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Abstract: Wearable sweat sensors are a rapidly rising research area owing to their convenience for
personal healthcare and disease diagnosis in a real-time and noninvasive manner. However, the fast
and scalable fabrication of flexible electrodes remains a major challenge. Here, we develop a wearable
epidermal sensor for multiplexed sweat analysis based on the laser-induced graphene (LIG) technique.
This simple and mask-free technique allows the direct manufacturing of graphene electrode patterns
on commercial polyimide foils. The resulting LIG devices can simultaneously monitor the pH, Na+,
and K+ levels in sweat with the sensitivities of 51.5 mV/decade (pH), 45.4 mV/decade (Na+), and
43.3 mV/decade (K+), respectively. Good reproducibility, stability, and selectivity are also observed.
On-body testing of the LIG-based sensor integrated with a flexible printed circuit board during
stationary cycling demonstrates its capability for real-time sweat analysis. The concentrations of ions
can be remotely and wirelessly transmitted to a custom-developed smartphone application during
the period in which the sensor user performs physical activities. Owing to the unique advantages
of LIG technique, including facile fabrication, mass production, and versatile, more physiological
signals (glucose, uric acid, tyrosine, etc.) could be easily expanded into the LIG-based wearable
sensors to reflect the health status or clinical needs of individuals.

Keywords: laser-induced graphene; electrochemical sensors; sweat analysis; wearable devices

1. Introduction

Wearable sensors are gaining wide attention in personal health monitoring, as they
can continuously track health status changes in time for early treatment intervention. With
a relatively simple design, the existing wearable sensors are centered on the monitoring
of physical and electrophysiological parameters such as heart rate [1], blood pressure [2],
electrocardiograms [3], and body motion [4]. Although these are needed, there is an urgent
need for the development of wearable devices that can provide biochemical information at
a molecular level to retrieve the complete physiological conditions of the wearer.

Sweat contains a wealth of biomarkers related to the metabolites of the human body,
including electrolytes (e.g., sodium and potassium), metabolites (e.g., lactate and glucose),
and small quantities of hormones and peptides [5–7]. The presence of, or variation in, the
concentrations of certain biomarkers provides important information on the physiological
state [8]. For example, sodium and potassium are indicative of the electrolyte balance and
hydration status [9]. Excessive loss of them may lead to hyponatremia, hypokalemia, and
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muscle cramps [10]. Meanwhile, the sweat of a normal body is slightly acidic [11], and the
change in pH in sweat is an indicator of dehydration and muscle fatigue [12]. Importantly,
sweat is easily accessible and can avoid conventional invasive blood sampling processes.
Therefore, a number of wearable sweat-based sensors, especially wearable electrochemical
devices, have recently been developed for continuous noninvasive monitoring of sweat
composition [13–17].

Mechanical flexibility and simple array patterning for multiparametric analysis are
two critical requirements for wearable electrochemical sensors. Currently, most reported
wearable electrochemical sensors are fabricated through conventional microfabrication
and screen-printing methods [18–22]. The microfabrication process often needs multistep
photolithography, thin-film depositions, and etching, and thus the high manufacturing cost
greatly hinders its broad application. The screen-printing method allows the fabrication
of sensor patterning directly onto the flexible substrates; however, the complicated ink
fabrication, printing resolution, and additional postprocessing printing steps limit its
widespread practical applications. Overall, a simple, high-efficient, low-cost fabrication
process is highly desired for wearable electrochemical sensors.

Recently, laser direct writing (LDW) has been widely adopted to fabricate various
patterned electrodes through a maskless and vacuum-deposition-free process [23–27]. Uti-
lizing the high-power laser pulses, LDW can convert carbonaceous precursors into highly
conductive porous graphene, termed laser-induced graphene (LIG) [24,28]. Moreover, LIG
exhibits excellent mechanical flexibility. For example, Kong et al. found the LIG strip still
could hold good electrical properties even after 5000 cyclic bending tests [29]. Till now,
various substrates, including wood, cloth, food, and paper, have been used to produce
graphene layers [30–33]. Due to these unique properties, LIG has been widely assembled
into various wearable electronics for health monitoring [34,35].

Herein, a flexible and miniaturized electrode array was fabricated by directing laser
engraving polyimide film. The obtained LIG electrodes were subsequently modified with
ion-selective membranes to construct wearable multiplexed sensors for simultaneously
monitoring the pH, Na+, and K+ levels in sweat. The wearable sweat sensors showed high
sensitivity, good selectivity, and stability. For practical assessment, we designed a signal
processing system, which consists of a flexible printed circuit board and a custom-built
Android application. Real-time on-body testing was also performed on a human subject
and demonstrated its capability for real-time sweat analysis.

