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Abstract: Mental stress is on the rise as one of the major health problems in modern society. It is
important to detect and manage mental stress to prevent various diseases caused by stress and to
maintain a healthy life. The purpose of this paper is to present new heart rate variability (HRV)
features based on empirical mode decomposition and to detect acute mental stress through short-term
HRV (5 min) and ultra-short-term HRV (under 5 min) analysis. HRV signals were acquired from
74 young police officers using acute stressors, including the Trier Social Stress Test and horror movie
viewing, and a total of 26 features, including the proposed IMF energy features and general HRV
features, were extracted. A support vector machine (SVM) classification model is used to classify
the stress and non-stress states through leave-one-subject-out cross-validation. The classification
accuracies of short-term HRV and ultra-short-term HRV analysis are 86.5% and 90.5%, respectively.
In the results of ultra-short-term HRV analysis using various time lengths, we suggest the optimal
duration to detect mental stress, which can be applied to wearable devices or healthcare systems.

Keywords: heart rate variability (HRV); ultra-short-term HRV analysis; empirical mode decomposition
(EMD); non-linear features; stress assessment

1. Introduction

As the number of people with health problems due to stress increases every year,
mental stress is emerging as one of the major human health problems in modern society.
Mental stress not only harms mental and physical health, but also causes various diseases,
such as diabetes, cardiovascular and respiratory diseases, depression, and cancers [1–4].
Mental stress is largely classified into chronic stress and acute stress. When one faces an
acute stressor, the human body triggers a “fight-or-flight” response, a survival mechanism
triggered by external stimuli to maintain homeostasis. This response activates the sym-
pathetic nervous system within the body’s autonomic nervous system (ANS) and causes
changes in the body through the endocrine system [5]. If an acute stressor continuously
affects the body, it can be transformed into chronic stress, in which the ANS becomes
unbalanced. Therefore, it is necessary to quantitatively measure and manage acute stress in
daily life to remain healthy.

New methods for measuring stress are required in various fields. First, questionnaire
methods [6–8] are often used in the medical field, but such methods can be considered
a subjective indicator of each individual. Another stress measurement method utilizes
biomarkers, such as salivary alpha-amylase and cortisol [9,10]. Although the biomarker
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method is an objective stress measurement method, it has disadvantages in that continuous
stress monitoring is impossible, and measurement is inconvenient. Stress measurement
using physiological signals can compensate for the shortcomings of other methods and
has been actively studied in recent years to detect the physiological responses that change
due to the presence of a stressor. Stress measurement studies are mainly conducted on
physiological signals, such as ECG [11,12], GSR [13,14], and EEG [15,16], and some studies
have described the combined use of several physiological signals [17,18].

Well-described methods of inducing acute stress in humans include the Stroop color-
word test [19], the Trier Social Stressor Test (TSST) [20], mental arithmetic tasks [21], public
speaking [22], Montreal Imaging Stress Task [23], and horror movie viewing [24]. According
to a review of acute stressors [25], the most effective method for inducing stress among
the various acute mental stressors is the TSST including public speaking and cognitive
tasks, and there are TSST studies that conducted stress classification based on a single
or multiple physiological signals. The research to classify stress and non-stressed states
based on a single physiological signal is as follows. A study was conducted using HRV
signals and human stress assessments, resulting in an accuracy of 84.38% [11]. In a study
using EEG signals, features including absolute power, relative power, coherence, phase
lag, and amplitude asymmetry were extracted for each frequency band using a 4-channel
EEG wearable device. When non-stress and stress groups were classified, the highest
reported accuracy was 98.76% [15]. Another stress classification study using GSR signals
obtained an average classification accuracy of 94.62% based on the cvxEDA method, which
is a rigorous and robust model [14]. Most previous studies were conducted using a
single physiological signal, such as EEG or GSR; have a small number of subjects or data
imbalance; and their application might not be suitable for real-life scenarios. In studies
considering multiple physiological signals, stress classification results using EEG, GSR,
and PPG achieved 79% accuracy; classification accuracy of 94% was achieved when the
aforementioned measurements were fused with sociometric sensors [17]. Another study
using EEG, GSR, and PPG achieved accuracies of 87.5% and 96.25% when EEG only and all
three physiological signals were considered, respectively [18]. Although the performance
of the previous stress classification studies has higher accuracy when using multiple signals
rather than a single signal, it would be difficult to assess mental stress using multiple
physiological signals in real-world situations.

