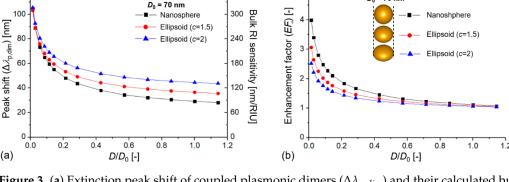

Correction: Bonyár, A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling—Interparticle Gap Optimization for Dimers Using Computational Simulations. Biosensors 2021, 11, 527

Attila Bonyár D


Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; bonyar@ett.bme.hu

1. Error in Figure/Table

In the original publication [1], there was a mistake in *Figures 3 and 6* as published. The unit of D/D_0 (in the axes labels) is indicated as (nm), while it should correctly be dimensionless (-). The mistake only involves the figures; in the text and in the figure captions D/D_0 , was always correctly referred to as dimensionless. The corrected Figures 3 and 6 appear below.

Figure 3. (a) Extinction peak shift of coupled plasmonic dimers $(\Delta \lambda_{p,dim})$ and their calculated bulk refractive index sensitivity (RIS) as a function of the dimensionless D/D_0 value, where D is the interparticle distance, and D_0 is the particle diameter ($D_0 = 70$ nm). (b) Calculated bulk enhancement

factor (EF_{∞}) values compared to single, uncoupled particles with the same size as a function of D/D_0 .

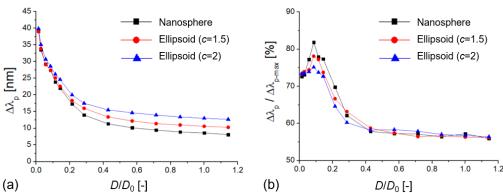
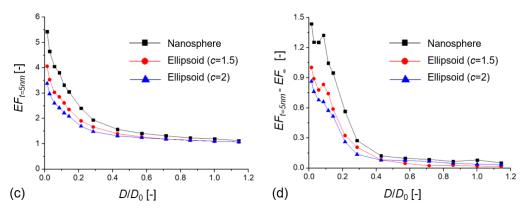


Figure 6. Cont.

Citation: Bonyár, A. Correction: Bonyár, A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling-Interparticle Gap Optimization for Dimers Using Computational Simulations, Biosensors 2021, 11, 527. Biosensors 2022, 12, 411. https:// doi.org/10.3390/bios12060411


Received: 20 April 2022 Accepted: 1 June 2022 Published: 14 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Biosensors 2022, 12, 411 2 of 2

Figure 6. (a) Extinction peak shift $(\Delta \lambda_p)$ of different dimer arrangements as a function of the dimensionless D/D_0 value $(D_0 = 70 \text{ nm})$ with a dielectric layer of 5 nm $(n_1 = 1.5 \text{ in water medium, with } n = 1.33)$. (b) Relative extinction peak shift as a function of the dimensionless D/D_0 value, where $\Delta \lambda_{p-max}$ is calculated as the peak shift upon the RI of the medium changing from 1.33 to 1.5. (c) Enhancement factor $(EF_{t=5\text{nm}})$ as a function of D/D_0 . (d) Difference between surface and bulk enhancement factors $(EF_{t=5\text{nm}} - EF_{\infty})$ as a function of D/D_0 .

2. Text Correction

There were two textual errors in the original publication.

On page 4, in one instance, RIS_{dim} was written instead of $\Delta \lambda_{p,dim}$.

A correction has been made to "3. Results and Discussion", first paragraph:

"By depositing a dielectric layer of 5 nm thickness and n_1 = 1.5, the experienced extinction peak shifts were $\Delta\lambda_{p,sp}$ = 6.1 nm and $\Delta\lambda_{p,dim}$ = 18.2 nm (Figure 2b), corresponding to an enhancement of 2.98 ($EF_{t=5nm}$)".

On page 6, in one instance, t = 7 nm was written instead of t = 5 nm.

A correction has been made to "3. Results and Discussion", seventh paragraph:

"The practical meaning of EF_t is, for example, that dimer nanospheres of 70 nm diameter and 10 nm gap provide a 3.2 times higher signal compared to uncoupled spheres of the same size with t = 5 nm layer thickness".

The author apologizes for any inconvenience caused and states that the scientific conclusions are unaffected. The original publication has also been updated.

Reference

 Bonyár, A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling—Interparticle Gap Optimization for Dimers Using Computational Simulations. *Biosensors* 2021, 88, 527. [CrossRef] [PubMed]