2. Materials and Methods
2.1. Reagents and Materials

Sodium ionophore X, valinomycin (potassium ionophore), polyvinyl chloride (PVC),
dioctyl sebacate (DOS), sodium tetraphenylborate (NaTPB), potassium tetrakis (4-chlorophenyl)
borate (KTClPB), polyaniline (PANI), poly(3,4-ethylene dioxythiophene):polystyrene sulfonate
(PEDOT:PSS).

2.2. Preparation of LIG Electrodes

The LIG electrodes were prepared via laser-induced carbonization of polyimide (PI)
films (75 µm thickness, Kapton®) using a commercial CO2 laser cutting platform (GCC
LaserPro Venus II). As shown in Table S1, the laser power and scanning speed were firstly
optimized. The overlarge laser power will burn out the PI film, and the small laser power
cannot form LIG pattern on the PI sheet. Therefore, the optimal laser power and scanning
speed are set at 60% (Max. 12 W) and 15% (Max. 20 IPS), respectively. CorelDRAW software
was used to design the electrode patterns on the PI film surface. The production procedure
of LIG electrodes is shown in Figure 1a. The circular region with a 3 mm diameter was used
as the working area. The connection wire was passivated with insulation tape to protect it
from contact with the sweat or electrolyte. Finally, a strip of copper foil was attached to the
end of the wire pad for better electrical connection during measurements.
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Figure 1. (a) Schematic illustration of the fabrication process of LIG electrodes; (b) photograph of
the logo of Hainan University fabricated by LIG technique, and the photographs of LIG electrodes
showing excellent flexibility; (c) photograph of a LIG sensor after modification with corresponding
ion-selective membranes (black circles, left) and Ag/AgCl ink (silvery circles, right), which could
simultaneously detect Na+, K+, and pH in sweat; (d) schematic illustration of the structures of Na+,
K+, pH sensors, and Ag/AgCl reference electrodes; (e) SEM image and (f) Raman spectra of LIG layer.

2.3. Preparation of Na+ and K+-Selective Sensors

Prior to preparing the sensing electrodes, a PEDOT:PSS solution (Clevios PH500) was
dropped onto the sensing area and dried at 120 ◦C for 1 h. PEDOT:PSS is an excellent ion-
to-electron transducer, which can convert the charge carriers from ions to electrons via the
doping/de-doping of PEDOT:PSS [36,37]. The Na+ ion-selective membrane was prepared
by dissolving Na ionophore X, Na-TFPB, PVC, and DOS (weight ratios of 1/0.55/33/65.45)
in tetrahydrofuran (1 mL). The K+ ion-selective membrane cocktail was prepared by dis-
solving 2 mg of valinomycin as an ionophore, KTClPB, PVC, and DOS (weight ratios of
2/0.5/32.75/64.75) in 1 mL of cyclohexanone.

2.4. Preparation of pH Sensors

For the pH sensor, H+ ion-selective electrode was connected with an electrochemi-
cal workstation (CHI 660E, Shanghai ChenHua Instruments Co., Shanghai, China) and
dipped into a 0.1 M aniline/0.1 M H2SO4 solution. PANI was electrodeposited using
cyclic voltammetry using a potential range varying from −0.2 to 1 V for 25 cycles at
100 mV/s. Commercial Ag/AgCl (1 M KCl) electrode and Pt wire were used as reference
and counter electrodes, respectively. Finally, Ag/AgCl paste was drop-coated onto the
reference electrode and baked at 120 ◦C for 5 min.
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2.5. Characterization

Surface morphology images were characterized using a field emission-scanning elec-
tron microscope (FESEM, Hitachi SU8020, Japan). Raman spectra were acquired using an
inVia Raman spectrometer with a 514 nm laser (Renishawin, Wotton-under-Edge, UK). The
electrochemical performance was analyzed with an electrochemical analyzer (CHI660E,
Shanghai ChenHua Instruments Co., China). Sheet resistance measurements were per-
formed using a four-probe resistance meter (HPS2523, Beijing Jiahang Bochuang Technology
Co., Beijing, China).

2.6. On-Body Detection

On-body sweat analysis was performed in compliance with the protocol approved by
the animal welfare and ethical review board at Hainan University (Issue No. HNUAUCC-
2021-00106). The subject (age: 23, female) rode an exercise bike for 60 min to produce
sweat. Additionally, the sensor was attached to the forearm of the subject for continuous
monitoring of pH, Na+, and K+ levels in sweat.