HRV, which is used as a marker related to the ANS, is mainly used in studies of
stress assessment. Much of the mental stress assessment research analyzes HRV signals
recorded at 5 min intervals, defined as short-term HRV analysis [26]. As the demand
for real-time stress monitoring increases with the development of wearable devices [27],
recent healthcare systems require analysis of HRV signals shorter than 5 min, which is
defined as ultra-short-term HRV analysis [26]. Recently, stress classification studies have
been conducted using ultra-short-term HRV analysis [28–30]. These studies use HRV
features related to the ANS. Since short-term and ultra-short-term HRV analyses have
different lengths of data, and it is necessary to validate the ultra-short-term HRV features
as short-term features. Among stress-related HRV features, frequency domain features
are greatly affected by data length. In order to measure high-frequency (HF) and low-
frequency (LF) spectrum power, HRV data is required for a duration of at least 60 and
250 s, respectively [26]. Moreover, approximate entropy, one of the non-linear methods,
cannot be used for data representing less than 3 min [31]. Castaldo et al. [32] suggested
that ultra-short-term HRV features are surrogates of short-term features at different time
lengths during mental stress. Since the HRV signal is non-linear and non-stationary due
to the dynamics of the complex cardiac system, it is appropriate to use Empirical Mode
Decomposition (EMD), a time-frequency domain signal method with non-stationary and
non-linear characteristics. There are studies that have conducted stress analysis of HRV
signals using the EMD method [33–35]. There are also studies that analyzed HRV signal
using entropy methods with non-linear properties, including approximate entropy [36],
sample entropy [37], and permutation entropy [38].
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From this point of view, we analyzed intrinsic mode function (IMF) energy features
extracted from EMDs that can provide frequency domain information using less than 5 min
of data. Furthermore, we evaluated the stress classification accuracy of short-term and
ultra-short-term HRV data using time domain features, including general HRV features,
entropy features, and proposed EMD-based features, and suggested the optimal time length
for ultra-short-term HRV data collection in acutely stressful situations. In addition, the
classification method used a linear SVM classifier, and the appropriate evaluation was
performed with the leave-one-subject-out cross-validation (LOSOCV) method, which is
most similar to real-life application.

2. Methods

The stress classification method proposed in this study is shown in Figure 1. Subject
selection and the experimental protocol for HRV signal measurement are described in
Sections 2.1 and 2.2, respectively; preprocessing to remove ectopic heartbeats is described
in Section 2.3; the description of the proposed HRV features and general features is outlined
in Section 2.4; and ranked feature processing to increase accuracy and a classification
method using leave-one-subject-out cross-validation are outlined in Section 2.5.
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2.1. Dataset

The stress database [39,40] provided by PhysioNet assumes that the subject is stressful
in the given stress situations, and this approach may be limited in classifying stress. In
addition, the PhysioNet stress database is difficult to generalize because it consists of a
small number of subjects. In order to supplement the above limitations, the following
experiment was conducted.

2.1.1. Subjects

The dataset consists of physiological signals and questionnaires from 80 participants
(78 males and 2 females). All participants were third-year police officers without heart



Biosensors 2022, 12, 465 4 of 16

disease and were in good physical condition. The data for six subjects (all male) were
excluded due to sensor problems. This study was approved by the Institutional Review
Board of Hanyang University Hospital and was conducted according to the guidelines
of the Declaration of Helsinki, and all subjects provided informed consent before the
experiment (HYUIRB-202009-032-3)

2.1.2. Experimental Protocol

All participants performed the stress-inducing experiment in a laboratory environment
according to the experimental protocol shown in Figure 2. The sequence of the experiment
protocol was sensor attachment, resting state (pre) for 5 min, exposure to each of the
3 stressors for 5 min, resting state (post) for 5 min, and self-reported subjective stress
intensity. We used various methods to induce acute mental stress, including TSST (public
speaking and arithmetic task) and horror movie viewing.
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Figure 2. Experimental protocol for inducing stress.

