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Abstract: One of the most effective ways to detect and measure antibiotics is to detect their biomarkers.
The best biomarker for the control and detection of oxytetracycline (OTC) is the OTC-specific aptamer.
In this study, a novel, rapid, and label-free aptamer-based electrochemical biosensor (electrochemical
aptasensor) was designed for OTC determination based on a newly synthesized nanocomposite
including multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), reduced graphene
oxide (rGO), and chitosan (CS), as well as nanosheets to modify a glassy carbon electrode, which
extremely enhanced electrical conductivity and increased the electrode surface to bind well with
the amine-terminated OTC-specific aptamer through self-assembly. The (MWCNTs-AuNPs/CS-
AuNPs/rGO-AuNPs) nanocomposite modified electrode was synthesized using a layer- by-layer
modification method which had the highest efficiency for better aptamer stabilization. Differential
pulse voltammetry (DPV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS),
and scanning electron microscopy (SEM) techniques were used to investigate and evaluate the
electrochemical properties and importance of the synthesized nanocomposite in different steps. The
designed aptasensor was very sensitive for measuring the OTC content of milk samples, and the
results were compared with those of our previously published paper. Based on the calibration curve,
the detection limit was 30.0 pM, and the linear range was 1.00–540 nM for OTC. The repeatability
and reproducibility of the aptasensor were obtained for 10.0 nM of OTC with a relative standard
deviation (RSD%) of 2.39% and 4.01%, respectively, which were not affected by the coexistence of
similar derivatives. The measurement in real samples with the recovery range of 93.5% to 98.76%
shows that this aptasensor with a low detection limit and wide linear range can be a good tool for
detecting OTC.

Keywords: oxytetracycline; aptasensor; nanocomposite; differential pulse voltammetry; electrochemical
impedance spectroscopy

1. Introduction

Aptamers are single-stranded oligonucleotide ligands (including DNA and RNA) that
are between 30 and 70 nucleotides long. These single-strand sequences are twisted and bind
specifically to target substances [1]. Binding to the target occurs through hydrogen bonds,
electrostatic reactions, weak van der Waals forces, or combinations of them [2]. Aptamers
are typically developed in vitro with a process called the systematic evolution of ligands
by exponential enrichment (SELEX) and can be carefully designed to bind exclusively to
various targets such as proteins, peptides, enzymes, cell surface receptors, microorganisms,
etc. It can also be a proper substitute for an antigen or antibody. They can be attached to
the surfaces of various inorganic substances for biosensor applications [3]. Some of the
most important advantages of aptamers compared to an antigen/antibody include ease
of modification and stabilization [4], robustness against heat [1], great selectivity for the
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target molecule [5], stability even under small pH changes and salt concentration [3], very
small size [6], ease of synthesis and long-term storage [7]. The aforementioned triumphs of
aptamers have led to their applications in various fields of therapeutics and diagnostics
and eventually, their implementation into biosensor devices [6]. Termed aptasensors are
designed to measure target molecules down to the nanomolar range [8]. So far, aptasensors
have been mainly introduced in two categories: electrochemical and optical [8–10]. In
the manufacture of electrochemical aptasensors, an electrode surface is usually used as
a conductive surface to stabilize a biologically sensitive aptamer. The function of an
electrochemical aptasensor is based on changes in the electrochemical current after the
target molecule interacts with the aptamer [11].

OTC is an antibacterial drug that treats infections caused by bacteria. This medicine is
also prescribed for some bacterial animal diseases [12]. The structure of OTC can be seen in
Scheme 1. Nowadays, excessive consumption of referees in livestock, which is performed
for the treatment, prevention, and control of various diseases, poses irreparable dangers
to the final consumer [13]. One of the most common drugs is antibiotics, which, if taken
in excess, can leave antibiotic residues in meat, milk, and eggs. Foods contaminated with
antibiotics, including tetracyclines, pose a serious threat to consumer health and, in some
cases, even lead to increased general bacterial resistance in the human body [14]. In order
to prevent the negative effects of antibiotics, most countries have set maximum residual
levels (MRLs) for them. The European Union has identified MRLs for some antibiotics. For
example, the MRL for penicillin in milk is reported to be 4.0 micrograms per kilogram [15].
There are several methods for determining the amount of antibiotic residue in food. Most of
these methods are microbial inhibitory tests, also known as screening tests. These methods
include the growth of bacteria such as Bacillus stearothermophilus; if there are antibiotics
in milk, its growth is reduced or stopped [16]. Bacterial inhibitory tests are time-consuming
and have no economic justification. Other methods of identifying antibiotics include liquid
chromatography, gas chromatography, high-performance liquid chromatography, and mass
spectrometry [17]. Although these methods are accurate, they require bulky and expensive
equipment, complex sample preparation, an expert operator, and long-term incubation [18].