3. Results and Discussion

As shown in Figure 1a, the patterned LIG sensors can be easily produced by a precise
programmable LDW technique. Under the irradiation of a laser beam, the color of PI film
changed from light orange to dark, which indicated the formation of graphitic carbon.
Meanwhile, a variety of predesigned patterns can also be readily realized, such as the logo
of Hainan University shown in Figure 1b, demonstrating the facile, high-efficient, and
versatile advantages of the LDW technique. Figure 1e shows the FESEM image of LIG
electrodes. The laser-written region exhibited a 3D porous architecture with micrometric
holes generated by the emission of gases during the irradiation process [38]. Raman
spectrum of the LIG (Figure 1f) further demonstrates the graphitic properties of LIG.
There were three characteristic peaks at ~1350 cm−1 (D peak), ~1580 cm−1 (G peak), and
~2700 cm−1 (2D peak), respectively [30,39]. The D peak is related to the formation of sp2

carbon bond defects in the graphene. The G peak arises from the C-C bond stretching in
graphitic materials and confirms the presence of the sp2 carbon networks. The 2D peak
is due to the second harmonic of the D band, which further demonstrates the graphene-
like features [40,41]. These results indicate that CO2 laser irradiation is able to cause
carbonization and subsequent graphitization of polyimide. Meanwhile, the obtained LIG
electrode (2 × 2 cm) showed a sheet resistance as low as Rs = 23 Ω sq−1 (Table S1), indicating
good electrical conductivity. As shown in Figure S1, a LED bulb could be readily lighted
when a LIG wire was used as a conductor. Furthermore, after functionalization with various
ion-selective membranes (Figure 1c,d), it was revealed that LIG electrodes can be used as a
promising platform for wearable sweat-sensing applications.

As sweat is found at moderately acidic-to-neutral pH levels, typically between 4.5 and
7.0 [42,43], pH detection was evaluated by measuring the open circuit potential (OCP)
value with the variation of pH from 4 to 7 (Figure 2). As shown in Figure 2a, the OCP
stably decreased as the pH increased from 4 to 7, and the LIG-based pH sensors exhibited a
sensitivity of 51.5 mV/decade, which is close to the Nernst limit of 59.2 mV/decade [44].
Figure 2b shows the reproducibility of three different sensors. The sensitivity showed an
insignificant fluctuation from 47.5 to 51.7 mV/decade (RSD = 6.4%). The stability was also
measured repeatedly in PBS buffer solution from pH 4 to 7 (Figure 2c). The OCP showed
a stable change with the pH level in three complete cycles. The average sensitivity was
51.9 mV/decade (RSD = 0.5%), indicating that LIG-based pH sensors are reproducible and
durable. Since sweat contains a variety of electrolytes such as Na+, K+, H+, Ca2+, Mg2+, and
NH4

+, it is essential to examine the selectivity of the wearable sweat sensors. As depicted
in Figure 2d, physiologically relevant concentrations of interfering ions (1 mM Ca2+, 1 mM
Mg2+, 1 mM NH4

+, 8 mM K+, and 20 mM Na+) were added to the PBS buffer solution with
pH 4. The change in potential was significantly smaller than the response when the pH
value increased to pH 5. This shows that the sensor displays high selectivity.



Biosensors 2022, 12, 397 5 of 11

Biosensors 2022, 12, x FOR PEER REVIEW 5 of 11 
 

in Figure 2d, physiologically relevant concentrations of interfering ions (1 mM Ca2+, 1 mM 
Mg2+, 1 mM NH4+, 8 mM K+, and 20 mM Na+) were added to the PBS buffer solution with 
pH 4. The change in potential was significantly smaller than the response when the pH 
value increased to pH 5. This shows that the sensor displays high selectivity. 

 
Figure 2. pH-sensing performance of flexible LIG-based sensors: (a) sensitivity, (b) reproducibility, 
(c) stability, and (d) selectivity. Inset in (a) is the corresponding calibration plot. 