Before the experiment, participants wore a Polar H10 HR monitor with a Polar Pro
Chest Strap (Polar Electro Oy, Kempele, Finland) to measure respective heart rate (HR)
and heart rate variability (HRV), which represent autonomic responses. The RR interval
data were transferred to Samsung Galaxy Tab A (Samsung Electronics, Co., Ltd., Seoul,
South Korea) and saved in Polar’s app. Based on findings that alpha-amylase increases
when humans are exposed to a stressful situation [41,42], salivary alpha-amylase was also
measured using a COCORO Meter (Nipro Co, Osaka, Japan).

As shown in Figure 2, the stress-inducing experiment protocol consists of a non-stress
section, which is comprised of rest (pre and post), and a stress section, comprised of TSST
(public speaking, arithmetic task) and horror movie viewing. In the resting section, the
participants were seated on a comfortable chair, and the HRV signal was measured for
5 min of relaxation. During the Stress 1 section, public speaking including job-related
questions and a simulated job interview that was conducted for 5 min. In the Stress
2 section, mental arithmetic tasks (MATs) were performed. The MAT was to continue
subtracting 17 from 2023. If an answer was wrong, subtraction started again from 2023,
and the MAT was repeated for 5 min. During the horror movie viewing within the Stress
3 section, participants watched horror movie clips for 5 min. After the experiment, a
questionnaire was conducted on the ranking of subjective stress intensity. The ranking
of subjective stress intensity was set to 5 for the most stressful situations and 1 for the
least stressful situations. 59 of 74 subjects answered that mental arithmetic was the most
stressful, while the remaining eight and seven subjects said horror movie clips and public
speaking were the most stressful, respectively.

2.2. Data Preprocessing
2.2.1. Noise Removal and Interpolation of HRV Signal

Prior to HRV analysis, preprocessing is essential to remove the outliers in RR intervals
caused by noise, such as movement. Outliers in RR interval data were removed and defined
as data outside 3 standard deviations (SD) from the mean [43]. Considering the non-linear
characteristics of HRV signals, cubic spline interpolation was performed [44]. The HRV
signal used to obtain EMD-based features was interpolated with cubic spline and was
resampled at 8 Hz.



Biosensors 2022, 12, 465 5 of 16

2.2.2. Comparison of Short-Term HRV and Ultra-Short-Term HRV

For comparison with ultra-short-term HRV, we analyzed short-term HRV using data
collected over 5 min, which is the data length commonly used in previous studies. We
selected the resting state and stress state for each participant using the rankings of subjective
stress intensity. The resting state was selected as the lowest subjective stress intensity
ranking between Resting 1, measured before the stress experiment, and Resting 2, measured
after the stress experiment. The stress state was selected as the highest stress ranking among
Stress 1, Stress 2, and Stress 3.

According to Thomas Wyss et al. [45], the HR, an ANS indicator, is initially high
during acute mental stress situations and decreases as the stress situation continues. These
results indicate that the response of the sympathetic nervous system to acute mental stress
not only responds rapidly, but also adapts to a stress stimulus due to ANS homeostasis.
As shown in Figure 3, ultra-short-term HRV analysis was performed by dividing time
segments into first, middle, and last segments over 1, 2, and 3 min, respectively. Each
resting state was paired with stress state, and the segment with the lowest average HR
was used.
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Figure 3. Ultra-short-term HRV explanation for each time segment during the experimental protocol.

2.3. Feature Extraction
2.3.1. Time Domain Features

Time domain HRV features frequently used to evaluate acute mental stress were
extracted. The mean RR interval (RR), standard deviation of RR interval (SDNN), square
root of the mean squared difference between successive RR intervals (RMSSD), and the
proportion of successive differences between RR intervals greater than x msec (pNN30,
pNN50) were extracted. Expressions for these features are as follows.

SDNN =

√√√√ 1
N − 1

(
N−1

∑
i=1

(RRi−meanRR)2) (1)

RMSSD =

√√√√ 1
N − 1

N

∑
i=1

(RRi+1 − RRi)
2 (2)

pNNx =
NNx

N − 1
∗ 100 (3)

Additionally, we extracted G-pNNx (Grouped-pNNx), a new feature that can be
applied to a group of young and healthy people. Based on a prior study [46], using a
parameter between pNN10-40 instead of pNN50 is more suitable for stress assessment. We
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developed G-pNNx as a pNNx-based stress feature optimized for young people using data
collected from young police officers at rest. The procedure for calculating the x-value of
G-pNNx is as follows.

