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Abstract: Diagnosing COVID-19 accurately and rapidly is vital to control its quick spread, lessen
lockdown restrictions, and decrease the workload on healthcare structures. The present tools to detect
COVID-19 experience numerous shortcomings. Therefore, novel diagnostic tools are to be examined
to enhance diagnostic accuracy and avoid the limitations of these tools. Earlier studies indicated
multiple structures of cardiovascular alterations in COVID-19 cases which motivated the realization
of using ECG data as a tool for diagnosing the novel coronavirus. This study introduced a novel
automated diagnostic tool based on ECG data to diagnose COVID-19. The introduced tool utilizes ten
deep learning (DL) models of various architectures. It obtains significant features from the last fully
connected layer of each DL model and then combines them. Afterward, the tool presents a hybrid
feature selection based on the chi-square test and sequential search to select significant features.
Finally, it employs several machine learning classifiers to perform two classification levels. A binary
level to differentiate between normal and COVID-19 cases, and a multiclass to discriminate COVID-19
cases from normal and other cardiac complications. The proposed tool reached an accuracy of 98.2%
and 91.6% for binary and multiclass levels, respectively. This performance indicates that the ECG
could be used as an alternative means of diagnosis of COVID-19.

Keywords: deep learning; COVID-19; ECG trace image; transfer learning; Convolutional Neural
Networks (CNN); feature selection

1. Introduction

At the end of December 2019, the world faced a new type of threatening disease called
coronavirus, commonly known as COVID-19 [1]. Based on statistics announced by the
World Health Organization (WHO) [2], more than 190 million cases of COVID-19 and
more than 4 million cases of mortality have been reported worldwide on 31 July 2021. Due
to the rapid propagation and the massive increase in the number of new infections of
such a disease, the world faced new challenges [3]. These challenges involved travel con-
straints, countries’ lockdown, social distancing, and curfews. Most importantly, healthcare
associations of many countries were about to collapse due to the superfluous number of
COVID-19 infections that needed beds and deficiencies in vital medical kits and supplies.
Consequently, the rapid and precise diagnosis of COVID-19 is important to lower mortality
rates and avert the encumbrance on health organizations.

Based on the COVID-19 diagnosis provided by the Chinese government, the real-
time reverse transcription-polymerase chain reaction (RT-PCR) test is the gold standard
for the diagnosis of COVID-19 [4]. However, late sample acquisition, firm laboratory
setting restrictions, and the requirement of qualified experts to perform the RT-PCR exam
could lead to a prolonged and inaccurate diagnosis [5]. Therefore, more efficient methods
are needed to achieve a more precise and faster diagnosis. Among these approaches
are antigen tests and medical imaging, including computed tomography (CT) and X-ray
imaging techniques. Although COVID-19 antigen tests are faster and cheaper than the
RT-PCR test, they very often produce inaccurate results. The major limitation of antigen
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tests is their low sensitivity, leading to high false negative outcomes, therefore it is not
recommended by the WHO [6]. Moreover, it has been reported to have lower sensitivity
compared to RT-PCR tests [7]. On the other hand, CT and X-ray imaging modalities play an
important role in the diagnosis of lung-related abnormalities. Numerous research articles
have proven the ability of the X-ray and CT modalities to achieve more accurate results
than RT-PCR [8,9]. However, these imaging modalities require the presence of a skilled
specialized radiologist to perform the diagnosis. Furthermore, the COVID-19 diagnosis
procedure is difficult due to the symmetry among the patterns of the new coronavirus and
other sorts of similar diseases [10]. Furthermore, the manual investigation requires a long
time and thus automatic diagnostic tools are compulsory to decrease observation time and
exertion achieved by experts to perform the diagnosis and produce a precise decision.

Artificial intelligence (AI) techniques aim to create automated diagnostic tools capable
of analyzing medical data (such as images and bio-signals) simply and fast. They have
been utilized successfully to enhance prognosis and diagnosis of various disorders and
diseases [11–20]. The ability of AI techniques to facilitate the new coronavirus has been
proven in the survey article [21]. Currently, deep learning (DL) approaches are widely
used to construct automated diagnostic tools using radiograph images to support the
diagnosis of COVID-19 and avoid the challenges of manual inspection [22,23]. Regardless
of the achievements of DL methods in diagnosing COVID-19 using radiographic images,
these scanning techniques have some limitations. These shortcomings include high cost,
immobility, exposure to a large amount of radiation, and the requirement for qualified
technicians to acquire these images [24]. Hence, new diagnostic tools based on other
modalities are needed to assist in COVID-19 diagnosis whilst the epidemic persists.

It is well-known that COVID-19 primarily affects the respiratory system; however,
it also affects the cardiovascular system [25,26]. Numerous research articles have shown
various types of cardiovascular alterations in people with COVID-19. These variations
involve divergence of the ST segment of the PR interval [27], arrhythmias [28], QRST
changes, and conduction disorders [25]. These cardiac variations can be visualized on
the electrocardiogram (ECG) of patients with COVID-19. Such cardiovascular modifica-
tions [29] have promoted the study of ECG data as a new means of diagnosing the novel
coronavirus. Looking at the huge advantages of using ECG, including low cost, mobility,
simplicity of use, safe, harmless, and providing real-time monitoring, automated diagnostic
tools for COVID-19 based on ECG data could be of significant value in addition to imaging
modalities and PCR exams. Thus, further investigation is needed to verify the feasibility of
using ECG for the diagnosis