Scheme 1. Chemical structures of OTC.

One method that does not have the abovementioned limitations uses a specific ap-
tasensor to detect antibiotics [19]. In recent years, there has been an increased interest in
using nanomaterials to enhance the sensitivity of aptasensors. Nanomaterials including
gold nanoparticles and reduced graphene oxide are appropriate due to their acceptable
electrical conductivity, and mechanical and thermal activities to be used in electrochemical
biosensors such as aptasensors to modify the surface of the electrode [20]. On the other
hand, gold nanoparticles are ideal for detecting different analytes and improving the con-
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ductivity of the aptasensor due to their unique structure, good electrical conductivity, and
catalytic properties [21]. In order to improve the aptamer chains on the surface, chitosan
is a proper material as it shows excellent filmmaking ability, relatively good conductivity,
and sensitivity to chemical modifications, biocompatibility, and non-toxicity properties.
Compared to nanomaterials, chitosan has weak electrochemical properties. Therefore, it
is usually modified with nanomaterials such as AuNPs to improve its electrochemical
properties and surface area [22]. So far, several studies have reported the determination
of OTC antibiotic residues in food, such as Zhou et al. (2012), Meng et al. (2017), and
Liu et al. (2017), [5,23,24]. In the aptasensor measuring system, the working electrode plays
the main role because all the desired reactions occur on its surface. Different working elec-
trodes have been introduced for application in electrochemical biosensors, including glassy
carbon electrodes, different types of screen-printed electrodes, gold electrodes, platinum
and carbon electrodes, as well as graphite. pencil core electrodes [25–28].

In this work, a glassy carbon working electrode was modified with reduced graphene
oxide (rGO), multi-walled carbon nanotubes (MWCNTs), chitosan (CS), and gold nanoparti-
cles (AuNPs) to increase its surface area and electrical conductivity. Additionally, a specific
OTC aptamer was used to bind with OTC at the electrode surface. The interaction between
the OTC and the stabilized aptamer on the surface of the aptasensor changed the oxidation
current of the iron detector, (Fe3+/Fe2+), which was used as an electrochemical signal to
measure OTC concentration.

2. Materials and Methods
2.1. Chemicals

Reagents and chemicals were all of analytical purity and provided from Merck (Darm-
stadt, Germany) and Sigma-Aldrich (Burlington, MA, USA) companies and used with no
more purification. Also, double distilled water was used to prepare and dilute the solutions.
MWCNTs was purchased from Sigma-Aldrich Company (Burlington, MA, USA) with
the following characteristics: purity of more than 90%, an outer diameter of 70–110 nm,
and an average length of 5–9 µm. An OTC amino DNA aptamer with the sequence of
(5′-Amino-(CH2)6- CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG
GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G-3) was purchased
from TAG (Copenhagen, Denmark). The stock aptamer solution was created in a 0.1 M
phosphate buffer solution at (pH = 7.0) containing 0.1 M of KCl. The iron detector solution
contained 3.0 mM of K4Fe (CN)6/K3Fe (CN)6 and 0.1 M of KCl from Merck company
(Darmstadt, Germany).

