From a Chemotherapeutic Drug to a High-Performance Nanocatalyst: A Fast Colorimetric Test for Cisplatin Detection at ppb Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Preparation of Cisplatin
2.3. Synthesis of PtNPs from Cisplatin Precursor
2.4. Synthesis of PtNPs from Cisplatin Precursor with Pt Seed Baseline
2.5. Synthesis of PtNPs from Cisplatin Precursor with Chloroplatinic Acid Hexahydrate Baseline
2.6. Synthesis of PtNPs in Synthetic Urine
2.7. PtNP Characterization
2.8. Colorimetric Method
2.9. Machine Learning
3. Results
3.1. Nanozyme-Based Method for the Detection of Cisplatin
3.2. Selectivity and Sensitivity of the Detection Scheme
3.3. Cisplatin Detection in Urine Matrix
3.4. Machine-Learning Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, G.Y.; Woodward, N.; Coward, J.I.G. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol. Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldossary, S.A. Review on Pharmacology of Cisplatin: Clinical Use, Toxicity and Mechanism of Resistance of Cisplatin. Biomed. Pharmacol. J. 2019, 12, 7–15. [Google Scholar] [CrossRef]
- Gold, J.M.; Raja, A. Cisplatin (Cisplatinum); StatPearls Publishing: St. Petersburg, FL, USA, 2019. [Google Scholar]
- de Vries, G.; Rosas-Plaza, X.; van Vugt, M.A.T.M.; Gietema, J.A.; de Jong, S. Testicular Cancer: Determinants of Cisplatin Sensitivity and Novel Therapeutic Opportunities. Cancer Treat. Rev. 2020, 88, 102054. [Google Scholar] [CrossRef] [PubMed]
- GV, K.; J, B.; A, D.; D, B.; S, M.; J, S.; GJ, B.; RJ, M. Combination of Paclitaxel, Ifosfamide, and Cisplatin Is an Effective Second-Line Therapy for Patients with Relapsed Testicular Germ Cell Tumors. J. Clin. Oncol. 2005, 23, 6549–6555. [Google Scholar] [CrossRef]
- Boulikas, T.; Vougiouka, M. Recent Clinical Trials Using Cisplatin, Carboplatin and Their Combination Chemotherapy Drugs (Review). Oncol. Rep. 2004, 11, 559–595. [Google Scholar] [CrossRef]
- Vasconcellos, V.F.; Marta, G.N.; da Silva, E.M.K.; Gois, A.F.T.; de Castria, T.B.; Riera, R. Cisplatin versus Carboplatin in Combination with Third-Generation Drugs for Advanced Non-Small Cell Lung Cancer. Cochrane Database Syst. Rev. 2020, 2020, CD009256. [Google Scholar] [CrossRef]
- Fujiwara, M.; Tanaka, H.; Yuasa, T.; Komai, Y.; Oguchi, T.; Fujiwara, R.; Numao, N.; Yamamoto, S.; Fujii, Y.; Fukui, I.; et al. First-Line Combination Chemotherapy with Etoposide, Ifosfamide and Cisplatin for the Treatment of Disseminated Germ Cell Cancer: Efficacy and Feasibility in Current Clinical Practice. Int. J. Urol. 2021, 28, 920–926. [Google Scholar] [CrossRef]
- Wei, M.; Yuan, X. Cisplatin-Induced Ototoxicity in Children with Solid Tumor. J. Pediatr. Hematol. Oncol. 2019, 41, E97–E100. [Google Scholar] [CrossRef]
- Gregg, R.W.; Molepo, J.M.; Monpetit, V.J.A.; Mikael, N.Z.; Redmond, D.; Gadia, M.; Stewart, D.J. Cisplatin Neurotoxicity: The Relationship between Dosage, Time, and Platinum Concentration in Neurologic Tissues, and Morphologic Evidence of Toxicity. J. Clin. Oncol. 1992, 10, 795–803. [Google Scholar] [CrossRef]