Related Studies

The conventional method to study ECG data by AI is to mine traditional handcrafted
features and employ them to train machine learning classifiers. These methods have
previously been used to identify cardiac anomalies from ECG records. Numerous re-
search articles used such methods based on 1D ECG signals to detect several cardiac
problems [30–34]. However, these methods generally require a trade-off between accuracy
and computation load and are subjective to errors [11,35]. Conversely, DL was recently
employed to examine ECG by automatically attaining valuable features, thus avoiding
the disadvantages of handcrafted methods [36,37]. Many studies have shown that ECG
1D signals converted to 2D demonstrations have better performance and benefits than
1D-based models [38,39]. Several studies analyzed and converted 1D to 2D ECG using
transform domains such as short-term frequency transform and wavelet transform [38–44]
and used them with DL techniques. Many studies used several forms of DL models to
detect abnormalities in ECG signals [45–49]. It is worth mentioning the great efforts that
were made by the PhysioNet/Computing in Cardiology Challenge in 2020 and 2021 to
stimulate the multitype arrhythmia classification over annotated databases with thousands
of 12-lead ECG recordings [50,51]. Despite the success of previous studies in detecting
cardiac complications from ECG signals, it could not be easily used in real clinical practice
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as the above methods mainly rely on ECG signals; however, in real medical practice, this is
regularly not the usual scenario. Because the ECG data taken in real clinical practice are
acquired and stored as 2D ECG trace images [52]. Unlike the digital ECG signal acquired
using wearable sensors, which contain multiple clean and well-detached leads, the ECG
trace image data acquired in real practice are ambiguous. Such a trace image has an overlay
between ECG waveforms collected from different leads and the rigid surrounding minor
axes that raise hardness in mining significant information precisely. Furthermore, in digital
ECG signals, that data is collected in hundreds of hertz as a sampling frequency; however,
in real medical practice, the ECG data are acquired in few hertz, which results in a huge
degradation in the quality of the data which correspondingly impacts the classification
performance of AI-based models. One possible solution to resolve that issue is to turn
the trace image into a digital ECG signal [53]. However, this conversion is complex, and
the converted signal is of low quality due to the extensive noise generated by the conver-
sion [54]. Even with the great capabilities of DL methods, this noise hinders DL techniques
in detecting the small variations among different cardiac anomalies, which is the major
component of cardiac complications diagnosis.

The abovementioned issues obstruct the digital ECG signals from being used in real-
world clinical practice which collects ECG records as trace images. Therefore, some research
articles used direct ECG trace images to identify several cardiac complications using AI
techniques. The authors in [55] proposed a system to detect myocardial infarctions from
ECG trace images. Their system contained multiple divisions based on shallow artificial
neural networks (ANN) that used 12-lead ECG, achieving an accuracy of 94.73%. In [56], a
discrete wavelet transform (DWT) was used to obtain significant features from the trace
images using the ‘Haar’ wavelets. An ANN was constructed to differentiate between
normal and abnormal ECG patterns, obtaining an accuracy of 99%. In [57], five hand-made
feature extraction methods along with five classifiers were used to recognize two categories
of cardiac arrhythmias. The highest accuracy of 96% was achieved using local binary
patterns and ANN. On the other hand, Du et al. [58] proposed a DL pipeline to identify
several cardiac diseases. The pipeline determined the prospective distinctive regions and
adaptively merged them. Next, a recurrent neural network was employed and attained
a sensitivity and precision of 83.59% and 90.42%, respectively. The MobileNet v2-deep
DL method was utilized in [59] to identify four cardiac complications with 98% accuracy.
In [60], DenseNet was trained with ECG trace images to predict strokes and achieved
85.82% accuracy.

The promising performance achieved using the formerly discussed methods based
on ECG trace images triggered the investigation of the possibility of employing this type
of ECG data with DL techniques to diagnose COVID-19. An acknowledgment must be
made of the recently published public data [61] which has helped to achieve the suggested
target. This data has ECG images of patients with COVID-19 and other cardiac findings. To
the best of our knowledge, up to today, four studies have utilized this dataset to examine
the potential of using ECG trace images in the new diagnosis of coronavirus. This dataset
was used in [62] to study the impact of employing various enhancement methods on the
diagnosis of COVID-19 using EfficientNet trained with ECG trace images. The paper
concluded that augmentation methods are useful to some extent; nevertheless, exceeding
this extent will lower the performance. An 81.8% maximum accuracy was achieved.
Whereas in [63], six DL approaches were utilized to identify COVID-19 from other cardiac
findings in two classification categories. Alternatively, in [64], hexaxial feature and Gray-
Level Co-occurrence Matrix (GLCM) approaches were employed to extract considerable
features and generate hexaxial mapping images. The created images were fed to DL
methods to distinguish COVID-19 from other images as a binary classification category
with a precision of 96.2%. The study [65] extracted deep features from two layers of several
CNNs to an accuracy of 97.73% and 98.8% for multiclass and binary classification problems.

These previous studies experienced numerous shortcomings. Initially, the tool imple-
mented in [64] performed only using binary classification category; however, the multiclass
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problem is more complicated and essential but was not considered. Furthermore, the hexax-
ial feature mapping utilized in it is quite sensitive to image quality, which correspondingly
influences the extraction process of the GLCM procedure. The classification results obtained
in the tool presented in [62] were considerably low and therefore cannot be reliable. The
number of samples and features used in the testing process of the tool introduced in [63]
was small, leading to a probable bias. The study [65] used a huge number of features to
build their model. On the other hand, the tools proposed in [62,63,66] were based on indi-
vidual DL models to perform the feature extraction or classification procedure. However,
the research articles [67,68] confirmed that the incorporation of features of numerous DL
approaches has the capacity to improve the classification results.

This study examined the viability of utilizing ECG information for COVID-19 diag-
nosis via presenting a novel diagnostic tool using various AI methods. The proposed tool
attempts to overcome the limitations of the previous studies by incorporating several DL
techniques and using a hybrid feature selection approach to reduce the number of features
used to train the classification models. The classification procedure of the proposed tool is
performed on two levels. The primary level aims to classify the ECG data to COVID-19 and
normal cases (binary class level). The second level is multiclass to distinguish COVID-19
cases from normal and other cardiac complications.