2.2. Apparatus and Electrodes

Voltammetric studies were performed using the AUT41203 potentiostat-galvanostat
apparatus equipped with NOVA 2.1 software created by Metrohm/Autolab (EcoChemic,
Utrecht, The Netherlands). A Metrohm pH meter 827, created by Metrohm/Autolab Com-
pany (Utrecht, The Netherlands), a Sartorius scale model BP221S, created by Sartorius
Company (Göttingen, Germany) and a Pars Nahad ultrasonic bath model PARSONIC2600,
created by Pras Nahad Company (Isfahan, Iran) and a centrifuge model EBA20 (Hettich,
Germany) were used. Scanning electron microscope (SEM), XL30 Philips SEM (Hillsboro,
OR, USA) was used to get the images of the electrode surfaces. All voltammetric measure-
ments were performed with a three-electrode system including a glassy carbon electrode
(GCE) as a working electrode, platinum (Pt) as an auxiliary electrode and silver/silver
chloride (Ag/AgCl) as a reference electrode.

2.3. Synthesis of Nanocomposites

According to the Hummer method, graphene oxide (GO) was obtained from graphite
powder. Additionally, reduced graphene oxide and gold nanoparticle nanocomposites
(rGO-AuNPs) were synthesized based on the method proposed by Wang et al. [29] with
minor modifications. For this purpose, 50.0 mg of graphene oxide was added to 20 mL
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of double-distilled water and placed under ultrasound waves for 2 h, and then 800.0 mg
of polyvinylpyrrolidone (PVP) was added to the mixture and stirred for 12 h. In the next
step, 250 µL of (1% w/v) HAuCl4 and 200.0 mg of ascorbic acid were added to the solution.
Then, this solution was stirred for an hour at 95 ◦C. The resulting solution was centrifuged
for 10 min, and, in order to remove excess PVP and ascorbic acid, the precipitated product
was washed several times with water. Finally, the synthesized substances (rGO-AuNPs)
were dispersed in 20 mL of water.

A chitosan and gold nanoparticle nanocomposite (CS-AuNPs) was synthesized ac-
cording to the method presented by Sun et al. [30]. A mixture of 20 mL of CS in 2.0 M acetic
acid (1% w/v) and 250 µL of HAuCl4 (1% w/v) was stirred for an hour, and then 100 µL of
sodium borohydride (NaBH4) 0.4 mM was gradually added. The solution was stirred for
an hour, and finally, the resulting ruby-red color solution indicated the successful synthesis
of AuNPs.

For the synthesis of the MWCNT-AuNPs nanocomposite, in the first step, the primary
samples were refluxed for approximately 15 h in 0.2 M of nitric acid solution. To remove
metal impurities, create hydrophilicity, and functionalize the MWCNTs under these con-
ditions, the surface of the MWCNTs was oxidized to carboxylic or ketone groups. The
obtained materials were then thoroughly washed to remove residual acid and dried at room
temperature. Next, the method proposed by Suresh et al. [31] was carried out with minor
changes. A total of 0.05 g of functionalized MWCNTs was added to 5 mL of double-distilled
water and the solution was exposed to ultrasound for an hour. Then 250 µL of HAuCl4
(w/v 1%) was added to the solution and stirred for an hour. At the end, 100 µL of (NaBH4)
0.4 mM was added to the solution, and, after stirring for an hour, MWCNTs-AuNPs were
synthesized.

2.4. Fabrication of Nanocomposite Modified GCEs

According to our previous reports, the glassy carbon electrode was polished using
0.05 µm alumina slurry to result in a glossy surface and then washed with double distilled
water three to five times [32]. In order to stabilize the synthesized (MWCNTs-AuNPs),
(CS-AuNPs), and (rGO-AuNPs) nanocomposites on the glassy carbon electrode, 5 µL of
each solution was placed on the surface of the polished electrode, and, after drying, it was
washed with double-distilled water several times to remove unabsorbed nanocomposites
from the surface. Finally, the electrode surface was allowed to dry [33].

In order to compare the results of different modified electrodes and the synergistic
effect of nanocomposite components toward the determination of OTC and the peak
current of the iron detector, two different modified electrodes including MWCNT-AuNP
and MWCNT-AuNP/CS-AuNP composites were fabricated using the same procedure
above.