- von Schlippe, M.; Fowler, C.J.; Harland, S.J. Cisplatin Neurotoxicity in the Treatment of Metastatic Germ Cell Tumour: Time Course and Prognosis. Br. J. Cancer 2001, 85, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Nygren, O.; Lundgren, C. Determination of Platinum in Workroom Air and in Blood and Urine from Nursing Staff Attending Patients Receiving Cisplatin Chemotherapy. Int. Arch. Occup. Environ. Health 1997, 70, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Pajic, J.; Rovcanin, B.; Rakic, B. Evaluation of Genetic Damage in Persons Occupationally Exposed to Antineoplastic Drugs in Serbian Hospitals. Ann. Work Expo. Health 2021, 65, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Roussin, F.; Taibi, A.; Canal-Raffin, M.; Cantournet, L.; Durand-Fontanier, S.; Druet-Cabanac, M.; El Balkhi, S.; Maillan, G. Assessment of Workplace Environmental Contamination and Occupational Exposure to Cisplatin and Doxorubicin Aerosols during Electrostatic Pressurized Intraperitoneal Aerosol Chemotherapy. Eur. J. Surg. Oncol. 2021, 47, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, M.; Rahman, M.F.; Rekhadevi, P.V.; Sailaja, N.; Balasubramanyam, A.; Prabhakar, P.V.; Singh, S.P.; Reddy, U.A.; Rao, G.S.; Grover, P. Monitoring of Oxidative Stress in Nurses Occupationally Exposed to Antineoplastic Drugs. Toxicol. Int. 2012, 19, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, N.; Sunaga, T.; Fujimiya, T.; Kurihara, T.; Nagatani, A.; Yamagishi, M.; Watanabe, T.; Sasaki, H.; Ogawa, Y.; Sasaki, T. Risk Associated with Severe Hematological Toxicity in Patients with Urothelial Cancer Receiving Combination Chemotherapy of Gemcitabine and Cisplatin. Chemotherapy 2020, 65, 29–34. [Google Scholar] [CrossRef]
- Markowiak, T.; Ried, M.; Larisch, C.; Nowak, D.; Hofmann, H.-S.; Rakete, S. Exposure to Cisplatin in the Operating Room during Hyperthermic Intrathoracic Chemotherapy. Int. Arch. Occup. Environ. Heal. 2021, 95, 399–407. [Google Scholar] [CrossRef]
- Ursini, C.L.; Omodeo Salè, E.; Fresegna, A.M.; Ciervo, A.; Jemos, C.; Maiello, R.; Buresti, G.; Colosio, C.; Rubino, F.M.; Mandić-Rajčević, S.; et al. Antineoplastic Drug Occupational Exposure: A New Integrated Approach to Evaluate Exposure and Early Genotoxic and Cytotoxic Effects by No-Invasive Buccal Micronucleus Cytome Assay Biomarker. Toxicol. Lett. 2019, 316, 20–26. [Google Scholar] [CrossRef]
- Connor, T.H.; Lawson, C.C.; Polovich, M.; McDiarmid, M.A. Reproductive Health Risks Associated with Occupational Exposures to Antineoplastic Drugs in Health Care Settings a Review of the Evidence. J. Occup. Environ. Med. 2014, 56, 901–910. [Google Scholar] [CrossRef] [Green Version]
- Kushnir, C.L.; Fleury, A.C.; Couch, J.; Hill, M.C.; Spirtos, N.M. Evaluation of Exposures to Healthcare Personnel from Cisplatin during a Mock Demonstration of Intra-Operative Intraperitoneal Chemotherapy Administration. Gynecol. Oncol. 2013, 130, 350–353. [Google Scholar] [CrossRef]
- Zhengzheng Xie, M.S.; Li, Y.; Yan, D.; Hu, X.; Liu Liu, M.S.; Lulu Sun, B.S.; Tao, X.; Ping Yang, M.S.; Zhang, Z. Evaluation of Exposure Risk for Healthcare Personnel Performing the Open Technique HIPEC Procedure Using Cisplatin. Gynecol. Oncol. 2021, 161, 261–263. [Google Scholar] [CrossRef]
- Zimmermann, S.; Messerschmidt, J.; Von Bohlen, A.; Sures, B. Determination of Pt, Pd and Rh in Biological Samples by Electrothermal Atomic Absorption Spectrometry as Compared with Adsorptive Cathodic Stripping Voltammetry and Total-Reflection X-Ray Fluorescence Analysis. Anal. Chim. Acta 2003, 498, 93–104. [Google Scholar] [CrossRef]
- Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Analytical Methodologies for the Determination of Cisplatin. J. Pharm. Biomed. Anal. 2008, 47, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Huszal, S.; Kowalska, J.; Krzeminska, M.; Golimowski, J. Determination of Platinum with Thiosemicarbazide by Catalytic Adsorptive Stripping Voltammetry (AdSV). Electroanalysis 2005, 17, 299–304. [Google Scholar] [CrossRef]