1. On the basis of subjectively ranked self-reported stress intensity in the experimental
protocol, select the lowest stress rank between Resting 1 and Resting 2.

2. If the distribution of data satisfies normality, obtain G-pNNx using the mean value of
the distribution; otherwise, obtain it using the median value.

Since the data do not satisfy normality (Kolmogorov–Smirnov, p < 0.05) in our study,
the x value of G-pNNx was obtained using the median value (18.5).

2.3.2. EMD-Based Features
EMD

EMD is an adaptive time-series analysis method suitable for processing non-stationary
and non-linear series [47]. Since the HRV signal has non-stationary and non-linear char-
acteristics [48], EMD is suitable for our research. EMD can decompose any signal with
an IMF. As the x-value in an IMF increases, the low-frequency component of the original
signal is included. For example, IMF1 represents the highest local frequency component of
the signal. In order to extract IMFs from the original signal using the EMD method, the
following two basic conditions are essential [49].

1. The numbers of extrema and zero crossings must be the same or different at most
by one within the entire dataset.

2. The mean value of the envelope defined by local maxima and minima must be zero
at any point.

If the two conditions are satisfied, the IMF can be continuously decomposed by the
EMD method for x(t) and mathematically expressed as follows.

x(t) =
n

∑
k=1

IMFk + rn (4)

where x(t) is the HRV signal, we used decomposed IMF of 1~3, and the residual r was not used.

Entropy Features

The entropy method is suitable for HRV signals as a non-linear method similar to EMD,
and the entropy methods used in our study are permutation entropy and sample entropy.

Permutation entropy (PE) is useful to represent the complexity of dynamic time-series
signals and has the advantages of simple calculation and robustness to noise [50]. PE is
calculated by the following equation [51].

PEn = −
m!

∑
i=1

Ailog(Ai) (5)

The factorial calculated from sequence length m (dimension) is the number of possi-
ble permutation patterns, and Ai is the probability of the i-th permutation pattern. The
setting values in the permutation entropy method are time delay tau and dimension m.
Since the sampling frequency of the resampled HRV signal is 8 Hz, the maximum value
of tau was set to 4 by the Nyquist–Shannon sampling theorem [52]. Since the minimum
length of data used for ultra-short-term HRV analysis was N (data length) = 480 (sam-
pling frequency = 8 Hz, 60 s), m was set to 4, suitable for values under the condition of
N > 5m! [53].

Sample entropy compensates for the disadvantage of approximate entropy [54] and
measures the irregularity and complexity of HRV signal and IMF components. The setting
values used in sample entropy consist of embedding dimension m and tolerance r. In a
previous study [55], the embedding dimension value was set to 2, and the tolerance value
was set using the standard deviation of the HRV data (r = 0.2 × SD).
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Energy Features

Previous stress assessment studies based on HRV signals frequently use frequency
domain features, including the VLF component (~0.04 Hz), LF component (0.04~0.15 Hz),
HF component (0.15~0.4 Hz), and LF/HF ratio. A major drawback of frequency domain
features is the inaccuracy when using ultra-short-term HRV signals. According to [56], LF
band (0.04~0.15 Hz) power requires HRV data to span at least 250 s from a theoretical point
of view, so ultra-short-term HRV analysis using HRV data lasting about 4 min or less has
poor reliability regarding several HRV features based on LF band power.

Based on Parseval’s theorem [57] that the total energy of a signal can be calculated by
summing power across time or spectral power across frequency, as shown in Equation (6),
this paper presents a methodology that can replace frequency domain features with the
energy of IMF components. The methodology compares the HF band power and energy
of the high-frequency component IMF1 and the LF band power and energy of the rel-
atively low-frequency components (IMF2 and IMF3). In addition, IMF energy features
corresponding to the LF/HF ratio, normalized-LF, and normalized-HF were extracted.

∞

∑
n=−∞

|x[n]|2 =
1

2π

∫ π

−π
|X2π(φ)|2dφ (6)

SD-IMF and RMSSD-IMF Features

Three IMF components obtained through the EMD method were extracted using
SDNN Equations (1) and RMSSD (2). Instead of RRi in Equation (1), three SD-IMF features
were used for the IMF components, and three RMSSD-IMF features were extracted using
Equation (2).