2.5. Preparation of Aptasensor

The modified electrodes with the synthesized nanocomposites (MWCNTs-AuNPs/CS-
AuNPs/rGO-AuNPs) were placed in a 0.1 M phosphate buffer solution (pH = 7.0) con-
taining the aptamer with the optimum concentration and time of 20.0 nM for 10 h and
then washed with double-distilled water and phosphate buffer solution to remove excess
aptamer molecules and left to dry [33]. The aptasensors were each immersed separately for
30 min in a solution of 0.06 M phosphate buffer (pH = 7.0) and double-distilled water in the
presence and absence of OTC at specific concentrations. It was washed and transferred to
an electrochemical cell containing 10 mL of iron detector solution, and its differential pulse
voltammograms were taken in the range of −0.50 to 0.55 V. The resultant current of the
iron detector in the solution containing OTC at the surface of the aptasensor is considered
as an analytical signal. Finally, the Ip curve was plotted toward the OTC concentration [34].
The construction and detection processes are summarized in Scheme 2.
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Scheme 2. The construction and detection process of the proposed aptasensor.

2.6. Real Sample Preparation

The spiking method was applied to two milk samples to measure the OTC concen-
tration in the milk samples. Then, the recovery was measured to confirm the satisfactory
performance of the prepared electrochemical aptasensor. A total of 2 mL of milk samples
was spiked with 10.0 nM, 20.0 nM, 25.0 nM, 50.0 nM, and 100 nM of OTC and then diluted
by 4 mL of ultrapure water. Subsequently, 2 mL of chloroform and 2 mL of a 10% solution
of trichloroacetic acid were added to the diluted samples, which were stirred for 2 min.
Then, for 20 min, ultrasonic treatment was performed at 5000 rpm, the final solution was
centrifuged for 10 min, and the resultant floated layer was used to determine OTC [35].

3. Results
3.1. Characterization of Nanocomposites

The morphology of the synthesized nanocomposites was determined by the SEM
imaging method. Figure 1A–C show the SEM images of modified glassy carbon elec-
trodes with MWCNTs-AuNPs, CS-AuNPs, and rGO-AuNPs, respectively. As shown in
(Figure 1A), the MWCNTs were homogeneously distributed on the surface of the glassy
carbon electrode, and the gold nanoparticles were properly visible in this image. (Figure 1B)
shows the AuNPs with different diameters on the CS film. In (Figure 1C), the bright dots
represent gold nanoparticles distributed all over the surface of the glassy carbon electrode,
and most of their density is concentrated at the hedge sites and rGO edges. (Figure 1D) also
shows the rGO-AuNP nanocomposite on the MWCNT-AuNP/Cs-AuNP nanocomposite
on the surface of the glassy carbon electrode. The results of these images well indicate the
proper placement and distribution of these synthesized nanocomposites on the surface of
the glassy carbon electrode.
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Figure 1. Scanning electron microscopy images of synthesized nanocomposites stabilized on glassy
carbon electrodes MWCNTs-AuNPs (A), CS-AuNPs (B), rGO-AuNPs (C), and MWCNTs-AuNPs/CS-
AuNPs/rGO-AuNPs (D).

3.2. Cyclic Voltammetric and Impedance Measurements

To investigate the electrode surface modification process, cyclic voltammetry and
impedance spectroscopy techniques were used. Cyclic voltammograms for the unmodi-
fied glassy carbon electrode, the modified electrodes with MWCNTs-AuNPs, MWCNTs-
AuNPs/CS-AuNPs, and MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs were recorded in the
iron detector solution. As seen in (Figure 2A), the unmodified glassy carbon electrode
showed two clear oxidation-reduction peaks, and the modification of the glassy carbon
electrode with the MWCNT-AuNP nanocomposite increased the oxidation-reduction peak
current on the surface of the electrode compared to the unmodified electrode. In addition,
the separation of the cathodic and anodic peaks was reduced owing to the enhancement
in the surface area, and the electrical conductivity was increased due to the use of gold
nanoparticles and MWCNTs.