2. Materials and Methods
2.1. ECG Dataset

The proposed diagnostic tool uses a recent dataset that is public [61], including images
of ECG records for patients with COVID-19 and other cardiac problems. Until now, to the
best of our knowledge, this is the primary and single public dataset for ECG records of
COVID-19. ECG images available in the dataset are 1937 of distinct categories. The dataset
consists of 250 scans of cases with the novel coronavirus, 300 trace records of cases with
a present or former myocardial infarction (MI), 548 ECG records of irregular heartbeats,
and 859 normal images without any heart complications as shown in Table 1. Data were
acquired using a 12-lead system with a sampling frequency equal to 500 Hz through an
EDAN SE-3 series 3-channel electrocardiograph. Table 1 also illustrates the number of
images used for the training and validation sets of the proposed tool. The dimension of the
images varied from 952 × 1232 to 2213 × 1572. The x-scale is 25 mm/s, and the y-scale is
10 mm/volt. Six ECG electrodes were placed on the chest representing six precordial leads.
Another three electrodes were placed on the two arms and left leg representing six limb
leads, including augmented voltage right (AVR), augmented voltage left (AVL), augmented
voltage foot (AVF), Lead I, II, and III. The images of the dataset were evaluated by medical
professionals using a telehealth ECG diagnostic scheme. This evaluation was carried out
under the supervision of expert cardiologists who had long experience in ECG annotation
and exploration. These medical experts removed all uncertain, ambiguous, and misleading
images from the dataset.

In the binary classification level (normal versus COVID-19), 250 normal and 250 novel
coronavirus records were utilized. Whereas in the multiclass classification level, a total of
750 images were employed, 250 for cardiac complications, 250 for normal cases, and 250
for COVID-19 cases. To avoid the classification bias that occurs due to the class imbalance
structure of the ECG dataset (the number of images per class is not equal) that affects the
classification process, an equal number of images was selected and used for each class
to train the classification models. An ECG trace record sample for a COVID-19 patient is
shown in Figure 1.
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Table 1. Description of the ECG dataset including the number of available ECG images per class and
the number of images used in the proposed study.

Class
Number of
Available

Images

Images Used in
the Proposed

Study

Images
Used in
Training

Images
Used in

Validation

COVID-19 250 250 175 75

Normal 859 250 175 75

Cardiac Abnormalities
include: 848 250 175 75

• Irregular
Heartbeats 548 125 88 37

• Current and
Recovered MI 300 125 88 37

Figure 1. An ECG trace record sample for a COVID-19 patient.

2.2. Proposed Tool

The proposed automated tool consists of four steps: ECG trace image preprocessing,
deep feature extraction and feature incorporation, hybrid feature selection, and classifi-
cation. The proposed method used ten DL approaches. Figure 2 shows a diagram that
describes the steps of the proposed diagnostic tool.

DL is an emerging technology that has been widely employed in several fields. DL
approaches are the recent class of machine learning (ML). They consist of numerous
architectures; however, convolution neural networks (CNNs) are the architectures most
widely used for medical images [69]. Therefore, the proposed diagnostic tool utilizes
ten CNNs of various architectures. These networks include InceptionResNet, ResNet-18,
ResNet-50, ShuffleNet, Inception V3, MobileNet, Xception, DarkNet-19, DarkNet-53, and
DenseNet-201.

Inception V3 Google proposed the Inception CNN architecture in 2016 [70]. It is a
newer version of GoogleNet [71], but with some modifications. It was first introduced
to run well with reduced memory requirements and computational cost. Its principal
component is the inception unit which merges numerous filters into a novel filter structure
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which correspondingly lowers the number of parameters. To expand the information
stream into the network, the Inception module considered the depth as well as the width of
the layers during the construction of the network [72].

Figure 2. A diagram describing the steps of the proposed diagnostic tool.

ResNet is one of the time-efficient CNNs that gained popularity due to its novel
structure created by He et al. in 2015 [73]. ResNet counts on the residual block which
embeds crosscuts in the interior layers of a standard CNN to cross several convolution
layers which quickens and eases the convergence procedure of the CNN despite the huge
number of convolution layers.

Xception is a new version of the Inception network introduced in 2017 [74]. The incep-
tion layers contain depthwise convolution layers, followed by a pointwise convolution layer.
The Xception structure involves double layers of convolutional, then several depthwise
separable convolution layers, and standard layers of convolutional and fully connected.
The Xception module is more robust and powerful than the Inception module and can
perform cross-channel and spatial interaction correlations while fully dissociated [75].

Inception-ResNet-V2 presented a mixture of residual network architecture and the
inception module [76]. It has a number of filters of various dimensions that are merged with
residual joints. The main advantage of this fused architecture is enhancing the performance
of the network and pace of convergence.

DenseNet was created by Huang et al. [77] in 2017, who extended the idea of shorter
connections between layers near the input/output layers. The key building block of this
network is the ‘dense block’. The major difference between the residual block and dense
block is that the latter attaches every layer to each layer having a similar input resolution,
whereas the former generates shorter links among adjacent layers. Second, each layer of
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DenseNet accomplishes a concatenation of the earlier outputs; in contrast, ResNet performs
a summation. DenseNet-201 was utilized in this article, containing 201 layers.

ShuffleNet is an effective CNN primarily designed by Zhang et al. in 2018 [78].
ShuffleNet was initially produced to serve fields that require low computational capability.
It contains two key blocks known as pointwise group convolution and channel shuffle. The
first block utilizes convolution layers of dimension 1 × 1 to reduce training speed while
attaining adequate precision. The second block supports the data flowing across feature
channels by allowing a cluster of layers to control input data belonging to distinct groups,
where the output/input channels are connected.

DarkNet is a new DL architecture designed by the authors of [79]. It employs YOLO-
V2 as the backbone of its structure. DarkNet uses filters of dimension 3 × 3 and then doubles
the number of channels after every pooling phase. It employs a pooling stage to perform
detection and classification as well as 1 × 1 filters to reduce the feature presentation between
3 × 3 convolutions. Darknet-19 involves 19 convolutional layers, whereas DarkNet-53
contains 53 convolutional layers.

MobileNet is a fine and time-efficient DL architecture that was originally designed
in [80]. It can decrease the complexity of the training model by lowering the number of
parameters while maintaining an acceptable performance. These are convolutional layers
of dimensions 3 × 3 and 1 × 1, respectively. MobileNet has 53 deep layers.