2.4. Feature Ranking Method

The number of extracted HRV features was 26, including 6 general time domain
features, 3 entropy/energy features of HRV signal not decomposed through EMD (permu-
tation entropy, sample entropy, and energy), 6 EMD-based entropy features, 5 EMD-based
entropy features, and 6 EMD-based time domain features.

The Relief-F algorithm was applied to remove features that did not contribute to stress
classification performance and to improve computational efficiency. The Relief-F algorithm
is a method to evaluate the contribution of each feature based on k-nearest neighbors by
increasing the inter-class difference and decreasing the intra-class difference [58]. The
algorithm finds a sample with the same class label and a sample with a different class
label closest to a randomly selected sample among the k samples in the closest order and
calculates a weight using the difference between the selected sample and the closest sample.
In this study, the feature with the lowest weight value between the resting state and the
stress state was removed sequentially to achieve good performance.

2.5. Classification Method
2.5.1. Support Vector Machine (SVM) Classifier

In order to classify the resting and stress states, the SVM classifier widely used in
stress research was used. The SVM classifier is a method of finding the optimal hyperplane
to classify a class, and a vector contributing to creating the hyperplane is called a support
vector [59]. Mathematically, an SVM is represented as follows [60]:

H(x) = sign

[
p

∑
k=1

αktkP(z, zk) + b

]
(7)

where P(z,zk) is the kernel function, zk is the D-dimension k-input vector (feature), tk is the
target class vector, ak is the LaGrangian multiplier, and b represents the bias term. We used
SVM with a linear classifier and classified stress and non-stress states using short-term
HRV and ultra-short-term HRV data.
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2.5.2. Leave-One-Subject-Out Cross Validation (LOSOCV)

The LOSOCV method is a variation of the k-fold cross-validation approach that vali-
dates as many folds as there are subjects included in the data set [61]. LOSOCV evaluates
the accuracy on new subjects that have not been seen by the model, suggesting whether the
developed classifier model can achieve classification performance when applied in real situ-
ations. In this study, the performance of the training model was evaluated using LOSOCV.

2.5.3. Performance Evaluation

We calculated evaluation indicators, such as accuracy, precision, recall, and F1-score,
to explain the results of LOSOCV. Each evaluation indicator is expressed as follows [62]:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(11)

3. Results
3.1. Relationships between Frequency Domain Features and IMF Energy Features

In order to perceive the trends in 5-min HRV signal and IMF components in the
frequency domain, we represented each component using fast Fourier transforms (FFTs),
as shown in Figure 4. The HF band (0.15–0.4 Hz) of the HRV and IMF1 spectral areas (blue)
are similar, and the LF band (0.04–0.15 Hz) of the HRV spectrum and the sum of the IMF2
(red) and IMF3 spectral areas (pink) are similar. In addition, the mean frequency for each
IMF using the entire data including the resting and stress state is shown in Figure 5. The
mean frequency of IMF1 is included in the HF band, and IMF2 and IMF3 are included in
the LF band.
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The Pearson correlation method was used to describe the proposed IMF energy fea-
tures as surrogates of frequency domain features. Table 1 presents the correlation coeffi-
cients of the relationships between IMF energy (IMF1, IMF2+IMF3, and ratio) and frequency
domain features (HF, LF, and HF/LF ratio). Using the scale of Hopkins [63], the results
in Table 1 were qualitatively analyzed with the Pearson correlation r, described as trivial
(0.0–0.1), small (0.1–0.3), moderate (0.3–0.5), large (0.5–0.7), very large (0.7–0.9), or nearly
perfect (0.9–1.0).

Table 1. Correlation coefficients between frequency domain features.

HF LF LF/HF Ratio

EnergyIMF1 0.93 0.79 −0.29
EnergyIMF2+IMF3 0.77 0.92 −0.03

EnergyIMF2+IMF3
EnergyIMF1

−0.43 −0.09 0.86

Using all data, including both the resting state and the stress state, IMF1-energy
features had a nearly perfect correlation value (r = 0.93) with HF and a relatively low
correlation value with LF (r = 0.77). Contrary to IMF1-energy features, the IMF2+IMF3-
energy features had a nearly perfect correlation value (r = 0.92) with LF and a relatively
low and very large correlation value (r = 0.79) in HF. The IMF-energy ratio was highly
correlated with the LF/HF ratio (r = 0.86).