To confirm the results of the cyclic voltammetry, electrochemical impedance spec-
troscopy was also carried out (Figure 2B). As shown in this figure, the comparison of the
decrease in the charge transfer resistance of the MWCNT-AuNP nanocomposite-modified
electrode with that of the unmodified electrode confirms the results of the cyclic voltamme-
try. Moreover, after adding 0.5 µL of CS-AuNPs to the MWCNT-AuNP-modified glassy
carbon electrode, the current of the cathodic and anodic peaks of the Fe3+/Fe2 + detec-
tor also increased (Figure 2A, curve (c)) due to more addition of gold nanoparticles at
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the electrode surface. (Figure 2B curve (c)) also demonstrates a decrease in the charge
transfer resistance, indicating an increase in electrical conductivity. Finally, after adding
rGO-AuNPs to MWCNTs-AuNPs/CS-AuNPs/GCE, a further increase in the cyclic voltam-
mogram current (Figure 2A curve (d)) and a decrease in the charge transfer resistance of
the electrochemical impedance (Figure 2B curve (d)) were observed. This intense increase
in current was due to the cooperative effect of the good electrical conductivity of rGO and
AuNPs.

Figure 2. Cyclic voltammograms (A) and Nyquist curves (B) for unmodified glassy carbon electrodes
(a) modified with solution containing MWCNTs-AuNPs (b) MWCNTs-AuNPs/CS-AuNPs (c) and
MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs (d), at a scan rate of 100 mV/s. KCl 0.1 M and K3Fe
(CN)6 and K4Fe (CN)6 3.0 mM.

3.3. Evaluation of the Aptasensor Performance

In order to investigate the performance of the MWCNTs-AuNP/CS-AuNP/rGO-
AuNP nanocomposites in OTC measurement, the modified glassy carbon electrodes
with different nanocomposites of MWCNTs-AuNPs, MWCNTs-AuNPs/CS-AuNPs, and
MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs were prepared and compared with each other
in the presence and absence of OTC. (Figure 3) shows the differential pulse voltammograms
of these three modified glassy carbon electrodes with different surfaces for the detection of
OTC. (Figure 3 ((a), voltammograms)) shows the differential pulse voltammograms of the
unmodified glassy carbon electrodes in iron detector solution. As it can be observed, by
modifying the glassy carbon electrode with these three modifiers, the oxidation peak current
of the iron detector was increased (Figure 3 ((b), voltammograms)), which indicates the high
electrical conductivity of the synthesized nanocomposites. While the aptamer was placed
on the nanocomposite-modified electrodes in all states, the rate of decrease was different
for each electrode. While the aptamer was placed on these nanocomposites, the oxidation
peak current of the iron detector decreased (Figure 3 ((c), voltammograms)), which shows
a decrease in electron transfer and the prevention of electrons from reaching the surface,
while the rate of reduction in current depends on different electrode surfaces. As demon-
strated in (Figure 3 ((d), voltammograms)), after the interaction of the aptamer with OTC
for 30 min, the relating signal decreased again, which revealed the hindrance of the electron
transfer of [Fe (CN)6]3−/4− on the electrode surface. The results of the differential pulse
voltammetry of these electrodes indicate that using an MWCNT-AuNP/CS-AuNP/rGO-
AuNP nanocomposite due to the interactive effect of all components in active surface
enhancement, electrical conductivity, and reduction in charge transfer resistance can cause
a greater increase in the peak current of the iron detector at the surface of the electrode
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toward MWCNT-AuNP and MWCNT-AuNP/CS-AuNP nanocomposites. The value of
(Ip) decreased after the stabilization of the OTC on the electrode. Therefore, the differential
pulse voltammetry results show that MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs can be
used as an excellent modifier for measuring OTC.

Figure 3. DPV diagrams of the electrodes modified with nanocomposite (A) MWCNTs-AuNPs,
(B) MWCNTs-AuNPs/CS-AuNPs, and (C) MWCNTs-AuNPs/CS-AuNPs/rGO-AuNPs in a solution
containing K3Fe (CN)6 and K4Fe (CN)6 3.0 mM and 0.1 M KCl. (a) relating to the unmodified
electrodes, (b) modified electrodes with the synthesized nanocomposites, (c) modified electrodes
after aptamer addition and (d) modified electrodes with aptamer after 30 min interaction with OTC
10.0 nM.