2.2.1. ECG Image Preprocessing

Initially, the dimensions of the ECG images are changed according to the input layer
dimension of each CNN model. Then, those ECG records are augmented to increase
the amount of records available in the data set and prevent the likelihood of overfitting
that could occur in the case of small data. Those augmentation methods included in the
proposed diagnostic tool are flipping in both the x- and y-orientations, and translation in
both the x- and y-directions where the range of the translation distance is picked randomly
within the range (−30, 30). The scaling augmentation method is also applied to the image in
the x- and y-directions where the image is scaled with a scale factor chosen randomly from
the range (0.9, 1.1). Table 2 demonstrates the dimensions of the input layers of each of the
CNN models and the extracted features length. Table 2 shows that the number of features
extracted from the last fully connected layer of each CNN for the binary classification and
multiclass classification levels is 2 and 3, respectively.

Table 2. The dimensions of the input layers of each of the CNN models and the mined features dimensions.

CNN Construction Dimension of Input Length of the Extracted Deep Features

ResNet-50
ResNet-18

DenseNet-201
ShuffleNet
MobileNet

224 × 224 × 3

Binary Classification Level

2

Multiclass Classification Level

3

Inception-V3
Inception-ResNet

Xception
229 × 229 × 3

Binary Classification Level

2

Multiclass Classification Level

3

DarkNet-19
DarkNet-53

226 × 226 × 3

Binary Classification Level

2

Multiclass

3
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2.2.2. Deep Features Extraction and Feature Incorporation

Some complications may occur while CNNs are being trained, including convergence
and overfitting. These issues impose the adjustment of a few parameters in the CNNs to
guarantee that the weights of the CNN layers are updated at the same rate during the
training process. Transfer learning (TL) is a method that can solve this problem. TL re-
employs a CNN that was previously learned with a huge dataset like ImageNet for another
classification problem [81]. In other words, TL uses a pretrained CNN that has learned
feature representations from a large dataset to solve another classification problem dealing
with a small dataset (similar to the dataset used in this paper). This process can enhance
detection accuracy if used for comparable problems [81]. For that reason, this paper used
ten CNNs that were pretrained. Before retraining the ten CNNs, the number of their output
layers was changed to 3 or 2 which is equal to the number of classes in the case of the
multiclass and binary class classification categories of the proposed diagnostic tool. In
other words, the DL models were retrained for the novel classification task. Then, after the
retraining process was finished, deep features were extracted from the last fully connected
layers of the ten pretrained CNNs. The number of features extracted from each CNN was 2
in the case of the binary classification category and 3 in the multiclass classification category.
Afterward, the proposed tool incorporated the deep features extracted from the ten DL
models in a concatenation way to form one feature vector consisting of 20 and 30 features
in the case of the binary and multiclass classification categories, respectively.

2.2.3. Hybrid Feature Selection

Feature selection (FS) is an essential step to selecting the most valuable features
available in the feature space to reduce its dimension, which correspondingly boosts the
diagnostic accuracy and avoids overfitting [82,83]. FS methods can be categorized into
three categories: filter, wrapper, and hybrid [84]. Hybrid FS merges filter and wrapper
methods. This category combines the benefits of previous FS types [84]. Thus, a hybrid FS
approach was presented and employed in this study.

The hybrid FS step presented in the diagnostic tool combines the chi-squared test filter
FS approach with a wrapper FS approach based on three search strategies. The chi-squared-
test is a well-known and commonly used FS method [85]. It attempts to determine the
significant features tk that best differentiate positive and negative sets of instances of class
Ci. The chi-squared test score is calculated using Equation (1).

Chi − Squared Test =
N(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(1)

where N is the total number of ECG records (samples in a dataset); A = the number of
samples in class ci that contain the feature tk; B = the number of samples that contain the
feature tk in other classes; C = the number of samples in class ci that do not contain the
feature tk; D = the number of samples that do not contain the feature tk in other classes.

The hybrid FS method initially ranks deep features extracted from the ten CNN models
utilizing the chi-squared test filter FS. Then, it employs this ranking to guide the three
feature search strategies within the wrapper FS approach. These three search strategies are
backward, forward, and bidirectional. The first searching approach starts with all features
in the feature space and then ignores features of lower ranks iteratively. Conversely, the
forward approach begins with one feature having the greatest rank and then adds the
following features one by one. The bidirectional alternates between the forward and
backward strategies. Note that for the three strategies, only the features that improve the
classification results are kept, while others are deleted.
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2.2.4. Classification

The classification phase was performed in two schemes. The first scheme was an end-
to-end deep learning classification with ten CNNs, including InceptionResNet, ResNet-18,
ResNet-50, ShuffleNet, Inception V3, MobileNet, Xception, DarkNet-19, DarkNet-53, and
DenseNet-201. The second scheme used several machine learning classifiers trained with
deep features extracted from the last fully connected layers of the ten CNNs. These classi-
fiers involved a support vector machine (SVM), random forest (RF), K-nearest neighbor
(KNN), the linear discriminate classifier (LDA), quadratic discriminate analysis (QDA),
and decision tree (DT). The classification step included two levels: binary and multiclass.
At the former level, classifiers were used to identify COVID-19 and normal patients. The
multiclass level classified images into normal, COVID-19, and cardiac complications. The
10-fold cross-validation method was used to validate the results. The classifiers were run
10 times and the average classification performance of all these runs is displayed in the
results section. Classification was carried out in two phases. Phase I used the deep features
extracted from the ten CNN models to train the classifiers. Phase II employed the hybrid
FS approach to select features used to train the classifiers.

LDA is a popular machine learning technique used for both classification and feature
reduction. It searches for the linear combinations of features that have a high ability to
explain the data. LDA separates class labels of data using hyperplanes. These planes are
achieved by looking for the projection of data points that can minimize their variance and
maximize the distance between class labels.

K-NN is a commonly used classifier in the field of machine learning due to its simplic-
ity, straightforwardness, and effectiveness even with noisy data. Although it is simplistic,
it has the ability to reach good classification accuracy in medical applications. It allocates
a label to every instance in the test data equivalent to the label amongst the k nearest
neighbors included in the training data. This label is chosen according to the distance
measured between the instance being classified and those instances in the training data.
This distance shows that instance in the test data to those in the training data. The distance
used in our approach was the Euclidean similarity measure and the number of neighbors
(k) was equal to 1 and 5 for binary and multiclass classification levels, respectively, with
equal distance weights.