3.2. Comparison of Feature Ranks between Resting and Stress States

When classifying the resting state and stress state with the Relief-F algorithm using
short-term HRV data, the results are listed in descending order of weight, as shown in
Table 2. Linear SVM classifier training was repeated by adding features in ascending order
from the ranked features one at a time, and the optimal number of features with the best
classification performance was selected. From these results, the proposed energy-related
features, such as ranks 1, 3, and 6, have high weights.
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Table 2. HRV features in descending order of significance according to the Relief-F algorithm.

Rank Feature Name Rank Feature Name

1 Energy 14 SpEn
2 SDNN 15 G-pNNx
3 Energy_(IMF2+IMF3) 16 PmEn_IMF3
4 SpEn_IMF3 17 pNN50
5 RMSSD_IMF3 18 pNN30
6 Energy_IMF1 19 SpEn_IMF2
7 SDNN_IMF3 20 Energy_IMF23/IMF1
8 HR 21 Energy_IMF1/IMF123
9 SDNN_IMF2 22 Energy_IMF23/IMF123
10 RMSSD_IMF2 23 PmEn
11 RMSSD 24 PmEn_IMF1
12 RMSSD_IMF1 25 PmEn_IMF2
13 SDNN_IMF1 26 SpEn_IMF1

3.3. Short-Term HRV Classification and Performance Evaluation

The results of LOSOCV performance evaluation on short-term HRV data after feature
selection are shown in Figure 6. The best classification performance was obtained when
the classifier model was developed using the top 17 highest ranked features. The results
comparing the stress state to the resting state were 86.5% accurate, with a recall of 85.1%,
precision of 87.5%, and F1-score of 86.3%.
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3.4. Ultra-Short-Term Classification and Performance Evaluation

The classification results based on ultra-short-term HRV data by dividing the time
segments into each time length, designated as the first, middle, and last time lengths
(1, 2, and 3 min), are shown in Figure 3. The linear-SVM classifier model was used in the
same way as the classification method based on the short-term HRV data, and LOSOCV
performance evaluation was performed using the ranked features listed in Table 2. The
results of ultra-short-term HRV classification were compared for time segment and time
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length (Table 3). When compared in the time segments between the first, middle, and last
time lengths, the classification accuracy of the first length is higher than that of the middle
and last lengths, as shown in Figure 7. The accuracy of the first segment of 2-min and 3-min
lengths is higher than the classification accuracy using short-term HRV data. Segments of
1-min length achieved the highest accuracy in the middle part, and this result indicated a
different tendency than those of segments of 2-min and 3-min length. All segments of 1-min
length led to less accurate predictions than the classification performance using short-term
HRV data.

Table 3. Classification performance using ultra-short-term HRV data according to time segments and
time lengths.

Classification Performance (%)

Front Middle Last

3-min
segments

Accuracy 90.5 84.5 84.5
F1 Score 90.3 83.7 84.6

2-min
segments

Accuracy 87.2 81.8 82.4
F1 Score 86.7 82.1 81.9

1-min
segments

Accuracy 82.4 85.1 79.7
F1 Score 82.4 84.5 79.2

Biosensors 2022, 12, x FOR PEER REVIEW 11 of 17 
 

3.4. Ultra-Short-Term Classification and Performance Evaluation 
The classification results based on ultra-short-term HRV data by dividing the time 

segments into each time length, designated as the first, middle, and last time lengths (1, 2, 
and 3 min), are shown in Figure 3. The linear-SVM classifier model was used in the same 
way as the classification method based on the short-term HRV data, and LOSOCV perfor-
mance evaluation was performed using the ranked features listed in Table 2. The results 
of ultra-short-term HRV classification were compared for time segment and time length 
(Table 3). When compared in the time segments between the first, middle, and last time 
lengths, the classification accuracy of the first length is higher than that of the middle and 
last lengths, as shown in Figure 7. The accuracy of the first segment of 2-min and 3-min 
lengths is higher than the classification accuracy using short-term HRV data. Segments of 
1-min length achieved the highest accuracy in the middle part, and this result indicated a 
different tendency than those of segments of 2-min and 3-min length. All segments of 1-
min length led to less accurate predictions than the classification performance using short-
term HRV data. 