3.4. Optimization of Time and Concentration

Aptamer modification time and concentration are important in the modification proce-
dure and are effective factors in the performance of aptasensors. The aptamer was stabilized
on the electrode surface based on the self-assembly method. The modification procedure
cannot be completed in a short time and may take a long time. The results of different
aptamer modification times were compared and the greatest peak current was achieved
at the modification time of 10 h (Figure 4A). Therefore, 10 h was chosen as the optimum
aptamer modification time. The degree of stabilization of the aptamer on the electrode
surface depends on the concentration of the aptamer used for modification and thus affects
the amount of OTC which can bind to the aptamer and the resultant electrochemical signal
of the prepared electrochemical aptasensor. At the concentration of 20.0 nM, the value of
the peak current reached a steady stage, and increasing the aptamer concentration could
barely change the peak current value (Figure 4B).

To investigate the effect of incubation time on the interaction between OTC and the
aptamer, an aptasensor created with MWCNT-AuNP/CS-AuNP/rGO-AuNP GCE was
placed in a 0.1 M phosphate buffer solution (pH = 7.0) containing 10.0 nM of OTC at
different times of exposure. After washing with phosphate buffer and double distilled
water to remove any unwanted absorbed reagents, the aptasensor was transferred to an
electrochemical cell containing 10 mL of iron detector solution, and subsequently, the
differential pulse voltammogram of the solution was recorded. The currents obtained
from the redox reaction of the iron detector were used as the analytical signal of the
aptasensors that interacted with OTC. Finally, the current curve was plotted versus time by
measuring the currents at different times (Figure 4C). The results showed that by increasing
the interaction time of OTC and the stabilized aptamer on the electrode surface, the iron
oxidation peak current (Ip) decreased. Then, after 30 min, it reached the lowest level
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and stayed constant. Therefore, to draw the calibration curve, 30 min was considered the
optimal time for OTC interaction with the aptamer.

Figure 4. Results of the aptamer modification time: (A) aptamer concentration, (B) on the electrode
surface and incubation time for binding of the aptamer to OTC 10.0 nM, (C) in different periods of
time in the iron detector solution.

The voltammograms obtained by the interaction of different concentrations of OTC
with the stabilized aptamer are shown in (Figure 5A). By measuring the iron detector
currents related to different OTC values, the relationship between the OTC concentration
and the current was plotted to the corresponding curve (Figure 5B). This figure reveals a
linear relationship between Ip versus the OTC concentration. By increasing the concentra-
tion of OTC, there was an increase in the amount of recognized OTC at the surface of the
aptasensor (Figure 5A), which prevented the electron transfer of [Fe (CN)6]3−/4− on the
surface of the modified GCE and caused a decrease in the DPV Ip current value. According
to (Figure 5B), the relation between the analytical signal and the concentration was linear
in the range of 1.00–540 nM.

The detection limit of this aptasensor was calculated by the equation LOD = 3Sb/m, in
which Sb is the standard deviation of the blank signal, and m is the slope of the calibration
curve. Therefore, under optimal circumstances, five different aptasensors were placed in
the control solution for 30 min without OTC. Then, the corresponding standard deviation
was obtained by measuring the current of each aptasensor separately in the iron detector
solution. The detection limit of the method for measuring OTC was 30.0 pM.
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3.5. Investigation of Aptasensor Repeatability and Reproducibility

To investigate the repeatability of the fabricated sensor’s response to the OTC mea-
surement, the Ip signals of the 10.0 nM OTC measurement were recorded by five separate
aptasensors (which had been constructed similarly). The percentage of the standard devia-
tion of the obtained currents was 2.39, which is proof of good repeatability of the response
of these aptasensors. The aptasensor reproducibility response was evaluated by recording
the obtained signals from 10.0 nM of OTC from five separate aptasensors on five different
days. The relative standard deviation of the measured currents was 4.01%, which indicates
the good reproducibility of this aptasensor.

Figure 5. Differential pulse voltammograms of iron detector oxidation curve related to different
8 concentrations of OTC from top to bottom, corresponding to (1.00, 5.00, 10.0, 25.0, 50.0, 100, 250 and
540 nM) (A). Significance of Ip signal to the OTC concentration (B).