Decision Trees are well-known machine learning classifiers that are widely used in
medical applications due to several reasons. They are capable of visualizing interactions
between extracted features. This visualization process enables a doctor to easily understand
how the classifier decision is made. The DT classifier creates instances of data according to
conditions. The DT has a tree structure with a root node whose leaves demonstrate class
labels, and the branch nodes present the extracted features and reasons that result in this
class label. The nodes of a tree are connected by an arc that represents the condition of the
feature. The tree is divided into branches and leaves based on a metric such as information
gain, gain ratio, or Gini index. The maximum number of splits in this study was 100, and
the splitting criterion was the Gini diversity index.

Random Forest is an ensemble classifier that consists of multiple decision trees. RF
uses the divide-and-conquer approach (DAC) to perform classification. The DAC method
divides the input feature space into several partitions depending on a goodness metric.
Subsequently, the classification outputs of all trees are averaged to produce a final decision.
The Gain ratio metric was used in the proposed tool. There, the number of trees was 100.

SVM is a robust machine learning classifier. It transforms linear or nonlinear input
data points into a new domain that can easily separate between classes of data. A hyper-
plane is employed to separate between classes of input data to facilitate classification. A
kernel function maps the similarity between the input vector and the new higher-dimension
feature space. The linear kernel function was employed.

On the other hand, for retraining the CNNs for end-to-end classification, the learning
rate, number of epochs, and minimum batch size were adjusted to 0.0003, 10, and 4,
respectively. Whereas the validation frequency was modified to 87 and 131 for binary and
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multiclass classification levels, respectively. The ten CNNs were trained with the stochastic
gradient descent with a momentum algorithm. The other hyperparameters were kept
unchanged. The proposed diagnostic tool was implemented using the Weka Data Mining
Tool [86] and MATLAB R2020a.

2.3. Performance Evaluation

The overall performance of the proposed diagnostic tool was measured using mul-
tiple metrics involving the Mathew correlation coefficient (MCC), the F1 score, precision,
specificity, and sensitivity calculated using Equations (2)–(7). In addition to confusion, the
receiver operating characteristics curve (ROC) and the area under ROC (AUC) were also
determined.

Accuracy =
TP + TN

TN + FP + FN + TP
(2)

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(6)

Specificity =
TN

TN + FP
(7)

where FN refers to the false negative which is the amount of COVID-19 records wrongly
categorized as nonCOVID-19, TN is the true negative representing the nonCOVID-19
records correctly recognized. TP is the true positive, which is equal to the number of
COVID-19 scans properly identified. Finally, FP is the false positive equivalent to the sum
of nonCOVID-19 records improperly classified as COVID-19.

3. Results
3.1. Phase I Classification Results

Phase I represents the use of deep features extracted from the ten CNNs and fused to
train the machine learning classifiers. Table 3 illustrates the classification accuracy of phase
I for the binary class and multiclass classification levels, respectively. Table 3 shows that
the maximum accuracy of 97.78% was achieved for the binary classification level using the
RF model. All other classifiers obtained an accuracy that ranged from 97.36% to 97.6%. The
highest accuracy of 90.88% was achieved using the RF classifier for multiclass classification.
The SVM, LDA, and KNN achieved the next-highest accuracies of 90.43%, 90.35%, and
89.39%. Finally, the DT and QDA classifiers reached the lowest accuracies of 86.56% and
85.6%, respectively. The confusion matrices attained using the LDA and SVM classifiers
are shown in Figures 3 and 4 for binary and multiclass classification, respectively. The
ROC curve for the SVM and LDA classifiers are shown in Figures 5 and 6 for binary and
multiclass, respectively. Figure 7 shows that the AUC for the LDA and SVM classifiers
were 0.99 and 0.99 for the binary class classification level. For the multiclass classification
level, the AUCs for the LDA and SVM classifiers were 0.97 and 0.98, respectively.
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Table 3. Phase I classification accuracy (%) and standard deviations obtained using machine
learning classifiers.

Binary Classification Level

DT RF QDA LDA SVM KNN

97.62 (0.14) 97.78 (0.06) 97.6 (0) 97.6 (0) 97.6 (0) 97.36 (0.23)

Multiclass classification Level

DT RF QDA LDA SVM KNN

86.56 (0.8) 90.88 (0.19) 85.6 (0.06) 90.35 (0.21) 90.43 (0.28) 89.39 (0.30)

Figure 3. Confusion matrices for the binary class classification level: (left) LDA, (right) SVM classifiers.

Figure 4. Confusion matrices for the multiclass classification level: (left) LDA, (right) SVM classifiers.

The two Figures S1 and S2 have been attached to the Supplementary Materials rep-
resenting a two-dimensional scatter plot of the first two features of the feature space for
the binary and multiclass classification levels used as inputs to the classifiers. Also, the
two Figures S3 and S4 have been added to the Supplementary Materials representing a
two-dimensional scatter plot of the LDA classifier predictions using the first two features
of the feature space for the binary and multiclass classification levels. Moreover, the two
Figures S5 and S6 have been added to the Supplementary Materials representing a two-
dimensional scatter plot of the LDA classifier predictions using the first two features of the
feature space for the binary and multiclass classification levels
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Figure 5. The ROC curves for the binary class classification level: (left) LDA, (right) SVM classifiers.

Figure 6. The ROC curves for the multiclass classification level: (left) LDA, (right) SVM classifiers.

To access and confirm the statistical significance of the performance of the ML clas-
sifiers, the one-way analysis of variance (ANOVA) test was applied to the results of the
classifiers after a repeated 10-fold cross-validation process. The ANOVA test was per-
formed on the classification accuracy results achieved using the classifiers of the binary
classification level to test the statistical significance between them. The results are shown in
Table 4. ANOVA was also performed for the results of the multiclass classification problem
and the outputs of the test are shown in Table 5. It can be seen in Tables 4 and 5 that the
p-values attained from the test were lower than α, where α = 0.05. Consequently, it could
be concluded that there is a statistically significant difference in the classification accuracies
of the classifiers for both the multiclass and binary classification levels.
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Figure 7. The classification accuracy of the proposed diagnostic tool using the RF classifier of phase I
compared to the end-to-end DL classification for the binary level.

Table 4. One-way analysis of variance test details for the binary classification level.