- Zimmermann, S.; Menzel, C.M.; Berner, Z.; Eckhardt, J.D.; Stüben, D.; Alt, F.; Messerschmidt, J.; Taraschewski, H.; Sures, B. Trace Analysis of Platinum in Biological Samples: A Comparison between Sector Field ICP-MS and Adsorptive Cathodic Stripping Voltammetry Following Different Digestion Procedures. Anal. Chim. Acta 2001, 439, 203–209. [Google Scholar] [CrossRef]
- Szłyk, E.; Szydłowska-Czerniak, A. Determination of Cadmium, Lead, and Copper in Margarines and Butters by Galvanostatic Stripping Chronopotentiometry. J. Agric. Food Chem. 2004, 52, 4064–4071. [Google Scholar] [CrossRef]
- Falta, T.; Heffeter, P.; Mohamed, A.; Berger, W.; Hann, S.; Koellensperger, G. Quantitative Determination of Intact Free Cisplatin in Cell Models by LC-ICP-MS. J. Anal. At. Spectrom. 2010, 26, 109–115. [Google Scholar] [CrossRef]
- Kaushik, K.H.; Sripuram, V.K.; Bedada, S.; Reddy, N.Y.; Priyadarshini, G.I.; Devarakonda, K.R. A Simple and Sensitive Validated HPLC Method for Quantitative Determination of Cisplatin in Human Plasma. Ceased 2010, 27, 1–6. [Google Scholar] [CrossRef]
- Raghavan, R.; Burchett, M.; Loffredo, D.; Mulligan, J.A. Low-Level (PPB)Determination of Cisplatin in Cleaning Validation (Rinse Water) Samples. II. A High-Performance Liquid Chromatogrphic Method. Drug Dev. Ind. Pharm. 2000, 26, 429–440. [Google Scholar] [CrossRef]
- Schierl, R.; Novotna, J.; Piso, P.; Böhlandt, A.; Nowak, D. Low Surface Contamination by Cis/Oxaliplatin during Hyperthermic Intraperitoneal Chemotherapy (HIPEC). Eur. J. Surg. Oncol. 2012, 38, 88–94. [Google Scholar] [CrossRef]
- Wu, Y.; Lai, R.Y. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor. Anal. Chem. 2017, 89, 9984–9989. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Ahmadi, E.; Mavaei, M. A Novel Voltammetric Sensor Based on Graphene Quantum Dots-Thionine/Nano-Porous Glassy Carbon Electrode for Detection of Cisplatin as an Anti-Cancer Drug. Sens. Actuators B Chem. 2019, 299, 126975. [Google Scholar] [CrossRef]
- Youssef, S.H.; Afinjuomo, F.; Song, Y.; Garg, S. Development of a Novel Chromatographic Method for Concurrent Determination of 5-Fluorouracil and Cisplatin: Validation, Greenness Evaluation, and Application on Drug-Eluting Film. Microchem. J. 2021, 168, 106510. [Google Scholar] [CrossRef]
- Petrlova, J.; Potesil, D.; Zehnalek, J.; Sures, B.; Adam, V.; Trnkova, L.; Kizek, R. Cisplatin Electrochemical Biosensor. Electrochim. Acta 2006, 51, 5169–5173. [Google Scholar] [CrossRef]
- Bansod, B.K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Galagedera, S.K.K.; Flechsig, G.U. Detection of the Level of DNA Cross-Linking with Cisplatin by Electrochemical Quartz Crystal Microbalance. J. Electroanal. Chem. 2020, 862, 113992. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Chen, X.; Mi, Z.; Li, W.; Wang, P.; Shan, X.; Lu, X. Detection and Characterization of Single Cisplatin Adducts on DNA by Nanopore Sequencing. ACS Omega 2021, 6, 17027–17034. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Tian, X.; Sun, L.; Hu, H.; Zheng, S.; Jiang, H.; Yu, L.; Zeng, S. Platinum(II)-Oligonucleotide Coordination Based Aptasensor for Simple and Selective Detection of Platinum Compounds. Anal. Chem. 2015, 87, 10542–10546. [Google Scholar] [CrossRef]