Similar to the pH sensors, the Na+- and K+-sensing performances were also evaluated 
(Figures 3 and 4). Generally, the sweat contains Na+ and K+ in the range of 66.3 ± 46.0 mM 
and 9.0 ± 4.8 mM, respectively [45]. Therefore, we tested the Na+- and K+-sensing perfor-
mances of the LIG-based sensors in the electrolyte solutions with target concentrations of 
0.1–100 mM. As shown in Figure 3a, the OCP increased linearly with the Na+ concentra-
tion, and a sensitivity of 45.4 mV/decade was obtained. Meanwhile, the K+ sensors showed 
a similar sensitivity of 43.3 mV/decade (Figure 4a). Furthermore, Na+ and K+ sensors ex-
hibited good reproducibility, with an average sensitivity of 44.93 mV/decade (RSD = 1.5%) 
and 41.5 mV/decade (RSD = 5.3%) (Figures 3b and 4b), respectively. Additionally, both 
sensors showed good reversibility and stability in three-cycle repeated measurements: 
RSDNa = 0.8%, RSDK = 0.6% (Figures 3c and 4c). Figures 3d and 4d illustrate the selectivity 
evaluation of Na+ and K+ sensors in the presence of possible interfering ions at physiolog-
ically relevant concentrations. The target electrolytes exhibited negligible interference to 
the response of each sensor.  
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(c) stability, and (d) selectivity. Inset in (a) is the corresponding calibration plot.

Similar to the pH sensors, the Na+- and K+-sensing performances were also evaluated
(Figures 3 and 4). Generally, the sweat contains Na+ and K+ in the range of 663; ±, 460 mM,
and 9.0 ± 4.8 mM, respectively [45]. Therefore, we tested the Na+- and K+-sensing per-
formances of the LIG-based sensors in the electrolyte solutions with target concentrations
of 0.1–100 mM. As shown in Figure 3a, the OCP increased linearly with the Na+ concen-
tration, and a sensitivity of 45.4 mV/decade was obtained. Meanwhile, the K+ sensors
showed a similar sensitivity of 43.3 mV/decade (Figure 4a). Furthermore, Na+ and K+

sensors exhibited good reproducibility, with an average sensitivity of 44.93 mV/decade
(RSD = 1.5%) and 41.5 mV/decade (RSD = 5.3%) (Figures 3b and 4b), respectively. Ad-
ditionally, both sensors showed good reversibility and stability in three-cycle repeated
measurements: RSDNa = 0.8%, RSDK = 0.6% (Figures 3c and 4c). Figures 3d and 4d illustrate
the selectivity evaluation of Na+ and K+ sensors in the presence of possible interfering
ions at physiologically relevant concentrations. The target electrolytes exhibited negligible
interference to the response of each sensor.
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Furthermore, in order to demonstrate that LIG-based sensors are able to withstand
mechanical deformation during daily human wear and physical exercise, the pH-, Na+-, and
K+-sensing performances of flexible LIG-based sensors were investigated by monitoring
the OCP responses after mechanical bending (radius of curvature is 2 cm). As shown in
Figure S2, no apparent variation in the potential response was observed under normal and
bent states, indicating the robustness and reliability of LIG-based sensors. Furthermore,
as shown in Table S2, we compared the sensing performances of recently reported sweat
sensors with the proposed sensor in this study in terms of detection method, sensitivity,
linear range, skin wearability, and integration level. Several comments should be noted in
future studies: (i) Electrochemical detection (e.g., OCP) is still a mainstream method for the
inorganic ions in sweat. (ii) Multiparameter measurement is essential to ensure the accurate
evaluation of the health status of individuals. (iii) If a wearable sweat detection system
needs to be made small enough for daily use, the smartphone is a valuable supplement.

To assess the on-body sweat sensor, a LIG-based sensor was attached to a subject’s
forearm and integrated with a flexible printed circuit board while they rode a cycling
machine (Figure 5a). Figure 5b shows the photograph of the flexible printed circuit board
(FPCB), which consists of (i) a microcontroller, (ii) a Bluetooth module, (iii) a power switch
and charging USB, (iv) a sensor connector, (v) a power management module, and (vi) a
lithium-ion battery. Based on these modules, the FPCB can realize various functions,
including signal transduction, conditioning, processing, and wireless transmission. The
corresponding block diagram of FPCB is depicted in Figure 5e. A high-impedance voltage
buffer was used to measure the voltage difference between Ag/AgCl reference electrodes
and ion-selective electrodes (pH, Na+, and K+). A low pass filter was used to filter the
high-frequency noise and stable the output voltage. These voltage analog signals were
then converted to digital signals using a 12-bit analog-to-digital converter (ADC) built-in
microcontroller. Finally, the data were transmitted to a smartphone via Bluetooth and
displayed on a customized Android application (Figure 5d).