Source of
Variation SS df MS F p Value

Columns 0.901 5 0.180 12.54 <0.001

Error 0.776 54 0.014

Total 1.677 59

Table 5. One-way analysis of variance test details for the multiclass classification level.

Source of
Variation SS df MS F p Value

Columns 252.148 5 50.429 298.07 <0.001

Error 9.136 54 0.1692

Total 261.284 59

Figures 7 and 8 compare the phase I performance of the RF classifier of the proposed
diagnostic tool with the end-to-end DL classification for the binary and multiclass levels.
Figure 7 proves that the deep features extracted from the last fully connected layers of
the ten CNNs had a higher classification accuracy compared to end-to-end pretrained
CNNs for the binary classification level. On the other hand, for the multiclass classification
level, the RF classifier of the proposed diagnostic tool obtained 90.88% accuracy, which
is higher than all other pretrained CNNs. As can be seen in Figure 8, the accuracy of the
RF classifier of the proposed diagnostic tool was greater than the 76.44%, 75.56%, 72.89%,
73.33%, 72.89%, 71.59%, 71.11%, 67.11%, 69.33%, and 64.44% achieved using ResNet-50,
ResNet-18, Inception-ResNet, Inception, Xception, DenseNet-201, DarkNet-53, DarkNet-19,
MobileNet, and ShuffeNet, respectively.
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Figure 8. The classification accuracy of the proposed diagnostic tool using the phase I RF classifier
compared to the end-to-end DL classification for the multiclass level.

3.2. Phase II Classification Results

Phase II of the proposed diagnostic tool presented the features selected after the hybrid
FS approach used them to train the classification models. The following section presents
the results of the hybrid feature selection approach based on the three search strategies
using three classifiers. First, it shows the rank scores of features using the chi-square test
filter FS method. Then, it shows the number of selected features as well as the classification
accuracy attained for the binary and multiclass classification levels. Tables 6 and 7 represent
the ranking score for each feature attained using the chi-square test FS method for the
binary and multiclass classification levels, respectively.

Table 6. The ranking score for each feature attained using chi-square FS along with its order in the
feature vector and the name of the feature for the binary classification level.

Rank Order Feature Name

461.538 18 Feature 2 of MobileNet

461.538 5 Feature 1 of InceptionResNet

460.68 6 Feature 2 of InceptionResNet

457.854 17 Feature 1 of MobileNet

457.854 7 Feature 1 of Xception

457.592 13 Feature 1 of DarkNet-53

456.608 14 Feature 2 of DarkNet-53

456.397 19 Feature 1 of Shuffle

454.198 3 Feature 1 of Inception

454.198 2 Feature 2 of ResNet-50

454.198 4 Feature 2 of Inception

454.198 20 Feature 2 of Shuffle

454.198 10 Feature 2 of DenseNet
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Table 6. Cont.

454.198 8 Feature 2 of Xception

454.198 15 Feature 1 of DarkNet-19

454.198 16 Feature 2 of DarkNet-19

454.198 12 Feature 2 of ResNet-18

454.198 9 Feature 1 of DenseNet

454.198 11 Feature 1 of ResNet-18

454.198 1 Feature 1 of ResNet-50

Table 7. The ranking score for each feature attained using chi-square FS along with its order in the
feature vector and the name of the feature for the multiclass classification level.

Rank Order Feature Name

1021.0997 1 Feature 1 of ResNet-50

980.0815 25 Feature 1 of MobileNet

938.3733 19 Feature 1 of DarkNet-53

932.5696 12 Feature 3 of Xception

926.9128 28 Feature 2 of Shuffle

917.393 6 Feature 3 of Inception

916.3032 18 Feature 3 of ResNet-18

906.3512 13 Feature 1 of DenseNet

898.5766 10 Feature 1 of Xception

894.4025 15 Feature 3 of DenseNet

886.2739 3 Feature 3 of ResNet-50

883.1262 7 Feature 1 of InceptionResNet

877.7686 21 Feature 3 of DarkNet-53

865.6989 22 Feature 1 of DarkNet-19

814.21 2 Feature 2 of ResNet-50

811.4717 24 Feature 3 of DarkNet-53

798.1348 16 Feature 1 of ResNet-18

797.0761 27 Feature 3 of MobileNet

781.2226 4 Feature 1 of Inception

760.9445 8 Feature 2 of InceptionResNet

755.4454 29 Feature 2 of Shuffle

723.6848 11 Feature 2 of Xception

720.4829 23 Feature 1 of DarkNet-19

703.0506 5 Feature 2 of Inception

697.2656 20 Feature 2 of DarkNet-53

697.2656 26 Feature 2 of MobileNet

697.2656 17 Feature 2 of ResNet-18

697.2656 14 Feature 2 of DenseNet

673.7605 9 Feature 3 of InceptionResNet

634.5971 30 Feature 3 of Shuffle
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Table 8 shows the binary class classification level after the hybrid FS approach of the
proposed diagnostic tool using the three search strategies (phase II) compared to phase I
(before FS) for the DT, RF, and QDA classifiers as they achieved the highest accuracies in
phase I. Table 8 shows that the hybrid FS approach of the proposed diagnostic tool improved
the classification accuracy compared to phase I. This was obvious as the accuracies attained
using the forward and bidirectional strategies were 98.2%, 98%, and 97.8%, which are better
than those attained before FS. In addition, the accuracies attained using the backward
strategy were 98.2%, 98%, 97.6% for the DT, RF, and QDA classifiers, which were higher
than those achieved before FS using the same classifier except for the QDA which is equal
to that achieved before FS. Some performance measures were calculated for the binary
classification level and are illustrated in Table 9. Table 9 reveals the results for the sensitivity
(0.968, 0.96, 0.956), specificity (0.996, 1, 1), precision (0.996, 1, 1), F1-score (0.982, 0.961,
0.978), and MCC (0.964, 0.989, 0.957) for the DT, RF, and QDA models, respectively, using
the forward search strategy.

Table 8. The accuracy of binary-level classification (%) of the DT, RF, and QDA classifiers that
obtained the highest accuracy in phase I compared to after using the three search strategies of the
hybrid FS approach (phase II of the proposed diagnostic tool).