3.6. Evaluation of Aptasensor Sustainability

The evaluation of the sustainability of the prepared aptasensor was performed by five
fabricated aptasensors, which were kept at 4 ◦C for 30 days and then used to measure a
concentration of 10.0 nM of OTC. The results showed that the signal decreased by 5.96%
after 30 days of storage of the aptasensors under optimum conditions, indicating good
stability and long life of the aptasensor.

3.7. Interference Study

The results of the interference study on the analytical signal of OTC concentration of
10.0 nM and the structural analogues’ concentration of 50.0 nM are shown in (Figure 6),
which, from left to right, depicts OTC without interference (OTC), OTC in the presence
of doxycycline (DOX), OTC in the presence of chlortetracycline (CTC), and OTC in the
presence of tetracycline (TET). The coexistence of the interfering substances and OTC at
the same concentration could not significantly change the electrochemical aptasensor Ip
current values. The results in (Figure 6) show good selectivity of the proposed aptasensor
for OTC detection. Therefore, adding these species at a concentration of 50.0 nM does not
interfere with the OTC measurements.
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Figure 6. Selectivity of the aptasensor for OTC detection by comparing it to the interfering agents,
including tetracycline (TET) and two structurally similar tetracycline derivatives (DOX, CTC) at the
concentration of 50.0 nM.

3.8. Real Sample Evaluation

The evaluation of the aptasensor performance for the determination of OTC was
completed in real samples. In order to determine the concentration of OTC in milk samples,
the spiking method was used and the recovery was measured. The summarized results in
Table 1 reveal that the average of the recovery range was 93.5–98.76%, with the RSDs lower
than 3.44% using the proposed aptasensor. This shows that the determination of OTC via
this aptasensor with acceptable recovery is possible in natural samples.

Our new proposed electrochemical aptasensor is comparable with previously reported
works in analytical performance, and Table 2 shows the summarized comparison of the
aspects of modification, linear range, and limit of detection.

Table 1. Results of OTC determination in two different real samples using the proposed electrochemi-
cal aptasensor.

Sample Found (nM) Added (nM) Determined (nM) Recovery (%) RSD (%)

Milk 1 0.0
10.00 9.68 96.80 1.92
20.00 18.70 93.50 3.44
25.00 23.96 95.84 2.35

Milk 2 0.0

50.00 48.83 97.66 2.05
100.0 98.24 98.24 2.02
10.00 9.55 95.50 2.41
20.00 19.65 98.25 3.16
25.00 23.67 94.68 2.20
50.00 49.38 98.76 1.99
100.0 98.72 98.72 1.84
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Table 2. Comparison of the proposed aptasensor with other aptasensors.

Method Linear Range LOD Sample Ref.

mMOFs@MIPs on magneto electrodes 2.0 × 10−9–2 × 10−4 M 0.0 × 10−10 M milk [36]

Aptamer-immobilized on MWCNTs
modified GCE 1.0 × 10−8 M–5.0 × 10−5 M 5.0 × 10−9 M milk [5]

(PEC) with Co3O4 nanoparticles/graphitic
carbon nitride 0.01 × 10−9–500 × 10−9 M 3.5 × 10−12 M - [37]

4-carboxyphenyl anchored GCE (4-CP/GCE) 2.0 × 10−9 M–2.0 × 10−4 M 5.0 × 10−10 M milk [34]

aptasensor based on AuNPs linked
with aptamer 0.0–0.75 × 10−7 M 25.0 × 10−9 M - [38]

(SELEX) process and identified by the
enzyme-linked aptamer assay (ELAA) - 0.02 × 10−6 M milk [39]

PEC sensor constructed by a p-type
semiconductor BiOI doped with graphene 4.0 × 10−9–150 × 10−9 M 0.9 × 10−9 M - [40]

electrochemical aptasensor on
MWCNTs-AuNPs/CS-AuNPs/rGO-

AuNPs GCE
1.0 × 10−9–540.0 × 10−9 M 30.0 × 10−12 M milk This

work

Note: molecularly imprinted magnetic metal-organic frameworks (mMOFs@MIPs); photo-electrochemical (PEC);
reduced graphene oxide; gold nanoparticles (rGO-AuNPs); Systematic Evolution of Ligands by the exponential
enrichment (SELEX); enzyme-linked aptamer assay (ELAA).