Figure 5f shows the profiles of on-body sweat electrolytes as a function of exercise
time. Initially, there was no signal response during the first 1000 s because sweat was
not generated enough. After 1000 s of biking activity, stable electrochemical signals could
be observed. The measured signals were further converted into analyte concentrations
using the standard calibration plots obtained by a wearable multiplexed sensing system
(Figure S3). From 1000 to 2500 s, sweat pH maintained a stable value of 6.3 and then de-
creased gradually to a stable value of 4.5. At the stage of cooling down (5000–6800 s), sweat
pH increased again, possibly reflecting a common phenomenon that more perspiration
would be released from sweat glands when the muscles are relaxed. The Na+ and K+

sensors showed opposite trends, compared with the pH profile. The concentrations of Na+

and K+ increased in the beginning and stabilized after 3000 s. With the prolonged time
to the stage of cooling down, both sweat signals of Na+ and K+ decreased rapidly. The
overall trends of the sweat electrolyte profiles were comparable to the profiles observed in
previously reported on-body tests [46,47]. Additionally, the video of the on-body real-time
testing process can be found in Supporting Information (Video S1). Furthermore, we col-
lected the sweat samples during different exercise times (20, 40, and 60 min) and compared
the pH, Na+, and K+ concentrations obtained via the LIG-based sensors and conventional
gold standard techniques (pH meter and ICP-MS). As shown in Table 1, the acceptable
difference between the two assay results demonstrates the feasibility of the LIG-based
wearable device.
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Figure 5. On-body real-time monitoring of sweat during stationary cycling: (a) photograph of a
LIG-based sensor attached to the forearm of a subject for continuous monitoring of pH, Na+, and K+

levels in sweat, and the data were collected with a flexible, printed circuit board (FPCB) and then
transmitted wirelessly to the smartphone-based application via Bluetooth; (b) photograph of the
FPCB, which consists of (i) microcontroller, (ii) Bluetooth module, (iii) power switch and charging
USB, (iv) sensor connector, (v) power management module, and (vi) lithium-ion battery; (c) enlarged
photograph of the LIG-based sensor attached to the forearm of a human subject; (d) photograph of
the developed Android application; (e) block diagram of FPCB showing the signal transduction from
the LIG-based sensor to the custom-developed mobile application; (f) real-time sweat analysis results
of pH, Na+, and K+ concentrations using the integrated wearable sensing system.

Table 1. Comparison of the sensing performance using the LIG-based sensors and conventional
gold standard techniques. Sweat samples 1–3 were collected at 20, 40, and 60 min during on-body
tests, respectively.

Sweat 1
(20 min)

Sweat 2
(40 min)

Sweat 3
(60 min)

pH LIG-based sensor 6.3 ± 0.14 5.6 ± 0.22 4.5 ± 0.18
pH meter 6.4 ± 0.10 5.3 ± 0.10 4.4 ± 0.10

Na+

(mM)
LIG-based sensor 4.16 ± 0.12 31.22 ± 0.15 59.35 ± 0.22

ICP-MS 3.82 ± 0.06 28.81 ± 0.08 53.06 ± 0.13
K+

(mM)
LIG-based sensor 4.85 ± 0.15 4.87 ± 0.21 5.37 ± 0.24

ICP-MS 5.03 ± 0.10 5.00 ± 0.08 5.28 ± 0.12

4. Conclusions

In summary, we demonstrated a wearable epidermal sensor array for noninvasive
multiplexed sweat analysis based on laser-induced 3D porous graphene on PI film. The
LIG-based sensors showed good performance, with the sensitivities of 51.5 mV/decade
(pH), 45.4 mV/decade (Na+), and 43.3 mV/decade (K+), and the sensing performance
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was well-maintained under bent states. Good reproducibility, stability, and selectivity
were also observed. Additionally, the LIG-based sensor was integrated with a flexible,
printed circuit board and custom-developed Android application for simultaneous in situ
real-time monitoring of pH, Na+, and K+ levels in sweat. The correlation of on-body sweat
concentrations derived from the integrated system and gold standard methods (pH meter
and ICP-MS) demonstrates its capability for real-time sweat analysis. Compared with
the commercial devices, e.g., Horiba C-120, the developed devices have low production
costs (about USD 10 each). In particular, relying on the facile, high-efficient, and versatile
advantages of the LDW technique, our devices have good scalability, as their application
can easily be expanded by adding more physiological signals (glucose, uric acid, tyrosine,
etc.) to reflect the health status or clinical needs of individuals.
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https://www.mdpi.com/article/10.3390/bios12060397/s1, Figure S1: LED bulb lighted by LIG,
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Na+-, and K+-sensing performance tested on the custom-developed wearable multiplexed sensing
system, Table S1: The patterning of 2 × 2 cm squares on PI substrate, Table S2: Comparison of
sensing performances, Video S1: On-body real-time testing process. References [48–56] are cited in
the supplementary materials.
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