- Jin, Z.; Mantri, Y.; Retout, M.; Cheng, Y.; Zhou, J.; Jorns, A.; Fajtova, P.; Yim, W.; Moore, C.; Xu, M.; et al. A Charge-Switchable Zwitterionic Peptide for Rapid Detection of SARS-CoV-2 Main Protease. Angew. Chem. Int. Ed. 2022, 61, e202112995. [Google Scholar] [CrossRef]
- Sarigul, N.; Korkmaz, F.; Kurultak, İ. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, H. Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property. Nano Today 2009, 4, 143–164. [Google Scholar] [CrossRef]
- Yamamoto, K.; Imaoka, T.; Chun, W.J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi, A. Size-Specific Catalytic Activity of Platinum Clusters Enhances Oxygen Reduction Reactions. Nat. Chem. 2009, 1, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Moglianetti, M.; De Luca, E.; Pedone, D.; Marotta, R.; Catelani, T.; Sartori, B.; Amenitsch, H.; Retta, S.F.; Pompa, P.P. Platinum Nanozymes Recover Cellular ROS Homeostasis in an Oxidative Stress-Mediated Disease Model. Nanoscale 2016, 8, 3739–3752. [Google Scholar] [CrossRef] [PubMed]
- Pedone, D.; Moglianetti, M.; Lettieri, M.; Marrazza, G.; Pompa, P.P. Platinum Nanozyme-Enabled Colorimetric Determination of Total Antioxidant Level in Saliva. Anal. Chem. 2020, 92, 8660–8664. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, X.; Wang, L.; Hu, Z.; Wen, T.; Liu, W.; Yin, J.; Chen, C.; Wu, X.; Berlin, S.-V. Ferroxidase-like Activity of Au Nanorod/Pt Nanodot Structures and Implications for Cellular Oxidative Stress. Springer 2015, 8, 4024–4037. [Google Scholar] [CrossRef]
- Fan, J.; Yin, J.J.; Ning, B.; Wu, X.; Hu, Y.; Ferrari, M.; Anderson, G.J.; Wei, J.; Zhao, Y.; Nie, G. Direct Evidence for Catalase and Peroxidase Activities of Ferritin–Platinum Nanoparticles. Biomaterials 2011, 32, 1611–1618. [Google Scholar] [CrossRef]
- Hikosaka, K.; Kim, J.; Kajita, M.; Kanayama, A.; Miyamoto, Y. Platinum Nanoparticles Have an Activity Similar to Mitochondrial NADH:Ubiquinone Oxidoreductase. Colloids Surf. B Biointerfaces 2008, 66, 195–200. [Google Scholar] [CrossRef]
- Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2020, 121, 649–735. [Google Scholar] [CrossRef]
- Franco-Ulloa, S.; Tatulli, G.; Bore, S.L.; Moglianetti, M.; Pompa, P.P.; Cascella, M.; De Vivo, M. Dispersion State Phase Diagram of Citrate-Coated Metallic Nanoparticles in Saline Solutions. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Hornberger, E.; Mastronardi, V.; Brescia, R.; Pompa, P.P.; Klingenhof, M.; Dionigi, F.; Moglianetti, M.; Strasser, P. Seed-Mediated Synthesis and Catalytic ORR Reactivity of Facet-Stable, Monodisperse Platinum Nano-Octahedra. ACS Appl. Energy Mater. 2021, 4, 9542–9552. [Google Scholar] [CrossRef]
- Mazzotta, E.; Di Giulio, T.; Mastronardi, V.; Pompa, P.P.; Moglianetti, M.; Malitesta, C. Bare Platinum Nanoparticles Deposited on Glassy Carbon Electrodes for Electrocatalytic Detection of Hydrogen Peroxide. ACS Appl. Nano Mater. 2021, 4, 7650–7662. [Google Scholar] [CrossRef]
- Moglianetti, M.; Solla-Gullón, J.; Donati, P.; Pedone, D.; Debellis, D.; Sibillano, T.; Brescia, R.; Giannini, C.; Montiel, V.; Feliu, J.M.; et al. Citrate-Coated, Size-Tunable Octahedral Platinum Nanocrystals: A Novel Route for Advanced Electrocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 41608–41617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsounaros, I.; Schneider, W.B.; Meier, J.C.; Benedikt, U.; Biedermann, P.U.; Auer, A.A.; Mayrhofer, K.J.J. Hydrogen Peroxide Electrochemistry on Platinum: Towards Understanding the Oxygen Reduction Reaction Mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, Y.; Gu, N. Peroxidase-like Catalytic Activity of Cubic Pt Nanocrystals. Colloids Surf. A Physicochem. Eng. Asp. 2011, 373, 6–10. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Feng, J.; Tang, Y.; Jiang, Y.; He, N. Label-Free Detection of DNA by Combining Gated Mesoporous Silica and Catalytic Signal Amplification of Platinum Nanoparticles. Analyst 2014, 139, 6088–6091. [Google Scholar] [CrossRef]
