [CrossRef]
- Romero, M.R.; Ahumada, F.; Garay, F.; Baruzzi, A.M. Amperometric Biosensor for Direct Blood Lactate Detection. Anal. Chem. 2010, 82, 5568–5572. [Google Scholar] [CrossRef]
- Rassaei, L.; Olthuis, W.; Tsujimura, S.; Sudhölter, E.J.R.; van den Berg, A. Lactate Biosensors: Current Status and Outlook. Anal. Bioanal. Chem. 2014, 406, 123–137. [Google Scholar] [CrossRef]
- Md Shakhih, M.F.; Rosslan, A.S.; Noor, A.M.; Ramanathan, S.; Lazim, A.M.; Wahab, A.A. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. J. Electrochem. Soc. 2021, 168, 67502. [Google Scholar] [CrossRef]
- Moser, I.; Jobst, G.; Urban, G.A. Biosensor Arrays for Simultaneous Measurement of Glucose, Lactate, Glutamate, and Glutamine. Biosens. Bioelectron. 2002, 17, 297–302. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.E.; Zamarayeva, A.; Pister, V.I.; Yamamoto, N.A.D.; Arias, A.C. Printed, Flexible Lactate Sensors: Design Considerations before Performing On-Body Measurements. Sci. Rep. 2019, 9, 13720. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, J.M.; Tran, H.D.; Tung, V.C.; Tucker-Schwartz, A.K.; Wong, R.P.; Yang, Y.; Kaner, R.B. Versatile Solution for Growing Thin Films of Conducting Polymers. Proc. Natl. Acad. Sci. USA 2010, 107, 19673–19678. [Google Scholar] [CrossRef] [Green Version]
- Kamikawa, T.L.; Mikolajczyk, M.G.; Kennedy, M.; Zhang, P.; Wang, W.; Scott, D.E.; Alocilja, E.C. Nanoparticle-Based Biosensor for the Detection of Emerging Pandemic Influenza Strains. Biosens. Bioelectron. 2010, 26, 1346–1352. [Google Scholar] [CrossRef]
- Gowda, S.R.; Leela Mohana Reddy, A.; Zhan, X.; Ajayan, P.M. Building Energy Storage Device on a Single Nanowire. Nano Lett. 2011, 11, 3329–3333. [Google Scholar] [CrossRef]
- Lee, T.; Kim, C.; Kim, J.; Seong, J.B.; Lee, Y.; Roh, S.; Cheong, D.Y.; Lee, W.; Park, J.; Hong, Y.; et al. Colorimetric Nanoparticle-Embedded Hydrogels for a Biosensing Platform. Nanomaterials 2022, 12, 1150. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef]
- Hong, Y.; Hwang, S.; Heo, D.; Kim, B.; Ku, M.; Lee, E.; Haam, S.; Yoon, D.S.; Yang, J.; Suh, J.-S. A Magnetic Polyaniline Nanohybrid for MR Imaging and Redox Sensing of Cancer Cells. Nanoscale 2015, 7, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lee, E.; Choi, J.; Haam, S.; Suh, J.-S.; Yang, J. Biomarker-Specific Conjugated Nanopolyplexes for the Active Coloring of Stem-like Cancer Cells. Nanotechnology 2016, 27, 225101. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hong, Y.; Lee, E.; Kim, M.-H.; Yoon, D.S.; Suh, J.; Huh, Y.; Haam, S.; Yang, J. Redox-Sensitive Colorimetric Polyaniline Nanoprobes Synthesized by a Solvent-Shift Process. Nano Res. 2013, 6, 356–364. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Kim, H.J.; Yun, J.; Lee, T.; Lee, G.; Kim, H.S.; Hong, Y. Quantification of Doping State of Redox Sensitive Nanoparticles for Probing the Invasiveness of Cancer Cells Using Surface Enhanced Raman Scattering. Mater. Today Bio 2022, 14, 100241. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Hwang, S.; Yoon, D.S.; Yang, J. Scattering Analysis of Single Polyaniline Nanoparticles for Acidic Environmental Sensing. Sens. Actuators B Chem. 2015, 218, 31–36. [Google Scholar] [CrossRef]
- Lee, T.; Kim, I.; Cheong, D.Y.; Roh, S.; Jung, H.G.; Lee, S.W.; Kim, H.S.; Yoon, D.S.; Hong, Y.; Lee, G. Selective Colorimetric Urine Glucose Detection by Paper Sensor Functionalized with Polyaniline Nanoparticles and Cell Membrane. Anal. Chim. Acta 2021, 1158, 338387. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, D.A.; Shkurnikov, M.U.; Vagin, M.Y.; Yashina, E.I.; Karyakin, A.A.; Tonevitsky, A.G. Relationship between Lactate Concentrations in Active Muscle Sweat and Whole Blood. Bull. Exp. Biol. Med. 2010, 150, 83–85. [Google Scholar] [CrossRef]
- Derbyshire, P.J.; Barr, H.; Davis, F.; Higson, S.P.J. Lactate in Human Sweat: A Critical Review of Research to the Present Day. J. Physiol. Sci. 2012, 62, 429–440. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Park, I.; Pack, S.P.; Lee, G.; Hong, Y. Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter. Biosensors 2022, 12, 248. https://doi.org/10.3390/bios12040248
Kim HJ, Park I, Pack SP, Lee G, Hong Y. Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter. Biosensors. 2022; 12(4):248. https://doi.org/10.3390/bios12040248
Chicago/Turabian StyleKim, Hyun Jung, Insu Park, Seung Pil Pack, Gyudo Lee, and Yoochan Hong. 2022. "Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter" Biosensors 12, no. 4: 248. https://doi.org/10.3390/bios12040248
APA StyleKim, H. J., Park, I., Pack, S. P., Lee, G., & Hong, Y. (2022). Colorimetric Sensing of Lactate in Human Sweat Using Polyaniline Nanoparticles-Based Sensor Platform and Colorimeter. Biosensors, 12(4), 248. https://doi.org/10.3390/bios12040248