 
Figure 7. Comparison of classification accuracy using ultra-short-term HRV data. 

Table 3. Classification performance using ultra-short-term HRV data according to time segments 
and time lengths. 

 Classification Performance (%) 
  Front Middle Last 

3-min  
segments 

Accuracy 90.5 84.5 84.5 
F1 Score 90.3 83.7 84.6 

2-min  
segments 

Accuracy 87.2 81.8 82.4 
F1 Score 86.7 82.1 81.9 

1-min  
segments 

Accuracy 82.4 85.1 79.7 
F1 Score 82.4 84.5 79.2 

3.5. Salivary Cortisol of Different States 
According to the experiment protocol in Figure 2, sAA measurements were per-

formed a total of four times during the experiment (sAA1: After public speaking sAA, 

Figure 7. Comparison of classification accuracy using ultra-short-term HRV data.

3.5. Salivary Cortisol of Different States

According to the experiment protocol in Figure 2, sAA measurements were performed
a total of four times during the experiment (sAA1: After public speaking sAA, sAA2: After
mental arithmetic sAA, sAA3: After horror movie sAA, sAA4: After resting sAA). Since not
all sAA data satisfied the normality test, the resting state (sAA4) and stress states (sAA1~3)
analyses were performed using the non-parametric Mann–Whitney U test. Compared with
sAA4, sAA1 (p = 0.056), sAA2 (p = 0.797), and sAA3 (p = 0.082) were not significant in all
stress states.
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4. Discussion

This study suggests that the proposed IMF energy features obtained using EMD are
good surrogates of the frequency domain features. Although there is previous research that
showed similarity among HRV features, including time domain, frequency domain, and
non-linear features [64], this is the first study to suggest that frequency domain features
such as HF, LF, and ratio can be replaced with other HRV features.

Ultra-short-term HRV analysis, which evaluates mental stress using data less than
5 min long, is a topic of increasing interest [56]. Castaldo et al. [32] presented time segments
and HRV features in ultra-short-term HRV data that can be replaced with short-term HRV
analysis as a result of correlation analysis between ultra-short-term and short-term HRV
features. It was suggested that features including HR, RMSSD, pNN50, and sample entropy
can be substituted for ultra-short-term HRV analysis with a 2-min length compared to
short-term HRV analysis (r > 0.7). Using the same method from the research above, 4 time
lengths (5 min, 3 min, 2 min, and 1 min) were compared, as in Table 4. In the resting state,
all features were significantly correlated in each time scale (r > 0.7), and all features except
the 1 min time scale were significantly correlated in the stress state (r > 0.7). Accordingly,
our proposed IMF energy features show that ultra-short-term HRV analysis can replace
short-term HRV analysis with a time length of at least 2 min.

Table 4. Correlation analysis of ultra-short-term vs. short-term HRV features.

Rest State Stress State

HRV Features 3 vs. 5 min 2 vs. 5 min 1 vs. 5 min 3 vs. 5 min 2 vs. 5 min 1 vs. 5 min