Classifier Before FS Forward Backward Bidirectional

DT 97.62 98.2 98.2 98.2

RF 97.78 98.0 98.0 98.0

QDA 97.6 97.8 97.6 97.8

Table 9. The binary-level performance metrics (%) of the DT, RF, and QDA classifiers that achieved
the highest accuracy using the forward search strategies of the hybrid FS approach.

Classifier Sensitivity Specificity Precision F1-Score MCC

DT 96.8 99.6 99.6 98.2 96.4

RF 96.0 100 100 96.1 98.9

QDA 95.6 100 100 97.8 95.7

On the other hand, the results of the multiclass classification level of phase II of the
proposed diagnostic tool are displayed in Tables 10 and 11. Table 10 shows the multiclass
accuracy of the hybrid FS approach of the proposed diagnostic tool using the three search
strategies (phase II) compared to phase I (before FS) for the RF, LDA, and SVM classifiers
which achieved the highest accuracy in phase I. The accuracies displayed in Table 10 verify
that the hybrid FS approach based on the three search methods increased the capacity of
the classification model compared to phase I (before FS). This was clear as the forward and
bidirectional strategies achieved better accuracies of 91.6% and 90.93% for the RF classifiers,
91.07% and 91.33 for the LDA classifier, and 90.58% and 90.53% for the SVM classifier
compared to 90.88%. Using the exact classifiers before FS, 90.35% and 90.43% accuracy was
achieved. Similarly, the backward search method reached accuracies of 91.33%, 91.07%, and
90% using the RF, LDA, and SVM classifiers, which were higher than those attained before
FS except for the SVM classifier, it remained the same. Table 11 indicates the sensitivity
(0.916, 0.911, 0.905), specificity (0.958, 0.955, 0.953), precision (0.918, 0.918, 0.908), F1 score
(0.917, 0.917, 0.906), and MCC (0.875, 0.875, 0.859) for the RF, LDA and SVM classifiers,
respectively, using the forward search method.
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Table 10. The classification accuracy (%) of the RF, LDA, and SVM that obtained the highest accuracy
in phase I compared to after using the three search strategies of the hybrid FS approach (phase II of
the proposed diagnostic tool).

Classifier Before FS Forward Backward Bidirectional

RF 90.88 91.6 91.33 90.93

LDA 90.35 91.07 91.07 91.33

SVM 90.43 90.58 90 90.53

Table 11. The multiclass-level performance metrics (%) of the RF, LDA, and SVM that achieved the
highest accuracy using the forward search strategies of the hybrid FS approach.

Classifier Sensitivity Specificity Precision F1-score MCC

RF 91.6 95.8 91.8 91.7 87.5

LDA 91.1 95.5 91.8 91.7 87.5

SVM 90.5 95.3 90.8 90.6 85.9

Figure 9 shows the number of features selected for the binary and multiclass levels
using the forward search strategy that reached maximum accuracy (using the DT classifier
for binary and the RF model for multiclass). Figure 9 indicates that the number of features
after the hybrid FS for the binary classification problem is three. The three features include
Feature 2 of MobileNet, Feature 1 of InceptionResNet, and Feature 2 of ResNet-50. The
figure also shows that the number of features after FS for the multiclass classification level
is eight. These eight features are Feature 1 of MobileNet, Feature 3 of Inception, Feature
3 of ResNet-18, Feature 1 of Xception, Feature 2 of DarkNet-53, Feature 3 of DarkNet-53,
Feature 1 of DarkNet-19, and Feature 3 of InceptionResNet.

Figure 9. The number of features of phase I and phase II for the binary and multiclass classification
levels using forward search strategies (using the classifiers which attained the peak performance).
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4. Discussion

Recent relevant studies revealed various forms of cardiovascular variations in ECG
data acquired from patients infected by the novel coronavirus as ST-segment changes,
QRST irregularities, and arrhythmias. On the other hand, several research articles dis-
cussed that COVID-19 could not be the leading reason for these cardiovascular deformities;
nevertheless, it should be emphasized that it could reveal the intrinsic conditions or lower
them [87]. The entire cardiac findings indicated in the literature have been observed on all
the ECG data utilized in this study.

This paper presented a novel diagnostic tool to automatically diagnose COVID-19
by incorporating multiple DL and hybrid FS approaches. This diagnostic tool consists of
two classification levels: binary and multiclass. The first level consists of distinguishing
COVID-19 and normal cases, while the second level consists of recognizing COVID-19,
normal, and other cardiac abnormalities. The proposed tool extracted deep features from
the last fully connected layers of ten CNNs models. Next, it fused these features, used
several classifiers in the two classification levels, and compared their performance with
the end-to-end DL classification. The previous step is known as phase I of the proposed
diagnostic tool. Afterward, a hybrid FS method was presented based on three search
approaches. This process is called phase II of the proposed diagnostic tool. The results
achieved in phase I showed that the deep feature incorporation is better than end-to-end DL
classification as shown in Figures 7 and 8. Phase I of the proposed tool attained an accuracy
of 97.78% and 90.88% for the binary and multiclass classification levels, respectively. These
accuracies are greater than those obtained by the end-to-end deep learning classification,
having a range of 87.33–96.67% and 64.44–76.44% for the binary and multiclass classification
levels, respectively.

In the second phase of the proposed tool, only classifiers that attained the highest
accuracies for either the binary or the multiclass classification levels were employed in
the hybrid FS procedure. Table 8 compares the results before and after feature selection
for the three classifiers which attained the highest accuracies for the binary classification
level. Table 8 shows that the highest accuracy of 98.2% was achieved using DT trained
with only three features selected during the FS process of the binary classification level.
This accuracy is greater than the 97.62% achieved before FS using the same classifier
trained with 20 features. Similarly, Table 10 compares the results before and after FS for
the three classifiers which attained the highest accuracies for the multiclass classification
level. Table 10 indicates that the maximum accuracy of 91.6% was reached using the RF
classifier trained with only eight features chosen during the FS procedure of the multiclass
classification level. This accuracy is greater than the 90.56% accomplished before FS using
the same classifier learned with 30 features. Thus, the performance of phase II of the
proposed tool verifies that the presented hybrid FS method had a further enhancement in
classification performance. It also reduced the number of features successfully.