- Lin, S.; Zheng, D.; Li, A.; Chi, Y. Black Oxidized 3,3″,5,5″-Tetramethylbenzidine Nanowires (OxTMB NWs) for Enhancing Pt Nanoparticle-Based Strip Immunosensing. Anal. Bioanal. Chem. 2019, 411, 4063–4071. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chong, Y.; Wamer, W.G.; Xia, Q.; Cai, L.; Nie, Z.; Fu, P.P.; Yin, J.J. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Appl. Mater. Interfaces 2015, 7, 19709–19717. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Xu, T.; Su, L.; Zhang, X. Artificial Intelligence Biosensors: Challenges and Prospects. Biosens. Bioelectron. 2020, 165, 112412. [Google Scholar] [CrossRef]
- Serrà, J.; Arcos, J.L. An Empirical Evaluation of Similarity Measures for Time Series Classification. Knowl. Based Syst. 2014, 67, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Jing, M.; Namee, B.M.; McLaughlin, D.; Steele, D.; McNamee, S.; Cullen, P.; Finlay, D.; McLaughlin, J. Enhance Categorisation of Multilevel High-Sensitivity Cardiovascular Biomarkers from Lateral Flow Immunoassay Images Via Neural Networks and Dynamic Time Warping. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 365–369. [Google Scholar]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Iwana, B.K.; Uchida, S. Time series data augmentation for neural networks by time warping with a discriminative teacher. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 3558–3565. [Google Scholar] [CrossRef]
- Abanda, A.; Mori, U.; Lozano, J.A. A Review on Distance Based Time Series Classification. Data Min. Knowl. Discov. 2019, 33, 378–412. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, N. Vandana Survey of Nearest Neighbor Techniques. IJCSIS Int. J. Comput. Sci. Inf. Secur. 2010, 8, 302–305. [Google Scholar] [CrossRef]
- Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M. An Efficient Selection-Based KNN Architecture for Smart Embedded Hardware Accelerators. IEEE Open J. Circuits Syst. 2021, 2, 534–545. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastronardi, V.; Moglianetti, M.; Ragusa, E.; Zunino, R.; Pompa, P.P. From a Chemotherapeutic Drug to a High-Performance Nanocatalyst: A Fast Colorimetric Test for Cisplatin Detection at ppb Level. Biosensors 2022, 12, 375. https://doi.org/10.3390/bios12060375
Mastronardi V, Moglianetti M, Ragusa E, Zunino R, Pompa PP. From a Chemotherapeutic Drug to a High-Performance Nanocatalyst: A Fast Colorimetric Test for Cisplatin Detection at ppb Level. Biosensors. 2022; 12(6):375. https://doi.org/10.3390/bios12060375
Chicago/Turabian StyleMastronardi, Valentina, Mauro Moglianetti, Edoardo Ragusa, Rodolfo Zunino, and Pier Paolo Pompa. 2022. "From a Chemotherapeutic Drug to a High-Performance Nanocatalyst: A Fast Colorimetric Test for Cisplatin Detection at ppb Level" Biosensors 12, no. 6: 375. https://doi.org/10.3390/bios12060375
APA StyleMastronardi, V., Moglianetti, M., Ragusa, E., Zunino, R., & Pompa, P. P. (2022). From a Chemotherapeutic Drug to a High-Performance Nanocatalyst: A Fast Colorimetric Test for Cisplatin Detection at ppb Level. Biosensors, 12(6), 375. https://doi.org/10.3390/bios12060375