EnergyIMF1 0.978 0.941 0.901 0.959 0.948 0.920

EnergyIMF2+IMF3 0.935 0.881 0.813 0.943 0.889 0.836
EnergyIMF1

EnergyIMF2+IMF3
0.986 0.968 0.883 0.809 0.742 0.674

The proposed stress classification method was compared with some of the latest
studies that selected TSST including public speaking and cognitive tasks as mental stressors
and conducted acute stress classification with short-term HRV analysis. Table 5 compares
the number of subjects, type of measured physiological signals, classifier model, validation
method, and accuracy of our and previous studies. Multi-physiological signals, including
ECG, PPG, and GSR, were measured using public speaking as a stressor, and the result was
achieved with 79% accuracy using the AdaBoost classifier and four-fold cross-validation to
classify between stress and non-stress states [17]. The results of this study have relatively
low accuracy compared to other studies. The stress classification accuracy of another
study [18] was 96.3% using leave-one-out cross-validation with the SVM-RBF classifier
considering PPG, GSR, and EEG. However, the result considering a single signal (PPG)
was 80.0%, which is lower than our accuracy of 86.5%. Another study [12] selected TSST
and Stroop color test as stressors and used a random forest classifier and three-fold cross-
validation. The results for overlapping and not overlapping HRV signals over 5 min are
accuracies of 96.0% and 85.9%, respectively. The disadvantage of the aforementioned
study is that the number of subjects is small, and leave-one-subject-out cross-validation,
similar to that applied in real-world, was not used. The study most similar to the present
study [11] selected TSST as the stressor, and the classification accuracy results of five-fold
cross-validation and leave-one-subject-out cross-validation with an ANN classifier were
91% and 84.4%, respectively. When comparing based on LOSOCV, the results of our study
achieved a higher accuracy of 86.5%.

The dataset of our study, collected from 74 people, is the largest study that selected
TSST as a stressor. Compared with precedent studies using a single physiological signal
and LOSOCV, the result of the proposed stress detection method presents the highest
performance. For various stress-inducing tasks (public speaking, arithmetic, horror movie
viewing), the stress state and resting state were selected as individual stress intensities
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through a questionnaire to rank subjective stress intensity. The reason for dividing the
stress and resting states in this way is that the stress intensity for each task differs by person,
which is also one of the advantages compared to previous studies.

Table 5. Performance comparison of the proposed method with the state-of-the-art methods for
short-term HRV analysis.

Paper Number of
Subjects

Physiological
Signals

(Modalities)
Classifier Validation Accuracy (Classes)

[17], 2017 18 ECG (HRV), PPG,
GSR AdaBoost 4-fold 79.0% (2)

[18], 2021 40
PPG

PPG + GSR
PPG + GSR + EEG

SVM-RBF LOSOCV
80.0% (2)
86.3% (2)
96.3% (2)

[12], 2021 12 ECG (HRV) Random Forest 3-fold
Non-overlapping:

85.9% (2)
overlapping: 96.0% (2)

[11], 2020 57 ECG (HRV) ANN 5-fold
LOSOCV

91.0% (2)
84.4% (2)

Proposed 74 ECG (HRV) Linear SVM LOSOCV 86.5% (2)

As HRV analysis of data spanning less than 5 min becomes important in several
healthcare applications, ultra-short-term HRV analysis has been actively studied in previous
studies of HRV stress assessment using various methods included in mental arithmetic
tasks [28], examination stress [11,32], and the Stroop color-word task [19,65]. However, in
all previous studies, the HRV data used for ultra-short-term HRV analysis was divided
according to the required duration or the central position of the 5 min HRV data. The
proposed study is the first considering stress adaptation due to ANS homeostasis during
stress-induced tasks. By comparing the results of ultra-short-term HRV stress classification
consisting of three time segments (first, middle, and last) and three durations (1 min,
2 min, and 3 min) with general short-term HRV stress classification, stress adaptation was
confirmed by deriving higher accuracy in the first segment than in the last segment. In
addition, the accuracy of ultra-short-term HRV stress classification (Table 3) shows higher
accuracy in the first segments of 2-min and 3-min lengths compared to the accuracy of
short-term HRV stress classification (86.5%). The optimal time length to be used for stress
assessment using ultra-short-term HRV data is 3 min, but a minimum length of 2 min
is suggested.

5. Conclusions

In our study, we presented IMF energy features based on EMD as a surrogate of
general frequency domain features in HRV analysis and suggested the optimal duration
for ultra-short-term HRV analysis as a result of stress classification accuracy comparison
between short-term and ultra-short-term HRV analysis. Performance evaluation was
conducted using LOSOCV, most similar to real-world situations. The proposed study has
high accuracy compared to previous studies using similar classification methods based on
a single physiological signal.

This study has three contributions. First, we provide frequency domain information
with data of less than 5 min. Through EMD-based features, it is possible to replace infor-
mation about frequency domain that are difficult to use in ultra-short-term. Second, we
identified stress adaptability over time. In this way, the ultra-short-term analysis would
be more appropriate when evaluating stress than the commonly used short-term analysis.
Finally, we propose an optimal time length for ultra-short-term HRV data collection in
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acutely stressful situations. It is possible to provide a comfortable stress analysis service for
several healthcare applications through the proposed length.
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