It is worth mentioning that ECG detection requires more physical contact between
patients and physicians than the RT-PCR test or CT imaging, which will increase the risk of
virus transmission. Therefore, ECG may be more suitable as an auxiliary inspection means
of COVID-19 than a primary screening tool.

4.1. Comparison with Related Studies

The performance of phase II of the proposed diagnostic tool versus other relevant
tools that are directly copied from published papers is demonstrated in Table 12. The ECG
records used to construct the proposed diagnostic tool are added to Appendix A. The results
illustrated in Table 12 show that the proposed tool could be used to distinguish between
normal and COVID-19 cases. It can also differentiate between normal, COVID-19, and other
cardiac abnormalities. The table also indicates that the proposed tool has a performance
comparable to those of other related studies. It is worth mentioning that, for the binary
classification level, the specificity and precision of the proposed tool are higher than in the
other studies [63,64]. However, it has lower sensitivity than other studies. However, for
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the multiclass classification level, the proposed tool achieved higher sensitivity, specificity,
and precision than the studies [62,63]. These results indicate that the proposed tool based
on ECG data could be used to diagnose COVID-19. It could be considered a possible
novel solution that might be utilized in actual medical scenarios. It can be considered an
alternative to current diagnostic tools.

Table 12. The results of phase II of the proposed diagnostic tool versus other related studies that are
directly copied from published papers.

Binary Classification Level

Article Technique Sensitivity
(%) Precision (%) Specificity

(%) Accuracy (%)

[64] hexaxial feature mapping + GLCM +
CNN 98.4 94.3 94 96.2

[63] ResNet-18 98.6 98.5 96 98.62

Presented
diagnostic tool

Fully connected deep features +
hybrid FS (forward search with DT

classifier)
96.8 99.6 99.6 98.2%

Multiclass Classification Level

Sensitivity
(%) Precision (%) Specificity

(%) Accuracy (%)

[62] EfficientNet 75.8 80.8 - 81.8

[63] MobileNet 90.8 91.3 92.8 90.79

Presented
diagnostic tool

Fully connected deep features +
hybrid FS (forward search with RF

classifier)
91.6 91.8 95.8 91.6

4.2. Limitations

This study has several limitations. The first limitation is the small database for train-
ing/validation, which is quite insufficient for deep learning of thousands of hyperparame-
ters. In addition, the lack of an independent test dataset is considered another limitation.
Furthermore, this study did not consider methods that handle the class imbalance problem.
Furthermore, the baseline rhythm of each patient is not available, and the effect of the base-
line rhythm is not explored. Additionally, this study did not take into account optimization
techniques for the selection of deep learning hyperparameters. In addition, the dataset
used in the study is from confirmed COVID-19 patients. The detection of asymptomatic
infections may not achieve the same level of sensitivity. Thus, the extension of the scope of
the results is to some extent limited. Finally, this study did not consider the uncertainty of
the input data.

5. Conclusions

The current study explored the prospect of employing ECG trace images for diagnosing
the novel coronavirus. It proposed a novel automated ECG-based diagnostic tool that
incorporates deep features from ten DL models. The proposed diagnostic tool used several
well-known ML classifiers for classification. The classification procedure was performed on
two levels. The primary level aimed to distinguish patients with COVID-19 from normal
cases (binary class level). Whereas the second level was multiclass to distinguish cases of
COVID-19 from normal and other cardiac complications. The major contributions of the
diagnostic tool were, first, the construction of a novel automatic, inexpensive, harmless,
susceptible, and quick diagnostic tool as a replacement to the present diagnostic tools to
support the automatic detection of COVID-19. In addition, the novel tool relied on 2D ECG
trace images to diagnose COVID-19, which is a new approach to achieving a diagnosis.
Moreover, in view of the disparities in the performances between DL models, the proposed
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tool utilized ten DL models of distinctive structures to merge their benefits, not a single
architecture. Additionally, it extracted features from the last fully connected layers of
the ten DL models instead of end-to-end DL classification (as in previous studies). The
proposed tool merged these features to investigate the impact of merging on diagnostic
accuracy. Furthermore, it presented a hybrid FS approach based on three search strategies
to select the most significant deep features and the lower dimensions of the feature space.
Finally, it explored whether the hybrid FS approach boosts the performance of the proposed
diagnostic tool. The results achieved using the proposed tool could be evidence that ECG
records can be used in diagnosing the new coronavirus. The presented tool may prevent the
shortcomings of chest imaging techniques, antigen, and PCR exams. It could be considered
an easy, inexpensive, quick, portable, and sensible approach. Therefore, it might help
clinicians in diagnosing COVID-19 accurately and automatically. Upcoming experiments
will test the efficiency of the proposed tool in actual clinical procedures. Further work will
consider using resampling techniques that handle the class imbalance problem. Future
work will explore more deep learning techniques as well as hyperparameter optimization
approaches. In addition, the uncertainty of the input data will be taken into consideration
in future work.
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AI Artificial intelligence
ANOVA Analysis of variance
ANN Artificial neural networks
AVF Augmented voltage foot
AVL Augmented voltage left
AVR Augmented voltage right
CNN Convolutional Neural Network
CT Computed Temography
DL Deep learning
DT Decision Tree
DWT Discrete wavelet transform
ECG Electrocardiogram
FN False negative
FP False positive
FS Feature Selection
GLCM Gray-Level Co-Occurrence Matrix
KNN K-nearest neighbor
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LDA Linear discriminate analysis
MI Myocardial infarction
ML Machine learning
QDA Quadratic discriminate analysis
RF Random Forest
RT-PCR Real-time reverse transcription-polymerase chain reaction
SVM Support vector machine
TL Transfer learning
TN True negative
TR True positive
TML Traditional machine learning techniques
WHO World Health Organization

Appendix A

The patients’ records that have been used are as follows:
For the normal class: records utilized are normal (1) to normal (250).
For the COVID-19 class: all records available in the dataset are utilized
For cardiac abnormalities class: abnormal heartbeats(HB) records utilized are HB(1) to

HB (88), myocardial infarction (MI) records used are MB (1) to MB (77), previous myocardial
infarction (PMI) records used are PMI (1) to PMI (88).
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