4. Discussion

In this study, the amount of reduction in the oxidation peak current of Fe3+/Fe2+

detector after the interaction of OTC with the aptamer attached to the electrode surface was
considered as a signal. A great signal reduction was observed when all the MWCNT-AuNP,
rGO-AuNP, and CS-AuNP modifiers were stabilized on the electrode surface. In other
words, the modified electrode with the MWCNT-AuNP/CS-AuNP/rGO-AuNP nanocom-
posite proved a suitable substrate for further aptamer stabilization and consequently more
OTC interaction with aptamer, which was due to the cooperative effect of rGO, MWCNTs,
Cs, and AuNPs in the enhancement of the electrode surface and increase in electric conduc-
tivity, as well as electrocatalytic properties [41]. This cooperative effect increases sensitivity
and efficiency and improves the electrochemical signal in OTC measurements. The high
sensitivity of this method is due to the properties of nanocomposite constituents. MWCNTs
increase the surface-to-volume ratio, electrical conductivity at the electrode surface, electron
transfer kinetics and specific regions for efficient stabilization of large amounts of DNA
aptamer while maintaining its biological activity [30]. AuNPs are also used due to their
excellent surface-to-volume ratio, which helps improve conductivity between rGO sheets,
while rGO further stabilizes AuNPs [42]. CS also provides a suitable substrate for better
and more aptamer stabilization due to its high adhesion properties, functional groups
which strongly interact with the amine-terminated groups of aptamers, biocompatibility,
good relative conductivity, and excellent filmmaking ability. The presence of CS in the
MWCNT-AuNP/CS-AuNP/rGO-AuNP nanocomposite increased the reproducibility of
this aptasensor. Erdem et al. [43] showed that high adhesion and the excellent filmmaking
capabilities of CS caused repeatable films on the electrode surface. The combination of
these properties in the constituents of the nanocomposite results in excellent electrocatalytic
activity and effective signal amplification [44]. The persistence of the analytical signal
after 30 min of interaction between OTC and stabilized aptamer on the electrode surface
indicated that the active aptamer sites had reached saturation and the maximum interaction
had taken place [41]. The detection limit is one of the most important figures of merit
in comparing different methods of analysis. Although our group’s previously designed
electrochemical sensor for OTC detection had a wider linear range than the aptasensor
presented in this study, this new aptasensor has a lower detection limit of 30.0 pM.
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In this study, the presence of mixed CS with AuNPs in the middle layer, between rGO-
AuNPs and MWCNTs-AuNPs, caused a decrease in the percentage of relative standard
deviation (RSD%) to 2.39% for five repetitive measurements. One of the limitations of this
study was that this aptasensor was non-portable. Therefore, further studies are needed to
stabilize the MWCNT-AuNP/CS-AuNP/rGO-AuNP nanocomposite and OTC aptamer on
portable electrical kits under completely optimum and safe conditions to make a suitable
biochip.

5. Conclusions

In this research, a rapid and extremely sensitive electrochemical label-free aptamer-
based biosensor was fabricated to measure and detect OTC. It was designed with an
OTC-specific aptamer as a biomarker and an MWCNT-AuNP/CS-AuNP/rGO-AuNP
nanocomposite as a modifier to modify the glassy carbon electrode surface. Cyclic voltam-
metry, differential pulse voltammetry, and impedance spectroscopy techniques were per-
formed to investigate the electrochemical properties of the proposed aptasensor. The results
of our study show that the nanocomposite-modified electrode (MWCNTs-AuNPs/CS-
AuNPs/rGO-AuNPs GCE) had the highest efficiency in better aptamer stabilization. Also,
the importance of the nanocomposite in OTC measurement was evaluated by the differen-
tial pulse voltammetry technique, which showed a cooperative effect between MWCNT-
AuNP, CS-AuNP and rGO-AuNP nanocomposites.
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